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Abstract: Land-use and land-cover (LULC) classification using remote sensing imagery plays a

vital role in many environment modeling and land-use inventories. In this study, a hybrid feature

optimization algorithm along with a deep learning classifier is proposed to improve the performance

of LULC classification, helping to predict wildlife habitat, deteriorating environmental quality,

haphazard elements, etc. LULC classification is assessed using Sat 4, Sat 6 and Eurosat datasets.

After the selection of remote-sensing images, normalization and histogram equalization methods are

used to improve the quality of the images. Then, a hybrid optimization is accomplished by using

the local Gabor binary pattern histogram sequence (LGBPHS), the histogram of oriented gradient

(HOG) and Haralick texture features, for the feature extraction from the selected images. The benefits

of this hybrid optimization are a high discriminative power and invariance to color and grayscale

images. Next, a human group-based particle swarm optimization (PSO) algorithm is applied to

select the optimal features, whose benefits are a fast convergence rate and ease of implementation.

After selecting the optimal feature values, a long short-term memory (LSTM) network is utilized to

classify the LULC classes. Experimental results showed that the human group-based PSO algorithm

with a LSTM classifier effectively well differentiates the LULC classes in terms of classification

accuracy, recall and precision. A maximum improvement of 6.03% on Sat 4 and 7.17% on Sat 6 in

LULC classification is reached when the proposed human group-based PSO with LSTM is compared

to individual LSTM, PSO with LSTM, and Human Group Optimization (HGO) with LSTM. Moreover,

an improvement of 2.56% in accuracy is achieved, compared to the existing models, GoogleNet,

Visual Geometric Group (VGG), AlexNet, ConvNet, when the proposed method is applied.

Keywords: land-use and land-cover classification; Haralick texture feature; histogram of oriented
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1. Introduction

In recent years, land-use and land-cover (LULC) classification using remote-sensing imagery

plays an important role in many applications like land use planning (growth trends, suburban

sprawl, policy regulations and incentives), agricultural practice (conservation easements, riparian

zone buffers, cropping patterns and nutrient management), forest management (harvesting, health,

resource-inventory, reforestation and stand-quality) and biological resource (fragmentation, habitat

quality and wetlands) [1–3]. Land use refers to the purpose the land serves and land cover refers to

the surface cover on the ground, whether vegetation, urban infrastructure, water, bare soil or other;

it does not describe the use of land, and the use of land may be different for lands with the same cover

type [4,5]. LULC assessment is very necessary in sustaining, monitoring and planning the usage of

natural resources [6,7]. In fact, LULC classification has a direct impact on atmospheric, soil erosion and

water, while it is indirectly connected to global environmental problems [8,9]. At this end, the remote

sensing imagery and its processing has helped in delivering up-to date and large-scale information on

surface conditions.

For years, techniques mainly based on pixel or object analysis have been used for LULC

classification. An object-based technique usually outperforms a pixel-based one, as demonstrated

in [10–12]. In fact, unlike the pixel-based technique, which classifies the pixels according to their

spectral information, the object-based algorithms enclose semantic information not in the individual

pixel but in groups of pixels with similar characteristics, such as color, texture, brightness and shape.

Both the spatial and spectral resolution are used in this latter case to segment and then classify image

features into meaningful objects [13]. From the resulting segments, homogeneous image objects are

extracted based on the local contrast. These homogeneous objects are then classified using traditional

classification approaches such as the nearest neighbor, or using knowledge-based approaches and

fuzzy classification logic [14].

Recently, studies in literature have moved towards data integration in order to improve the

accuracy of urban LULC classification [15,16]. Data integration refers to the integration of information

from various sources or sensors, such as the integration of LiDAR and optical data, for instance [17–19].

Nevertheless, even these techniques used in LULC classification present some issues since they are

extremely affected by the environmental changes, like destruction of essential wetlands, uncontrolled

urban development, haphazard, loss of prime agricultural lands, deteriorating environmental quality,

and also by other factors, like cloud cover and regional fog errors. Moreover, traditional remote-sensing

imagery processing offers some other concerns: the noise associated with the image, the orientation of

features in the images and the maintenance of a large volume of data [19,20]. Several methodologies

have been developed by the researchers to address those issues faced in LULC classification. Examples

of these methodologies are adaptive reflectance fusion models, maximum likelihood classifiers, decision

trees, convolutional neural networks (CNNs), deep neural networks (DNNs), etc. [21–25]. In some

cases, DNNs are also used for pre-trained the data, in other cases the image classification for LULC is

accomplished via more complex machine learning (ML) algorithms. It is worth to highlight that ML

algorithms have gained ground in recent years also because they resulted to be more suitable to realize

unsupervised, or semi-automatic classification systems, with huge amounts of data.

With respect to recent works presented in the literature [26–28], the study presented in this article

has proposed a new algorithm, a human group-based particle swarm optimization (PSO) algorithm,

with a long short-term memory (LSTM) classifier, to address the aforementioned issues and improve

LULC classification, in agriculture and urban environments. Remote-sensing images are retrieved

from Sat 4, Sat 6 and Eurosat datasets, also used in [26–28], but better results are reached with the new

algorithm, as shown ahead in this manuscript. In particular, a maximum improvement of 6.03% on Sat

4 and 7.17% on Sat 6 in LULC classification is reached when the proposed human group-based PSO

with LSTM is compared to individual LSTM, PSO with LSTM, and Human Group Optimization (HGO)

with LSTM. Moreover, an improvement of 2.56% in accuracy is achieved compared to the existing
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models GoogleNet, Visual Geometric Group (VGG), AlexNet, ConvNet, when the proposed method

is applied.

The general architecture of the proposed algorithm and the several detailed processing steps are

presented and explained in detail in the Section 3, but here the summary of the main operations is

given. In particular, after the selection of the remote-sensing images, normalization and histogram

equalization methods are applied to improve the visual quality of the objects. The pre-processing

techniques undertaken effectively improve the contrast of the images and enhance the edges in each

region of the image. After normalization, feature extraction is carried out by using the local Gabor

binary pattern histogram sequence (LGBPHS), the histogram of oriented gradient (HOG) and the

Haralick texture features [29–32]. The LGBPHS is utilized as a two-dimensional spatial image gradient

measurement to emphasize the high spatial frequency regions based on the image edges. In addition,

it is utilized to identify the absolute gradient scales at each point in a remote sensing image. Next,

HOG and Haralick texture features are applied to extract the texture and color feature vectors from

the image pixels. As the HOG feature descriptor operates on local cells, it is invariant to photometric

and geometric transformations, which helps in attaining a better classification. The textural properties

are calculated by Haralick texture features in order to understand the edge details about the image

content. Then, the human group-based PSO algorithm is used to select the optimal feature vectors

that significantly reduces the “curse of dimensionality” issue. The optimal feature vectors obtained

are given as the input to the LSTM classifier to establish the LULC classes. In the result section,

the performance of the proposed human group-based PSO with LSTM is evaluated in terms of recall,

precision and classification accuracy and compared with other existing models such as GoogleNet,

VGG, AlexNet and ConvNet.

