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Abstract: The amount and growth rate of carbon emissions have been accelerated on a global scale 

since the industrial revolution (1800), especially in recent decades. This has resulted in a significant 

influence on the natural environment and human societies. Therefore, carbon emission reduction 

receives continuously increasing public attention and has long been under debate. In this study, we 

made use of the land-use specific carbon emission coefficients from previous studies and estimated 

the land-use carbon emissions and carbon intensities of the Yangtze River Delta Urban 

Agglomeration (YRDUA)—which consists of 26 eastern Chinese cities—from Landsat image data 

and socio-economic statistics in 1995, 2005, and 2015. In addition, spatial autocorrelation models 

including both global and local Moran’s I were used to analyze the spatial autocorrelation of carbon 
emissions and carbon intensities. It was found that (1) the YRDUA witnessed a rapidly increasing 

trend for net carbon emissions and a decreasing trend for carbon intensity over the two decades; (2) 

the spatial differences in carbon intensity had gradually narrowed, but were large in carbon 

emissions and had gradually increased; and (3) the carbon emissions in 2005 and 2015 had 

significant spatial autocorrelations. We concluded that (1) from 1995 to 2015 in the YRDUA, carbon 

emissions were large for the cities along the Yangtze River and carbon intensities were high for 

Anhui province’s resource-based cities, while both carbon emissions and carbon intensities were 

small for Zhejiang province’s cities; (2) over two decades, the increase in carbon emissions from 

urban land was approximately twice the increase in urban land area. Our study can provide useful 

insights into the assignment of carbon reduction tasks within the YRDUA. 

Keywords: carbon dioxide; urban agglomeration; Yangtze River Delta; Landsat; land-use; spatial 

autocorrelation 

 

1. Introduction 

Carbon dioxide (CO2) plays an important role in climate change, and its impact on climate 

change could be largely irreversible for 1000 years after carbon emissions stop [1]. Carbon emissions 
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are mainly from human activities including fossil-fuel burning and land-use change [2]. Compared 

with the burning of fossil fuel, there are more uncertainties in carbon emissions from land-use change 

[3–5]. Many studies have been carried out on carbon emissions from the land-use change on global, 

national, regional, and urban scales. These studies have provided us with land-use data and methods 

for estimating carbon emissions. For global carbon emissions estimation, national land-use statistics 

provided by FAO (Food and Agriculture Organization, Roman, Italy) [4,6], HYDE (History Database 

of the Global Environment) [3,7], and satellite data [4,8] are the main sources of land-use change 

information. Moreover, different models have been developed for carbon emissions estimation from 

historical land use, such as the bookkeeping model [9] and the terrestrial C-cycle model [3]. On the 

national scale, a variety of thematic maps, for example, of carbon density, vegetation, and soil type, 

were combined to calculate carbon emissions from land use [5]. Meanwhile, the IPCC 

(Intergovernmental Panel on Climate Change, Geneva, Switzerland) Guidelines for National 

Greenhouse Gas Inventories has provided a detailed carbon inventory and carbon coefficients [10] 

required for calculation. Satellite data remain to be used as an important land-use information source 

[5,11]. These IPCC methods are also widely applied to regional and urban carbon emissions 

estimation [12]. It is also noting that the capabilities of remote sensing to provide fine details and 

multi-temporal land-use information are highly appreciated at such scales [13,14]. 

As the world’s second-largest economy as well as the largest carbon emitter [15,16], China 

should take and has already taken considerable responsibility for carbon reduction. At the Climate 

Change Paris Convention in Paris in November 2015, the Chinese government pledged to lower CO2 

emissions per unit GDP (gross domestic product) by 60% to 65% from the 2005 level by 2030 [5,17]. 

Most of the studies in China have focused mainly on the carbon emission characteristics of 

economically strong cities and provinces, such as Shanghai [18] and Jiangsu [12]. In order to properly 

distribute carbon emission reduction tasks to individual provinces, some studies [19–21] focus on the 

spatial heterogeneity of carbon emissions and carbon intensities in provinces and have concluded 

that northwestern and western provinces have high carbon emissions and carbon intensities, while 

southeastern regions usually have low carbon intensities. 

However, these studies only investigated individual cities or provinces, but little considered 

how their carbon emissions were spatially correlated with their neighboring cities or provinces—
which can provide important information on the spatial clustering characteristics of carbon 

emissions. The YRDUA lies in the intersection area of the “Belt and Road” and the “Yangtze River 
Economic Belt” and therefore plays a strategic role in the overall situation of modernization and the 

all-around opening structure of China [22,23]. What the spatiotemporal characteristics and spatial 

autocorrelations of carbon emissions and carbon intensities for important cities within large economic 

regions like the YRDUA are, is an important question that remains to be investigated. 

In order to contribute to the general objective of providing insights into making carbon reduction 

policies and assigning carbon reduction tasks, this study monitors land-use carbon emissions and 

carbon intensities by means of satellite image data and socioeconomic statistics for the 26 cities of the 

YRDUA. Specific objectives are as follows: (1) to measure carbon emissions for carbon sources (which 

refer to land use types that emit carbon in the study) and carbon sinks (which refer to land use types 

that absorb carbon in the study) of the YRDUA in 1995, 2005, and 2015; (2) to characterize the 

spatiotemporal change of carbon emissions and carbon intensities in the 26 YRDUA cities, during 

1995–2015; and (3) to examine the spatial autocorrelation of carbon emissions and carbon intensities 

using spatial correlation models and identify “hot” (high-high value) and “cold” (low-low value) 

cities in the YRDUA for different periods. 

2. Study Area and Data 

2.1. Study Area 

As one of the most densely populated and economically significant regions in China, the Yangtze 

River Delta Urban Agglomeration (aka, the Yangtze River Delta Economic Zone) is located at the 

lower reach of the Yangtze River in eastern China (115°46′–123°25′E, 28°01′–34°28′N) and, according 
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to Chinese National Development and Reform Commission [24], consists of nine cities in Jiangsu 

Province; eight cities in Zhejiang Province; eight cities in Anhui Province; and Shanghai, which is a 

province-level municipality (Figure 1). It covers a geographical area of 211,700 km2, approximately 

2% of the whole of China’s territory. In 2016, the 26 cities of the YRDUA produced a combined GDP 

of 14.87 trillion CNY (Chinese yuan) and accommodated a population of 152 million, which have 

reached approximately 19.99% and 10.97% of the entire country’s GDP and population, respectively. 

 

Figure 1. Study area. (a) The locations of Jiangsu, Zhejiang, Anhui provinces, Shanghai, and the 

Yangtze River in China; (b,c) the Yangtze River Delta Urban Agglomeration (YRDUA) consisting of 

26 cities, eight of Jiangsu, nine of Zhejiang, eight of Anhui provinces, and the municipality of 

Shanghai. 

2.2. Data 

The data used in this study consist of remote sensing images and socio-economic statistics, 

which are raster-format and vector-format, respectively. To integrate the datasets for producing maps 

and spatial analyses, we then converted the classification images in raster format to a vector format. 

2.2.1. Remote Sensing Images 

Remote sensing images have proven powerful for monitoring land-use changes [13,14]. Landsat 

5 TM (Thematic Mapper) and Landsat 8 OLI (Operational Land Imager) data were used in this study. 

The TM images consist of six spectral bands at a 30-m spatial resolution (bands 1–5 and 7), and one 

120-m thermal band (band 6) [25]. The OLI images consist of nine spectral bands at a 30-m spatial 

resolution for bands 1 to 7 and 9, except for band 8, which is a panchromatic image at a spatial 

resolution of 15 m [26]. All remote sensing data were downloaded at no charge from the United States 

Geological Survey website (USGS, https://earthexplorer.usgs.gov/) (Table 1). Prior to image 

classification, we applied radiometric calibration, atmospheric correction (FLAASH), geo-referencing 

(image to image), and seamless mosaic (in which seamlines are automatically generated using 

seamline networks formed b area Voronoi diagrams with overlaps [27]) to these images. Afterward, 

we extracted the study area from the mosaicked images using vector data representing the 

administrative boundary of the YRDUA. 

To understand the change in carbon emissions over time, a multi-temporal analysis was 

performed in this study. For a large geographical area like the YRDUA, we had to produce a mosaic 

image to cover the entire study area with 19 scenes. For each period, it is ideal if these 19 images were 

acquired in the same year and for the same months. This is, however, difficult for the YRDUA 

consisting of 26 large Chinese cities and almost impossible when considering image quality. As such, 
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we collected images acquired from 1994 to 1996, from 2004 to 2006, and from 2014 to 2016 for multi-

temporal analysis. Nevertheless, we consider that annual variations were also limited in adjacent 

years and that seasonal variations were limited as these images were mainly acquired in warm 

months (i.e., May to September)—these months were approximately evenly distributed for each 

period. For the sake of simplicity, the 1994–1996, the 2004–2006, and the 2014–2016 periods were 

referred to as the years of 1995, 2005, and 2015 in this study. 