This research paper is organized as follows. Section 2 presents several existing research papers

on the LULC topic, when advanced methodologies, such as HOG, LGBPHS, ML, ML in combination

with object-based image analysis (OBIA), bag-of-visual words (BOVW) and scale-invariant feature

transform (SIFT) methodologies are used. In Section 3, the proposed model is explained in detail

with mathematical expressions. Experimental analysis of the proposed model is then presented and

discussed in the Section 4. Conclusions of this study are drawn in Section 5

2. Literature Survey

As already highlighted, advanced methodologies have gained ground in recent years to

overcome unsolved issues of traditional methods, and because more suitable to realize unsupervised,

or semi-automatic classification systems, which require a huge amount of data. This section aims to

present an extensive survey of related papers.

A new rotationally invariant feature descriptor has been developed by Xiao et al. [33] to identify

cars and aircraft in the remote-sensing images. The rotationally invariant HOG descriptor used

elliptic Fourier transform, orientation normalization and feature space mapping to achieve better

performance in object detection from remote-sensing images. In [34] Rahmani and Behrad developed a

new automatic model for ship detection in the remote-sensing images. Initially, the collected images

were divided into overlapping blocks and then the LGBPHS feature descriptor was used to extract

the features from the images. Support vector machine (SVM) and artificial neural network (ANN)

were used for classification after feature extraction. However, SVM supports only binary classification,

which is not adaptable for multiclass classification.

Kadavi and Lee [35] used SVM and ANN classifiers to evaluate the multi-spectral data from mount

Fourpeaked, mount Kanaga, mount Augustine and mount Pavlof in the United States of America.

In this study, a Landsat-8 imagery dataset was used to evaluate the efficiency and effectiveness of

the developed model. The Landsat-8 imagery allowed to derive four land cover classes: vegetation,

snow, water bodies and outcrops (sand, volcanic rock, etc.). Simulation results showed that the SVM

classifier attained better performance in LULC classification compared to ANN classifier. For mount

Kanaga, the SVM classifier achieved maximum classification accuracy, which was 9.1% superior to
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ANN classifier. However, the developed model was only suitable for minimum class classification,

not for maximum class classification, and the developed model showed poor performance in some

conditions like cloud cover and regional fog error. Pencue-Fierro et al. [36] presented a new hybrid

framework for multi-region, multi-sensor and multi-temporal satellite image classification. In this

study, land-cover classification was assessed for the Cauca river region, located in the south-west part

of Colombia. After image collection, a Coordination of Information on the Environment (CORINE)

land-cover approach was used for extracting the feature vectors from the input image. Next, the

extracted features were given as the input to a supervised classifier SVM to decide the land cover

classes, like urban-area, paramo, snow, clouds, bare soil, grass-land, planted forest, permanent-crops,

natural forest, water-bodies and transitory crops. However, the computational complexity was higher

in the developed hybrid framework compared to the other methods.

Phiri et al. [37] evaluated moderate-resolution atmospheric transmission, atmospheric correction,

cosine topographic correction and dark object subtraction on a heterogeneous landscape in Zambia.

In this study, Landsat OLI-8 with 30 and 15 m spatial resolution images were tested using a

combination of random forest classifier [38] and an OBIA [39]. The developed method significantly

improved land cover classification along with topographic corrections and pan-sharpening atmosphere.

The developed framework (random forest and OBIA) effectively classified eight land-cover classes:

water bodies, grassland, secondary-forests, dry-agriculture, primary forests, irrigated crops, settlements

and plantation-forests. Yet, this study did not concentrate on the feature extraction that may degrade

the performance of land-cover classification.

Zhao et al. [40] implemented a new framework for land-use classification using UCMerced land-use

dataset and simulated dataset. After collecting the satellite data, BOVW and SIFT [41] methodologies

were used for extracting the feature vectors from the collected data. In addition, concentric-circle

based spatial rotation-invariant representation was used to describe the spatial information of data.

A concentric-circle structured multi-scale BOVW was used for land use classification. The performance

of the developed method was analyzed in terms of average classification accuracy. However, the

developed method fails to achieve better land use classification in the large datasets due to the “curse

of dimensionality” issue.

Nogueira et al. [42] used convolutional neural networks (CNNs) in different scenarios like

feature extraction, fine tuning and full training for land cover classification. The developed model’s

performance was investigated on three remote sensing datasets: Brazilian coffee scene, UCMerced

land-use and remote-sensing “19”. The results indicated that the developed model attained better

performance in land cover classification compared to other existing algorithms.

Helber et al. [26] developed a new patch-based LULC classification technique using Eurosat dataset.

The undertaken dataset had 13 spectral bands and 10 classes with a total of 27,000 geo-referenced

and labeled images. They explained how CNN was used to detect the LULC changes that helped in

improving the geographical maps. However, using middle and lower level descriptors, the CNN model

leads to poor classification performance because it supports only higher-level descriptors. Unnikrishnan

et al. [27] developed a new deep learning model for three different networks VGG, AlexNet and

ConvNet where Sat-4 and Sat-6 datasets were used to analyze the performance of the developed model.

This model included information on red and near infrared bands, with reduced number of filters,

which were tested and trained to classify the images into different classes. The developed model was

compared with other networks in terms of trainable parameters, recall and classification accuracy.

Papadomanolaki et al. [28] developed a deep learning model based on CNN for precise land-cover

classification. The performance of the developed model was compared with the existing networks

AlexNet-small, AlexNet and VGG in terms of accuracy and precision on Sat-4 and Sat-6 datasets.

However, the CNN had two major concerns: computationally high cost and more data required to

achieve precise classification.

Jayanth et al. [43] developed an elephant-herding algorithm to classify LULC regions from

high spatial resolution multi-spectral images. The developed elephant herding algorithm achieved
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high classification accuracy compared to the SVM classifier. Experimental results showed that the

elephant-herding algorithm attained better performance in LULC classification on both Arsikere taluk

and national institute of technology karnataka (NITK) campus datasets. Extensive experiments showed

that the elephant herding algorithm misclassified the dense coconut tree class, which is considered as a

major concern in the literature study. Bhosle and Musande [44] developed a CNN model for LULC

classification, in particular crop classification, in the hyperspectral remote-sensing images. In this

study, the CNN model worked well on unstructured data, where it automatically extracted features for

detection and classification of crops. Moreover, the extensive experiment showed that the CNN model

achieved effective performance on an Indian pines dataset. However, the CNN model did not encode

the orientation and position of objects (crop types) and suffered lack of ability to be spatially invariant

to the input data.

Srivastava et al. [45] compared three classification techniques in LULC analysis such as ANN,

SVM, and maximum likelihood classification (MLC) to select the best technique among them. In the

case of SVM, the classifier was well optimized for the degree of polynomial, penalty, and gamma,

where root mean square and minimum output activation threshold were taken into account for

ANN. The experimental investigation showed that the ANN classifier was superior to MLC and SVM

classifiers. As discussed earlier, ANN classifier is inappropriate for maximum class classification,

also showed limited performance in the conditions like regional fog error and cloud cover.

Kindu et al. [46] analyzed LULC changes in the landscape of the Munessa-Shashemene area of

the Ethiopian highlands during the period of 1973–2012. The satellite images of Landsat TM (1986),

MSS (1973), rapid-eye (2012), and ETM+ (2000) were used to analyze LULC changes. The collected

images were classified by using object-based image classifiers. Chatziantoniou et al. [47] combined

Sentinel-1 and Sentinel-2 data with the SVM classifier to map LULC on wetlands. In this literature study,

the spectral information were derived from minimum noise fraction, grey level co-occurrence matrix,

and principal component analysis in order to evaluate the classification accuracy. As stated earlier,

the SVM classifier supports only binary classification, which is inappropriate for multiclass classification.

As already highlighted, a human group-based PSO with an LSTM classifier is proposed in this

manuscript to address the above-discussed issues and improve the LULC classification, as it will be

shown and discussed in the experimental section. It is worth underlining that the proposed model

outperforms the methods presented in [26], [27] and [28] as discussed above, which have made use of

the same datasets. Hence, a human group-based PSO with a LSTM classifier achieved a minimum of

0.01% and a maximum of 2.56% improvement in classification accuracy on Sat 4, Sat 6 and Eurosat

datasets compared to the existing methods presented in [26–28].

3. Method

This Section presents the full architecture and all the detailed steps of the proposed algorithm,

to allow interested researchers to replicate the image processing. The main workflow of human

group-based PSO with an LSTM classifier is shown in Figure 1.
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Figure 1. Work flow of the complete human group-based particle swarm optimization (PSO) with long

short-term memory (LSTM), highlighting the main macro steps.

3.1. Image Collection

In this study, Sat 4, Sat 6 and Eurosat datasets are utilized for experimental analysis to differentiate

the things that are not related to human habitats in both urban and agricultural environments. The Sat

4 dataset comprises 500,000 image patches with four broad land-cover classes like tree, barren land,

grassland and a class with all the other land covers [48,49]. The size of each remote-sensing image

in the Sat 4 dataset is 28× 28 m. The Sat 6 dataset comprises 40,500 image patches with the size of

28× 28 m and it contains six land cover classes grassland like water bodies, buildings, barren land,

roads, trees and other classes [27,28]. A sample image of Sat 4 and Sat 6 dataset is presented in Figure 2,

and the description of the land-cover classes is given in Table 1.

 

28 28
28 28

 

Figure 2. Sample image of Sat 4 and Sat 6 datasets [27,28].
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Table 1. Description of land-cover classes in Sat 4 and Sat 6 datasets.

Dataset Classes Description

Sat 4

Barren land
Barren land includes dry salt flats, sand dunes, deserts,

beaches, gravel pits, quarries, exposed rock, strip mines, etc.

Trees Forest, a large area of land covered with trees.

Grassland
Grassland is an area in which the vegetation is dominated by

continuous cover of grasses.

A class that contains all land cover classes
other than the above three classes

Includes other land cover classes like wetlands, open water,
ice/snow, shrubland, etc.

Sat 6

Barren land
Barren land has sand, rocks, and thin soil, which includes
the regions like dry salt flats, sand dunes, deserts, beaches,

gravel pits, quarries, exposed rock, strip mines, etc.

Trees An area, which is covered with trees, is named as forest.

Grassland
Grasslands are characterized as lands that are dominated by

grasses rather than trees or large shrubs.

Roads
Human covered areas with hard surface to travel from one

place to another place.

Buildings Areas for sheltering people, animals, and machinery.

Water bodies Presence of standing water surface during most of the year.

In Eurosat dataset, the satellite images have been captured from European cities, and they are

distributed over 34 countries. A dataset is generated with 27,000 labeled and georeferenced image

patches, where the size of each image patch is 64 × 64 m. The Eurosat dataset includes 10 different

classes, where each class contains 2000–3000 images. The LULC classes in this dataset are permanent

crop, annual crop, pastures, river, sea & lake, forest, herbaceous vegetation, industrial building,

highway and residential building [26]. In addition, Eurosat images include 13 bands like aerosols, blue,

green, red, red edge 1, red edge 2, red edge 3, near infrared, red edge 4, water vapor, cirrus, shortwave

infrared 1 and shortwave infrared 1. A sample image of the Eurosat dataset is presented in Figure 3,

and the description of land use and land cover classes in Eurosat dataset is given in Table 2. In addition,

we have indicated the websites in the reference section, where the datasets can be downloaded [50,51].

Interested researchers can follow the described steps to replicate the algorithm.

 

64 64

 

 

Figure 3. Sample image of Eurosat dataset [26].
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Table 2. Description of land-use and land-cover (LULC) classes in Eurosat dataset.

Dataset Classes Description

Eurosat

Permanent crop
Permanent crop occupies the soil and yield harvests for several

consecutive years. For example; fruit
orchards, vineyards or olive groves, etc.

Annual crop
Annual crop occupies the soil and yield harvests for limited

months. For example; barley, maize, etc.

Pastures
Pasture is a land used for domesticated livestock like cattle,

horses, sheep, etc.

River
River is a natural flowing watercourse, which flow towards

ocean, sea, and lake.

Sea &lake A particular area, which is surrounded by water.

Forest A large area of land covered with trees.

Herbaceous vegetation
Areas with herbaceous plants, which are also called as vascular

plants that have no persistent woody stems above ground.

Industrial building Human covered areas to shelter machinery.

Highway and residential building Human covered areas for their own sheltering and travelling.

The Sat 4, Sat 6, and Eurosat datasets are used in this manuscript, as highlighted at the beginning

of this section, for experimental analysis to differentiate the things that are not related to human

habitats, in both urban and agricultural environments. Future work will extend the proposed analysis

to other applications, including human habitats.

3.2. Image Pre-Processing

After collecting the satellite images, normalization and histogram equalization methods are

undertaken to improve the quality of the images. Image normalization, also called contrast stretching,

changes the range of the pixel values helping in improving the visual quality of the collected satellite

images. The common case of a min-max normalization to a new image ranging from 0 to 1, results in

the well-known simplified formula expressed by the Equation (1).

Iout = (Iin −Min)
newMax− newMin

Max−Min
+ newMin (1)

where, original satellite image is indicated as Iin, minimum and maximum intensity values are

represented as Min and Max respectively, which ranges from 0 to 255, the image after the min-max

normalization is indicated with Iout, and the new minimum and maximum values are indicated with

NewMin and newMax. Then, the histogram equalization technique is used to improve the image quality

without losing the image information like edges, image patches and points [52,53]. The histogram

equalization technique changes the mean brightness of the normalized images to the mid-level of

the permitted range, where the preservation of the original brightness avoids annoying artifacts in

the images.

3.3. Feature Extraction

After normalization and histogram equalization of the collected satellite images, feature extraction

is carried out by using a hybrid optimization procedure, based on the joint use of HOG, LGBPHS and

Haralick texture features, namely correlation, contrast, energy, homogeneity, inverse diverse moment,

entropy and angular second moment, to extract the feature vectors from the images.



Remote Sens. 2020, 12, 4135 9 of 28

3.3.1. HOG

In the satellite image, the HOG feature descriptor significantly captures the gradient and edge

structure of the objects, though, it operates in the localized cells, and this upholds invariance to

photometric and geometric transformations (except object orientation) [54,55]. This action helps in

finding the changes appears in the large spatial regions. Here, a simple gradient operator K is applied to

determine the gradient value. The gradient of the image is given by Equation (2), where x, y represents

a generic point in the image and the image frames are denoted as u.