Table 1. Landsat image data used in the study. TM—Thematic Mapper; OLI—Operational Land 

Imager. 

Year Sensor Acquisition Date (Path/Row) 

1995  

(1994–1996) 
TM 

1994-05-05 (118/39), 1994-05-05 (118/40), 1994-05-19 (120/37), 1994-05-19 (120/39), 1994-05-

19 (120/40), 1994-05-30 (117/40), 1994-06-29 (119/39), 1994-08-30 (121-39), 1995-06-05 

(122/39), 1995-08-03 (119/37), 1995-08-03 (119/38), 1995-08-05 (117/39), 1995-08-12 (118/38), 

1995-09-04 (119/40), 1995-09-02 (121/37), 1995-09-02 (121/38), 1995-10-13 (120/38), 1996-05-

08 (120/36), 1996-07-25 (122/38) 

2005  

(2004–2006) 
TM 

2004-05-21 (121/39), 2004-07-19 (118/38), 2004-07-26 (119/39), 2004-07-26 (119/40), 2004-08-

04 (118/40), 2004-09-17 (122/38), 2004-09-17 (122/39), 2005-05-12 (117/39), 2005-07-15 (117-

40), 2006-04-20 (118/39), 2006-05-20 (120/37), 2006-05-20 (120/38), 2006-05-20 (120/39), 

2006-07-30 (121/37), 2006-07-30 (121/38), 2006-09-09 (120/36), 2006-09-18 (119/37), 2006-09-

18 (119/38), 2006-09-25 (120/40)  

2015  

(2014–2016) 
OLI 

2014-05-01 (121/39), 2014-05-26 (120/37), 2014-06-11 (120/39), 2015-05-13 (120/36), 2015-05-

13 (120/40), 2015-07-27 (117/39), 2015-07-27 (117-40), 2015-08-03 (118/38), 2015-08-03 

(118/39), 2015-08-03 (118/40), 2015-10-02 (122/39), 2015-10-13 (119/37), 2015-10-13 (119/38), 

2015-10-13 (119/39), 2015-10-13 (119/40), 2016-04-29 (120/38), 2016-06-14 (122/38), 2016-07-

25 (121/37), 2016-07-25 (121/38) 

2.2.2. Socio-Economic Statistics 

Energy consumption and GDP data are an important input for carbon emissions and carbon 

intensities estimation. They were collected for each of the 26 cities from their city-level and provincial 

statistical yearbooks. Figure 2 shows the general characteristics of the 26 YRDUA cities. 

 

Figure 2. Population density and per capita gross domestic product (GDP) grading for the 26 YRDUA 

cities in 1995 (a), 2005 (b), and 2015 (c). The population here refers to the resident population. 
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Traditionally, each city annually reports its major types of energy consumption in its statistical 

yearbook, so these data are readily available. However, the statistics for each city showing their 

proportional uses of different fuel types are not detailed in the yearbooks, but they are not required 

in the study. 

3. Methods 

3.1. Land-Use Classification 

3.1.1. Random Forest Classifier 

In this study, random forests (RF) was considered for land cover/use mapping as it has been 

shown to provide good classification results [28,29]. It was performed in remote sensing image 

processing software package ENVI 5.1 Classic with a random forest classification add-in titled 

EnMAP-Box [30]. Random forest classification accuracy depends on the number of trees and the 

number of random features used for classification, which are two user-defined parameters [28,31]. 

Among the features were NDVI (Normalized Difference Vegetation Index) [32] and MNDWI 

(Modified Normalized Difference Water Area Index) [33], as they might improve classification 

accuracy. The OOB (out-of-bag) test was used to estimate the test set accuracy [28,29]. By trial and 

error, the number of trees and random vectors of 50 and 3, respectively, were considered best 

parameters used for random forest classification of land cover/use of the study area. Figure 3 shows 

the classification results. 