Lx = K ∗ u (x, y) and Ly = KT ∗ u(x, y) Lx (2)

The magnitude of the gradients and edge orientation of the point x, y is calculated by following

the respective conditions (Equations (3) and (4)),

L(x, y) =

√

Lx(x, y)2Ly(x, y)2 (3)

θ(x, y) = tan−1 Lv(x, y)/Lx(x, y) (4)

For improving the invariance in illumination and noise, a normalization process is performed

after the calculation of histogram values. The normalization is helpful for contrast and measurement

of local histogram. In HOG, four different normalizations are used such as L2-norm, L2-Hys, L1-Sqrt

and L1-norm. Among these normalizations, L2-norm gives a better performance in object detection.

The blocks of normalization in HOG is given by Equation (5),

L2−norm : f =
q

√

∥

∥

∥q
∥

∥

∥

2

2
+ e2

(5)

where, e is assigned as the small positive value, only when an empty cell is taken into account, J is a

feature-extracted value, q is the non-normalized vector in histogram blocks, and
∥

∥

∥q
∥

∥

∥

2

2
represents the

2-norm of HOG normalization.

3.3.2. LGBPHS

Initially, the pre-processed satellite images are transformed to obtain multiple Gabor magnitude

pictures (GMP) using multi-orientation and multi-scale Gabor filters. Then, each GMP is converted

into local GMP (LGMP), which is further categorized into non-overlapping rectangular regions with

specific histogram and size [56]. The LGMP histogram of all the LGMO maps is combined to form

final histogram sequences. Features extracted by LGBPH are robust to illumination variations, because

the LGBPH features are invariant to monotonic gray-scale changes.

3.3.3. Haralick Texture Features

The Haralick features are 2nd order statistics that reflect the overall average degree of correlation

between the pixels in different aspects like contrast, energy, inverse difference moment, entropy,

homogeneity, correlation and angular second moment. Haralick texture features effectively deliver

information regarding the relative position of the neighborhood image pixels in the satellite images

that helps in improving LULC classification performance. The texture features are calculated from the

texture information that are present in the grey-level co-occurrence matrix (GLCM) [57]. In order to

develop a number of spatial indices, Haralick uses the GLCM, because it contains the two neighboring

pixels’ relative frequencies in the image. Haralick develops the vast number of textural features by

starting with 14 original features that are described in [58], but only seven features are widely used due

to their importance for remote-sensing images. For instance, in [59] they showed a better performance
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with respect to the others, and, therefore, in this study, those seven commonly used features are

considered for the processing.

A set of seven different GLCM indicators is described by the following Equations (6)–(12):

Energy =
∑

γ,δ

ϕ(γ, δ)2 (6)

Entropy =
∑

γ,δ

ϕ(γ, δ) log2 ϕ(γ, δ), or 0 ifϕ(γ, δ) = 0 (7)

Correlation =
∑

γ,δ

(γ− µ)(δ− µ)ϕ(γ, δ)

σ2
(8)

Angular second Moment =
∑

γ,µ

(ϕ(γ, δ))2 (9)

Inverse Di f f erence Moment =
∑

γ,δ

1

1 + (γ− δ)2
ϕ(γ, δ) (10)

Contrast =

Ng−1
∑

z=0

z2



















Ng
∑

γ=0

ϕ(γ, δ)



















(11)

Homogenity =
∑

γ,δ

ϕ(γ, δ)

1 + (γ− δ)2
(12)

where, the matrix cell index is depicted as (γ, δ), the frequency value of the pair of index is represented

as ϕ(γ, δ), mean and standard deviation of the row sums are illustrated as µ =
∑

γ,δ γ ∗ ϕ(γ, δ) =
∑

γ,δ δ ∗ ϕ(γ, δ), and σ =
∑

γ,δ(γ− µ)
2
∗ ϕ(γ, δ) =

∑

γ,δ(δ− µ)
2
∗ ϕ(γ, δ), Ng lastly illustrates the total

number of distinct gray levels in the images.

The variable importance analysis is carried out via the GLCM classification results, where the high

importance of the variable is represented by high values of GLCM. From the experimental analysis,

it has been proven that the Haralick’s seven selected features have the highest significance among the

14 original features, as demonstrated in [59] and, therefore, the classification results proved that the

Haralick features have higher resolutions, and this demonstrates that they are the best features, rather

than others, for satellite image classification.

3.4. Feature Selection

Feature selection is carried out by using the human group-based PSO algorithm after extracting

the feature vectors. Generally, PSO is a population-based searching algorithm that mimics the behavior

of birds [60]. In order to generate new positions of every particle, Equation (13) is used to update the

velocity vi and position pi of the particles.

vi(n + 1) = w× vi(n) + r1 × c1 × (lbi(n) − pi(n)) + r2 × c2 × (gbi(n) − pi(n))

pi(n + 1) = pi(n) + vi(n + 1)
(13)

where, n is represented as the iteration, r1 and r2 are denoted as random real numbers between [0, 1],

w is denoted as inertia weight, bi is indicated as the best position, lbi(n) is stated as local best position

and gbi(n) is indicated as the global best position of the particle. In PSO, the HGO algorithm is utilized

initially to influence the particles and then the adaptive uniform mutation is utilized to improve the

convergence rate and to make the implementation simpler.
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3.4.1. Fitness Function and Encoding of Particle

Initially, HGO is used to transform a discrete multi-label into a continuous label. The undertaken

algorithm finds the extracted feature vectors based on decision di, where the vectors of the particle’s

position are presented as pi(n) = (pi,1, pi,2, pi,D).

Compared to individual HGO and PSO algorithms, the proposed human group-based PSO

algorithm has a minimum fitness value to select optimal feature vectors. The best fitness values of

HGO, PSO and human group-based PSO algorithms is graphically represented in Figure 4.
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Figure 4. Graphical comparison of best fitness values.

3.4.2. Adaptive Uniform Mutation

The adaptive uniform mutation is utilized to increase the ability of the feature selection algorithm

in exploration. In this operator, a non-linear function pm is used to control the range and decision of

the mutation on each particle pi. At every iteration, pm is updated using the Equation (14).

pm = 0.5× e(−10× n
N ) + 0 (14)

where, N is indicated as maximum iteration, n denotes the number of iterations and the pm value tends

to decrease when the number of iterations increases. The mutation randomly picks the k elements from

the particle, if the pm value is higher than the random number between [0, 1]. Then, the mutation value

of the elements within the search space is reinitialized, where k is an integer value, used for controlling

the mutation range [61,62]. Mathematically, k value is represented in Equation (15), as:

k = max
{

1,
∣

∣

∣D× pm

∣

∣

∣

}

(15)

The flow chart related to the human group-based PSO algorithm is given in Figure 5, with the

further description of the steps below.
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Figure 5. Flow chart of the human group-based PSO algorithm.

The step by step process of human group-based PSO algorithm is given below.

Step 1: Initialize the particles swarm, (a) set the number of iterations N, swarm size Ts and

archive size Ta (b) initialize the particles location, (c) estimate the objective of every particles, (d) save

non-dominated solution into the archive.

Step 2: Pareto domination relationship is used to update the personal best position of the particles.

If new position pi(n + 1) is better than old personal best position lbi(n), set lbi(n + 1) = pi(n + 1),

or else unchanged the personal best position of the particles, where bi is represented as best position

and lbi(n) is presented as local best position.

Step 3: Based on the diversity of solution, select the global best position from the archive. At first,

crowding distance value is calculated and then binary tournament is used to select the global best

position of the particle gbi(n).

Step 4: Then, initialize the decision value di based on gbi(n). Every decision di of the feature

vector d is a binary value di = ±1, i = 1, 2, . . .T, every feature vector d is related to the fitness value

V(d) that is considered as the weighted sum of T stochastic contributions W j

(

d j, d
j

1
, .., d

j
s

)

. However,

these contributions depend on the value of decision d j and other S decisions d
j

i
, i = 1, 2 . . . S.

The fitness function is mathematically presented in Equation (16):

V(d) =
1

T

T
∑

j=1

W j

(

d j, d
j

1
, d

j

2
, . . . , d

j
s

)

(16)

where the integer index S = 0, 1, 2, . . .T − 1 corresponds to the number of interacting decision values.

The knowledge level of the mthmth member is determined by the parameter P ∈ [0, 1], which is the

probability of each member that knows the contribution of the decision. Based on the knowledge level,

every member m computes own perceived fitness using Equation (17):

Vm(d) =

∑T
j=1

⌣
d mjW j

(

d j, d
j

1
, d

j

2
, . . . , d

j

S

)

T
∑

j=1

⌣
d mj

(17)
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where,
⌣
d is denoted as the matrix, whose generic element

⌣
d mj considers the value one with probability

(P and 0) with probability (1− P).

Step 5: Based on the decision value di, Equation (18) is used to update the velocity vi and position

pi of the particles.

vi(n + 1) = w× vi(n) + r1 ×Vm(d) × (lbi(n) − pi(n)) + r2 ×Vm(d) × gbi(n) − pi(n))

pi(n + 1) = pi(n) + vi(n + 1)
(18)

Step 6: Perform uniform mutation using the Equations (14) and (15).

Step 7: Update the external archive using crowding distance methodology.

Step 8: Analyze the termination condition: if the proposed algorithm attains the maximum

iteration, then stop the algorithm, or else return to step 2. Hence, the worst particles (feature vectors)

are eliminated based on the fitness function Vm(d) of the HGO algorithm.

In all three datasets, approximately 70−80% of the feature vectors are selected from the total

extracted features with this procedure. After selecting the optimal features, classification is then carried

out using the LSTM classifier. Table 3 states the extracted and the selected features after applying the

human group-based PSO algorithm.

Table 3. Selected feature vectors after applying the feature selection algorithm.

Datasets Extracted Features Selected Features

Sat 4 38× 5000 38× 3671
Sat 6 50× 8700 50× 6290

Eurosat 55× 9000 55× 7098

3.5. Classification

The LSTM classifier has the default behavior of remembering data information for a long

period [63,64]. In a LULC classification, a huge number of remote sensing images are needed when

neural networks are employed for attaining better results. Among different neural networks, the LSTM

classifier has already proven to be the best choice in this case [65,66]. Generally, the LSTM classifier

is composed of a series of LSTM units, where the temporal quasi-periodic features for extracting the

long-term and short-term dependencies are stored. The structure of the LSTM classifier is denoted in

Figure 6, and in our case, it includes 98 LSTM units, whose details are graphically stated in Figure 7.
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Figure 6. Structure of the LSTM classifier.
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Figure 7. Graphical representation of the single LSTM unit.

Each single LSTM unit contains an input gate in, a forget gate fn, a cell cn and an output gate on

which are mathematically expressed through the Equations (19)–(22):

in = σ(Wihhn−1 + Wiaat + bi) (19)

fn = σ
(

W f hhn−1 + W f aat + b f

)

(20)

cn = fn × cn−1 + in × tanh(Wchhn−1 + Wcaan + bc) (21)

on = σ(Wohhn−1 + Woaan + b0) (22)

where, represents the quasi-periodic feature in different frequency bands at the n time step. The output

of the prior LSTM unit is stated as hn−1.

Work coefficients are denoted as W and b, while tanh(.) and σ(.) indicate the hyperbolic tangent

and sigmoid activation functions, respectively. The output of the LSTM unit is mathematically

denoted in the following Equation (23):

hn = on × tanh(cn) (23)

The output of the LSM unit at the n time step, hn contains the information of the prior time steps

through cn and on, and collects the extracted features. Based on dependency relation, the cell state

{cn|n = 1, 2, , N} learns the memory information of the temporal quasi-periodic features for a long and

short period during the training process.

It is worth commenting, before moving to the next section, on one main issue of neural networks,

which is represented by the overfitting that is the ability of fitting the training data, but not the testing

data, because the network has not learned to generalize to new situations. The neural network is

unable to exert its potential when in an overfitting state, and this may apply to the LSTM case. Early

stopping operation with dropout and a weight constraint is one of the solutions utilized to train the

neural networks and prevent gradient explosion and disappearance. Dropout randomly selects some

LSTM units to set their output to zero during every iteration. The output value of a few LSTM units

is used when calculating the error value; instead, some of the other LSTM units are discarded, and

used only when error back propagation calculations must be performed. A LSTM network is trained

by combining dropout with the constraining of the network parameters in order to suppress the

overfitting [67], and a reasonable value for the hyper-parameters in the case of the LSTM employment

are the following: 100 maximum epochs, 27 as minimum batch size, gradient threshold equals to 1,

learning rate: 0.001, and layer wise hidden units respectively: layer 1: 200 units, layer 2: 225 units,

layer 3: 200 units, and layer 4: 225 units. Further details can be found in [68].
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4. Result and Discussion

The proposed model is simulated using the MATLAB 2019 version on a PC with 128 GB RAM,

i9 Intel core processor, Windows 10 operating system (64-bit) and 3 TB hard disk. The performance of

the proposed model is compared with a few benchmark models: GoogleNet [26], 2 band VGG [27],

hyper parameter tuned VGG [27], 2 band AlexNet [27], hyper parameter tuned AlexNet [27], 2 band

ConvNet [27], hyper parameter tuned ConvNet [27], AlexNet [28], ConvNet [28] and VGG [28], in order

to find out its effectiveness. Specifically, the performance of the proposed model is evaluated on the

selected datasets in terms of precision, recall and accuracy parameters. The mathematical expressions

of accuracy, recall and precision are represented in the following Equations (24)–(26).

Accuracy =
TP + TN

FN + TP + TN + FP
× 100 (24)

Recall =
TP

TP + FN
× 100 (25)

Precision =
TP

TP + FP
× 100 (26)

where, true negative is denoted as TN, false negative is represented as FN, true positive as TP and

false positive as FP.

In the following subsections, the quantitative evaluation of the proposed model is carried out

when Sat 4, Sat 6 and Eurosat data are used. As a benchmark, the results presented in [26–28] works

are considered.