 

Figure 3. Land use classification maps of the YRDUA in 1995 (a), 2005 (b), and 2015 (c). 
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3.1.2. Accuracy Assessment 

For a better land cover/use characterization of the study area, and thus a better carbon emissions 

estimation, we decided to classify the remote sensing images of the study area into six broad 

categories, namely, cropland (including fallow), forestland, grassland, water area, urban land, and 

other land-use. High-resolution satellite images in Google Earth Pro were used to assess classification 

accuracy for the 2014–2016 period. A total of 2000 sample points were first randomly generated in 

the classified image in 2015 with ArcGIS 10.2, and then were imported over the historic satellite 

images archived in Google Earth Pro for obtaining the ground-truthing data for the 2014–2016 period 

through visual image interpretation. A confusion matrix was constructed, and classification accuracy 

was calculated for each period by programming in MATLAB R2016a. The overall accuracy and the 

kappa coefficients were 88.60% and 0.8311, respectively, for the 2014–2016 period. The classification 

results were rather acceptable as the kappa coefficient is greater than 0.7 [34]. Because the historical 

satellite images in Google Earth Pro for the 1994–1996 and the 2004–2006 periods were also mainly 

30-m resolution Landsat data, accuracy assessment based on them is incomparable to that based on 

high-resolution images. On the other hand, images of the three periods are the same type and are 

processed and classified using the same procedure and approach, we thus consider that similar 

classification accuracies were obtained for the 1994–1996 and 2004–2006 periods. As such, we did not 

conduct independent accuracy assessments for the two earlier periods. 

3.2. Estimation of Carbon Emissions 

3.2.1. Carbon Emissions from Land Use 

This study only focuses on the carbon emissions caused by land-use changes and does not 

consider the effect of land-use management. Land-use carbon emissions can be estimated by the 

following equation: 

Ei = ∑ ei  = ∑ Si × δi × MCO2
MC

 (1) 

where Ei is the carbon emissions from land use; i refers to the type of land-use; Si is the area of land 

i; and δi is the carbon emission coefficient for land i, whose positive values indicate carbon emission 

while negative values indicate carbon absorption; M𝐶𝑂2/MC is the ratio of the mass carbon dioxide 

molecules to a carbon atom—44/12. Previous studies have proposed the coefficients for different land 

use types (Table 2). We use either the values directly or their means in this study. It is noted that the 

carbon emission coefficients of forestland and grassland are relatively small and the difference is 

large. This is because there is a large spatial difference in the carbon sink of vegetated land, especially 

grassland, in China. 

Table 2. Carbon emission coefficients for the five land-use types classified from Landsat image data. 

Land-Use Types Carbon Emission Coefficient (kg (C)·m−2·a−1) Used in the Study 

Cropland 0.0497 [35] 0.0497 

Forestland [−0.0645, −0.0527] [36] −0.0586 

Grassland −0.0021 [36] −0.0021 

Water area 
−0.0509 [37] 

−0.0459 
−0.0410 [38] 

Other land-use −0.0005 [38] −0.0005 

3.2.2. Carbon Emissions from Energy Consumption 

Energy consumption is generally assumed to occur only in factories in urban land. Therefore, 

we attributed carbon emissions to urban land. In this study, nine types of fuel were considered, 

including coal, cleaned coal, coke, gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas, and 

natural gas. Their carbon emissions can be calculated using the following equation [10]: 
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EC = ∑ Eci × fi × MCO2
MC

 (2) 

fi = Ai × Bi × Ci (3) 

where Ec is the total carbon emissions from energy consumption; Eci is the amount of consumption of 

fuel i; fi is the carbon emission coefficient for fuel i; MCO2/MC is the ratio of the mass carbon dioxide 

molecules to a carbon atom—44/12; and Ai, Bi, and Ci are the average low calorific value, the unit 

calorific value carbon content, and the carbon oxidation rate of fuel, respectively (Table 3). The 

average low calorific values and carbon oxidation rates were obtained from the guidelines for the 

preparation of provincial greenhouse gas inventories of China [39]. The guidelines were prepared by 

the China Energy Research Institute, Tsinghua University, and the Institute of Atmospheric Sciences 

of the Chinese Academy of Science, among others, according to the situation in China. It provides 

default values of the parameters of different fuel types that are used in the absence of locally 

measured data. The unit calorific value carbon contents were obtained from the China Energy 

Statistic Yearbook 2016 [40]. 

Table 3. Values of the parameters required for estimating carbon emissions from energy 

consumption. 