4.1. Quantitative Investigation on Sat 4 Dataset

The Sat 4 dataset is used to evaluate the performance of the proposed model to classify four

land-cover classes: tree, barren land, grassland and a class with all the other land covers. In this case,

the performance evaluation is validated by using 500,000 image patches with 70% of the data used for

training and 30% for testing. Tables 4 and 5 represent the performance evaluation of the proposed

model, implementing an LSTM classifier, when the human group-based PSO is used with two other

different classifiers, the Deep Neural Network (DNN) and the Multi Support Vector Machine (MSVM),

in terms of recall and precision (Table 4), and in terms of accuracy (Table 5). The two tables point out

that the LSTM classifier achieves better classification performance in LULC classification.

Table 4. Performance investigation of the proposed model with different classifiers on Sat 4 dataset by

means of recall and precision.

Classes

Human Group-Based
PSO with DNN

Human Group-Based
PSO with MSVM

Human Group Based-PSO
with LSTM

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

Barren land 99.07 99.12 99.65 99.79 99.90 99.98
Trees 99.54 99.65 99.67 99.65 99.98 99.97

Grasslands 99.60 99.87 99.43 99.80 99.97 99.95
Others 99.61 99.90 99.60 99.87 99.98 99.97
Overall 99.45 99.63 99.58 99.77 99.95 99.96
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Table 5. Performance investigation of the proposed model with different classifiers on Sat 4 dataset by

means of accuracy.

Classification Accuracy (%)

Classes
Human Group based

PSO with DNN
Human Group Based

PSO with MSVM
Human Group Based

PSO with LSTM

Barren land 98.90 99.19 100
Trees 99.57 98.64 99.98

Grasslands 98.80 98.80 99.99
Others 99.15 98.76 100
Overall 99.10 98.84 99.99

The same performance analysis of the proposed model with different classifiers on Sat 4 dataset is

graphically represented in Figure 8.

 

 
Figure 8. Graphical investigation of the proposed model with different classifiers on Sat 4 dataset.

Tables 6 and 7 represent the performance evaluation of the proposed model when compared with

other optimization techniques, like the LSTM only, the PSO with LSTM, the HGO with LSTM, and

the human group-based PSO with LSTM, by means of recall and precision (Table 6) and by means of

accuracy (Table 7). These tables are pointing out that the LSTM classifier with human group-based

PSO achieves better performance in LULC classification in terms of recall, precision, and accuracy on

the Sat 4 classes, as previously specified. The proposed model, the human group-based PSO with

LSTM, shows a maximum of 6.03% improvement in LULC classification, if compared to LSTM, PSO

with LSTM and Human Group Optimization (HGO) with LSTM. Figure 9 shows graphically the same

performance analysis.

Table 6. Performance investigation of the proposed model with different optimization techniques on

Sat 4 dataset by means of recall and precision.

Classes

LSTM PSO with LSTM HGO with LSTM
Human Group Based

PSO with LSTM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Barren land 94.65 94.92 98.74 98.16 98.62 98.70 99.90 99.98
Trees 93 95 96.56 97.55 98.69 98.73 99.98 99.97

Grasslands 94.90 96.10 97.88 97.82 98.93 98.98 99.97 99.95
Others 93.70 94 98.63 98.87 98.69 98.92 99.98 99.97
Overall 94.06 95.005 97.95 98.10 98.65 98.83 99.95 99.96
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Table 7. Performance investigation of the proposed model with different optimization techniques on

Sat 4 dataset by means of classification accuracy.

Classification Accuracy (%)

Classes LSTM PSO with LSTM HGO with LSTM Human Group Based PSO with LSTM

Barren land 94.50 96.92 97.80 100
Trees 93 97.84 98.74 99.98

Grasslands 94.44 95.89 97.90 99.99
Others 93.92 97.78 98.89 100
Overall 93.965 97.10 98.33 99.99

 

 

Figure 9. Graphical investigation of the proposed model with different optimization techniques on Sat

4 dataset.

Comparison of Proposed Method with Existing Techniques on Sat 4 Dataset

In this subsection, AlexNet, ConvNet, and VGG [27] are selected for implementing the PSO

and HGO techniques. The reason for choosing these techniques is that they are the most widely

used neural network architectures for the classification of LULC on satellite images. The selected

existing techniques are implemented with HGO and PSO after the max pooling layer of each existing

technique. For instance, ConvNet has the output of 4.096 features in the max pooling layer and

implemented the PSO and HGO as filtering technique that provides only 1000 features as output of

fully ConvNet. Table 8 shows the performance evaluation of the proposed model when compared with

these various neural networks on Sat 4 dataset, in terms of classification accuracy. From the analysis,

the results confirm that the proposed LSTM with PSO and HGO achieved better performance on LULC

classification in terms of accuracy on Sat 4 dataset.

Sample image patches of Sat 4 dataset for the selected classes are given in Figure 10.

It is worth to underline that the size of each image patch in Sat 4 dataset is 28× 28 m, quite small,

and this limits the possibility to enlarge the image since it appears very unfocused.
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Table 8. Comparative analysis of different neural networks with PSO and HGO.

Methodology Dataset Overall Accuracy (%)

AlexNet + PSO Sat 4 99.95 ± 0.02
AlexNet + HGO Sat 4 99.94 ± 0.02

AlexNet + PSO + HGO Sat 4 99.96 ± 0.02
ConvNet + PSO Sat 4 99.94 ± 0.02
ConvNet + HGO Sat 4 99.95 ± 0.01

ConvNet + PSO + HGO Sat 4 99.96 ± 0.02
VGGNet + PSO Sat 4 99.95 ± 0.03
VGGNet + HGO Sat 4 99.95 ± 0.03

VGGNet + PSO + HGO Sat 4 99.96 ± 0.02
Proposed LSTM + PSO Sat 4 99.97 ± 0.02
Proposed LSTM + HGO Sat 4 99.97 ± 0.02

Proposed LSTM+ PSO + HGO Sat 4 99.98 ± 0.01

 

28 28

Figure 10. Sample image patches of Sat 4 dataset.

4.2. Quantitative Investigation on Sat 6 Dataset

The same analysis carried out in the previous Section 4.1 on Sat 4 is now assessed on Sat 6 dataset.

In this case, the dataset is used to evaluate the performance of the proposed model to classify six

land cover classes: grassland, water bodies, buildings, barren land, roads and trees. The performance

analysis is carried out by using 40.500 image patches with 70% of them for training and 30% for testing.

The performance of the proposed model is analyzed with different classification techniques, DNN,

MSVM, LSTM (Tables 9 and 10), and with different optimization techniques, LSTM only, the PSO with

LSTM, the HGO with LSTM, and the human group-based PSO with LSTM (Tables 11 and 12), by means

of recall and precision (Tables 9 and 11) and by means of accuracy (Tables 10 and 12). The results

summarized in the following Tables 9 and 10, respectively, point out how the LSTM classifier achieves

better performance in LULC classification, if compared to other classification techniques, also in this

case, when Sat 6 dataset is used. Performance analysis of the proposed model with different classifiers

on Sat 6 dataset is also graphically presented in Figure 11.
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Table 9. Performance investigation of the proposed model with different classifiers on Sat 6 dataset by

means of recall and precision.

Classes

Human Group Based PSO
with DNN

Human Group Based PSO
with MSVM

Human Group Based PSO
with LSTM

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

Barren land 98.97 99.02 96.09 99.07 99.92 99.99
Trees 99 98.76 99 98.90 99.98 99.98

Grasslands 99.82 99.05 98.45 99.09 99.80 99.90
Roads 99.80 98.90 99.12 98.85 100 100

Buildings 99.30 97.98 98.80 98.98 100 99.98
Water bodies 99.87 99 99 99.80 99.98 100

Overall 99.46 98.785 98.41 99.115 99.94 99.975

Table 10. Performance investigation of the proposed model with different classifiers on Sat 6 dataset by

means of classification accuracy.

Classification Accuracy (%)

Classes
Human Group Based

PSO with DNN
Human Group Based

PSO with MSVM
Human Group Based

PSO with LSTM

Barren land 98.90 99 100
Trees 98.72 98.96 99.99

Grasslands 99.09 96.09 99.99
Roads 98.79 95.97 100

Buildings 98.90 98.06 99.99
Water bodies 99 99.5 100

Overall 98.90 97.88 99.99

Table 11. Performance investigation of the proposed model with different optimization techniques on

Sat 6 dataset by means of recall and precision.

Classes

LSTM PSO with LSTM HGO with LSTM
Human Group Based

PSO with LSTM

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Barren land 92.90 93.09 97.78 98.08 97 98.92 99.92 99.99
Trees 91.02 94.57 97.09 97.79 97.89 97 99.98 99.98

Grasslands 93.20 96 98.88 97.68 96 97 99.80 99.90
Roads 92.39 92.30 98.89 98.97 98.82 97.71 100 100

Buildings 89 94.09 97.35 98.95 97.90 98.54 100 99.98
Water bodies 92.19 93.92 97.88 98.89 98.96 98.35 99.98 100

Overall 91.78 93.995 97.97 98.39 97.61 97.87 99.94 99.975

Table 12. Performance investigation of the proposed model with different optimization techniques on

Sat 6 dataset by means of classification accuracy.

Classification Accuracy (%)

Classes LSTM PSO with LSTM HGO with LSTM Human Group Based PSO with LSTM

Barren land 94.09 95.52 96 100
Trees 92 96.73 97.08 99.99

Grasslands 94 95.90 96.85 99.99
Roads 92.03 96.57 98.80 100

Buildings 91.86 95.60 96.43 99.99
Water bodies 92.94 95.80 98 100

Overall 92.82 96.02 97.19 99.99
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Figure 11. Graphical investigation of the proposed model with different classifiers on Sat 6 dataset.

The results summarized in the following Tables 11 and 12, respectively, point out how the proposed

model achieves better performance in LULC classification, if compared to other different optimization

techniques on Sat 6 dataset. The Tables show how the proposed model, the human group-based PSO

with LSTM, reaches a maximum of 7.17% and minimum of 2.8% improvement in LULC classification

compared to the only LSTM, to the PSO with LSTM and to the HGO with LSTM.

Performance analysis of the proposed model with different optimization techniques on Sat 6

dataset is also graphically presented in Figure 12.
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Figure 12. Graphical investigation of the proposed model with different optimization techniques on

Sat 6 dataset.

Comparison for the Proposed LSTM Method with Existing Techniques on Sat 6 Dataset

In this subsection, LSTM, AlexNet, VGG and ConvNet are implemented with PSO and HGO on

the Sat 6 dataset. Eight layers are presented in the AlexNet, where the first five layers are convolution

layers followed by max-pooling layers and the remaining three are fully connected layers. The second

fully connected layer produces as output 4096 features. Here, the PSO and HGO are implemented to
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minimize the features. Therefore, the final output of AlexNet is 1.000 features. Likewise, the other

neural networks are implemented with PSO and HGO after the max-pooling layers. Table 13 describes

the comparison of the proposed model with the different neural networks, AlexNet, VGGNet and

ConvNet with PSO and HGO, on the whole Sat 6 dataset in terms of overall classification accuracy.

In this case, LSTM + PSO +HGO attain 99.94% of precision, 99.97% of recall and 99.99% of accuracy.

Sample image patches of the Sat 6 dataset for the selected classes are given in Figure 13. The size of

each patch is 28× 28 m also in the case of the Sat 6 dataset, and the same issue already discussed is

faced when images of the patches are shown.

Table 13. Comparative analysis of proposed LSTM with existing neural networks on Sat 6 dataset.

Methodology Dataset Overall Accuracy (%)

AlexNet + PSO Sat 6 99.88 ± 0.03
AlexNet + HGO Sat 6 99.89 ± 0.02

AlexNet + PSO + HGO Sat 6 99.91 ± 0.01
ConvNet + PSO Sat 6 99.86 ± 0.03
ConvNet + HGO Sat 6 99.88 ± 0.02

ConvNet + PSO + HGO Sat 6 99.90 ± 0.01
VGGNet + PSO Sat 6 99.92 ± 0.02
VGGNet + HGO Sat 6 99.92 ± 0.02

VGGNet + PSO + HGO Sat 6 99.93 ± 0.01
Proposed LSTM + PSO Sat 6 99.98 ± 0.02
Proposed LSTM + HGO Sat 6 99.98 ± 0.02

Proposed LSTM+ PSO + HGO Sat 6 99.98 ± 0.01

 

Figure 13. Sample image patches of Sat 6 dataset. 
Figure 13. Sample image patches of Sat 6 dataset.

4.3. Quantitative Investigation on Eurosat Dataset

In this section, Eurosat dataset is used to evaluate the performance of the proposed model to

classify 12 LULC classes. Those are permanent crop, annual crop, pastures, river, sea and lake,

forest, herbaceous vegetation, industrial building, highway and residential building. In this scenario,

the performance analysis is accomplished for 27,000 image patches with 70% of the data used for

training and 30% for testing with two case studies.

In this case, Table 14 summarizes the performance values of the proposed model for different

classes of LULC classification in terms of accuracy, recall and precision, with different classifiers,
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DNN, MSVM, LSTM, and different optimization techniques, PSO, HGO and human group-based PSO.

The accuracy, recall and precision of the LSTM classifier with human group-based PSO is 97.40%, 98.70%

and 97.80%, respectively. The LSTM classifier with human group-based PSO shows an improvement

in LULC classification also in this case, when tested on the Eurosat dataset. Performance analysis of

the proposed model on Eurosat dataset is graphically presented in Figure 14.

Table 14. Performance investigation of the proposed model on Eurosat dataset.

Average Value

Classification Optimization Techniques Precision (%) Recall (%) Accuracy (%)

DNN

PSO 87.89 90 88.2
HGO 90 92.02 90

HGO + PSO 91.38 92.91 90.09

MSVM

PSO 87 88.39 87.03
HGO 92.04 95 90.85

HGO + PSO 94.90 96.50 93.70

LSTM

PSO 92 93.98 95
HGO 94.50 94 96.90

HGO + PSO 97.80 98.70 97.40

 

 

64 64

Figure 14. Graphical investigation of the proposed model on Eurosat dataset.

Comparison of Implementing PSO and Human Group Optimization (HGO) on the Proposed Method

In this subsection, GoogleNet [26] is implemented with optimization techniques, namely PSO and

HGO, and only 1.000 features are selected. The other techniques like AlexNet, VGG, and ConvNet,

as presented in [27], worked only on the Sat 4 and Sat 6 dataset, hence, they were not considered in

the case study of the Eurosat dataset. The GoogleNet uses 1 × 1 convolutions in the middle of the

architecture, and global average pooling. In addition, the inception module is also different from other

architectures. The 1 × 1, 3 × 3, 5 × 5 convolutions are presented in the inception module and 3 × 3 max

pooling is operated in a parallel way and the input and output are stacked together for generating the

final output. Table 15 shows the comparative analysis of LSTM and GoogleNet [26] with PSO and

HGO on the whole Eurosat dataset. Sample image patches of the Eurosat dataset are given in Figure 15.

In this case, the image could be realized with a better focus, since the size of each patch is 64× 64 m.
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Table 15. Comparative analysis of proposed LSTM with PSO and HGO on the Eurosat dataset.

Methodology Dataset Overall Accuracy (%)

GoogleNet + PSO Eurosat 96.18 ± 0.3
GoogleNet + HGO Eurosat 96.20 ± 0.2

GoogleNet + PSO + HGO Eurosat 96.40 ± 0.2
Proposed LSTM + PSO Eurosat 97.37 ± 0.03
Proposed LSTM + HGO Eurosat 97.39 ± 0.02

Proposed LSTM+ PSO + HGO Eurosat 97.40 ± 0.01

 

 

 

Figure 15. Sample image patches of the Eurosat dataset.

4.4. Comparative Analysis

The comparative analysis between the proposed and existing models is represented in Table 16.

Analyzing recent works from the literature, based on similar data, it was found that Helber et al. [26]

developed a new patch-based LULC classification technique using Eurosat dataset. As already

discussed, this work explained how CNN was used to detect the LULC changes, by helping to improve

the geographical maps. Unnikrishnan et al. [27] implemented a novel deep learning method for three

different networks VGG, AlexNet and ConvNet, and Sat 4 and Sat 6 datasets were used to analyze the

performance of the developed model. Papadomanolaki et al. [28] designed a deep learning model

based on a CNN for accurate land-cover classification, by including 2 band information (red and near

infrared) with a reduced number of filters, which were tested and trained to classify the images into

different classes. In our manuscript, the proposed architecture was directly compared with these

models in terms of precision, recall and accuracy.

Table 16 illustrates that the proposed model achieves a minimum of 0.01% and a maximum of

2.56% improvement in accuracy on Sat 4, Sat 6 and Eurosat datasets, when compared with the models

presented in [26–28]. The improvement is there, although modest, but it is worth adding also that the

human group-based PSO algorithm, presented in this work, when combined with a LSTM classifier

gains a better performance in LULC classification also by means of computational cost and processing

time. Compared to DNN and MSVM, LSTM has less training time for all three datasets. Moreover,

the proposed human group-based PSO algorithm significantly reduces the “curse of dimensionality”

problem and the LSTM classifier achieves better performance in LULC classification, as demonstrated

before, when compared with other classifiers. This better LULC classification may assist the researchers

in many real time applications such as wildlife habitat protection, urban expansion/encroachment,
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natural resource management, legal boundaries for tax and property evaluation, target detection

(identification of land/water interface, clearings, roads, bridges, and landing strips), damage delineation

(flooding, seismic, tornadoes, volcanic, and fire), and routing/logistics planning for resource extraction

activities, exploration and seismic.

Table 16. Comparative investigation of the proposed and existing models.

Methodology Dataset Overall Accuracy (%)

GoogleNet [26] Eurosat 96.69

2 band AlexNet [27]
Sat 4 99.66
Sat 6 99.08

Hyper parameter tuned AlexNet [27]
Sat 4 98.45
Sat 6 97.43

2 band ConvNet [27]
Sat 4 99.03
Sat 6 99.10

Hyper parameter tuned ConvNet [27]
Sat 4 98.45
Sat 6 97.48

2 band Visual Geometric Group (VGG) [27]
Sat 4 99.03
Sat 6 99.15

Hyper parameter tuned VGG [27]
Sat 4 98.59
Sat 6 97.95

AlexNet [28]
Sat 4 99.98
Sat 6 99.93

AlexNet-small [28]
Sat 4 99.86
Sat 6 99.90

VGG [28]
Sat 4 99.98
Sat 6 99.98

Proposed model
Eurosat 97.40

Sat 4 99.99
Sat 6 99.99

4.5. Final Discussion

As highlighted in the methodology section, feature selection is an integral part of LULC

classification in this research paper. Several feature vectors are extracted from the images using

LGBPHS, HOG and Haralick approaches, and feature selection is used to choose optimal feature

vectors for better classification. The effects of feature selection are shown in Table 6, Table 7, Table 11,

and Table 12, where the experimental analysis is verified by determining the performance measures.

Related to individual LSTM, PSO with LSTM, and HGO with LSTM, the proposed human group-based

PSO with LSTM showed a maximum of 6.03% and a minimum of 1.66% improvement in LULC

classification on Sat 4 dataset. Similarly, the proposed human group-based PSO with LSTM showed a

maximum of 7.17% and minimum of 2.80% improvement in LULC classification on the Sat 6 dataset.

In addition to this, the proposed human group-based PSO with LSTM achieved a minimum of 0.01%

and a maximum of 2.56% improvement in classification accuracy on Sat 4, Sat 6 and Eurosat datasets

compared to the existing methodologies like GoogleNet [26], 2 band AlexNet [27], Hyper parameter

tuned AlexNet [27], 2 band ConvNet [27], Hyper parameter tuned ConvNet [27], 2 band VGG [27],

Hyper parameter tuned VGG [27], AlexNet [28], AlexNet-small [28], and VGG [28]. It has been also

highlighted how the proposed model presents a better performance in LULC classification even by

means of computational cost and processing time.

In this work, experimental analysis was focused on differentiating the things that are not related to

human habitats, in both urban and agricultural environments. Future work will extend the proposed

analysis to other applications, including human habitats.
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5. Conclusions

The objective of this study was to propose an effective feature selection model to classify the LULC

classes of the urban and agricultural environment. The proposed model helped to analyze the changes

in land productivity, soil quality, and biodiversity, for instance, which provided a clear idea about

environmental quality, wildlife habitat, loss of prime agricultural lands, uncontrolled development, etc.

In this study, an optimization procedure based on the combination of LGBPHS, HOG and Haralick

texture features was first utilized to extract the feature vectors of the objects from the normalized

remote-sensing images. The human group-based PSO algorithm was then applied to select the optimal

feature vectors that helped in further improving the performance of classification. The optimal

selected features were given as the input to an LSTM classifier. The proposed model achieved a better

performance when compared to the existing models in LULC classification in terms of recall, accuracy

and precision. The simulation results showed that the proposed model achieved enhancements in

classification accuracy on the Sat 4, Sat 6 and Eurosat datasets. In addition, the computational time

of the proposed model is only 1.24 s. The main findings of the human group-based PSO algorithm

delivered up to date dynamics of LULC in the Sat 4, Sat 6 and Eurosat datasets. These datasets are

used to monitor the future changes, LULC planning process and other similar studies in the European

countries. In future work, an optimization based clustering approach will be included in the proposed

model to verify if the LULC classification method can be further improved.
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