Energy 
Average Low Calorific 

Value (kJ/kg) 

Unit Calorific Value 

Carbon Content (kg/109 J) 

Carbon Oxidation 

Rate (%) 

Carbon Emission 

Coefficient (kg/kg) 

Coal 20,908 26.37 94  

Cleaned coal 26,344 25.41 93 0.6225 

Coke 28,435 29.5 93 0.7801 

Gasoline 43,070 18.9 98 0.7977 

Kerosene 43,070 19.5 98 0.8231 

Diesel oil 42,652 20.2 98 0.8443 

Fuel oil 41,816 21.1 98 0.8647 

Liquefied  

petroleum gas 
50,179 17.2 98 0.8458 

Natural gas 35,585 15.3 99 0.5390 

3.2.3. Carbon Intensity 

Carbon intensity is the carbon emissions from per unit of GDP, which is given as follows: 

CI = CE
GDP

 (4) 

where CI is the carbon emission intensity; CE is the total carbon emissions; and GDP is the gross 

domestic product of a given area. The carbon intensity in this study refers to the carbon intensity of 

energy consumption. 

3.3. Spatial Autocorrelation Model 

Spatial autocorrelation refers to the degree of spatial correlation between an attribute value of a 

spatial unit and the same attribute value of a neighboring spatial unit, and can characterize the 

agglomeration characteristics of spatial unit attributes [41,42]. Both global and local spatial 

autocorrelation models were used in this study. 

3.3.1. Global Spatial Autocorrelation Model 

Global Moran’s I is the most commonly used test statistic for describing spatial autocorrelation 
in the univariate map or in regression residuals [41]. In the study, it was used to describe the degree 

of spatial association and significance. It is given by the following equation [43]: 
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I = n ∑ ∑ Wij ((yi - y) (yj - y))n
j=1

n
i=1∑ ∑ Wij ∑ (yj - y)2

n
i=1

n
j=1

n
i=1

(i ≠ j) (5) 

where yi is the variable of region i (I = 1, 2, 3, ..., n); y is the average value of all regions; yj is the 
variable of other regions (where j ≠ i); and Wij is the spatial weight matrix (when region i and region 
j are topologically adjacent with a common edge, Wij = 1, otherwise Wij = 0). 

Moran’s I ranges between −1 and 1. A positive Moran’s I value indicates a positive spatial 
autocorrelation, while a negative Moran’ I value indicates a negative spatial autocorrelation. When 

Moran’s I = 0, the variable obeys the stochastic spatial distribution [43,44]. The larger the absolute 

value, the stronger the spatial autocorrelation, and vice versa. 

The normalized statistics z(I) of the Moran’s I approximately obey the normal distribution [43]: 

z(I) = I - E(I)√Var(I)
~N(0,1) (6) 

where Var(I) is the theoretical variance of the Moran’s I; E(I) = −1/(n − 1) is the mean. 

3.3.2. Local Spatial Autocorrelation Model 

Local Moran’s I is a local indicator of spatial autocorrelation. It is widely used to identify “hot 
spots” and “cold spots” in the entire area and to classify them into the spatial cluster and spatial 

outliners [42,44,45]. It is given as follows [44]: 

Ii = (yi - y)
σ2 ∑ [Wij (yj - y)]n

j=1,j≠i
 (7) 

where yi is the variable of region i (i = 1, 2, 3..., n); yj is the variable of other regions (where j ≠ i); y is 

the average value of all regions; σ2 is the variance of y; and Wij is the weight matrix normalized by 

the row (sum of each row is 1). 

A region with a positive local Moran’s I value indicates that it has the similar values to its 

neighbors and the regions are called spatial clusters. In contrast, a negative value indicates the region 

has different values from its neighbors and the regions are called spatial outliers. Spatial clusters 

include high-high clusters (high value around is high) and low-low clusters (low value around in 

value), spatial outliers include high-low clusters (high value is low around) and low-high clusters 

(low value is high around) [44]. The results of all regions are shown in Moran scatter plots, while only 

regions that passed the significance test are shown in LISA (Local Indicators of Spatial Association) 

cluster maps. A Moran scatter plots has four quadrants, which are labeled as high-high (HH), low-

low (LL), high-low (HL), and low-high (LH). All regions are scattered in these four quadrants based 

on their local Moran’s I index. Consistent with the Moran scatter plot, there are four types of regions 
in the LISA cluster map including high-high, low-low, high-low, and low-high regions, as well as 

high-high regions and low-low regions, also known as “hot spots” and “cold spots”, respectively [44]. 

In this study, local Moran’s I was used to identify the “hot” cities (hot spots) and “cold” cities 
(cold spots) from the YRDUA, based on 999 permutations at the significance level of 5%. Meanwhile, 

the Moran’s I and z(I) were calculated in ArcGIS 10.2, and Moran scatter plots and LISA cluster maps 

were drawn in GeoDa 1.12. 

4. Results 

4.1. Land Use and Carbon Emissions of the YRDUA 

Land use of the YRDUA in 1995, 2005, and 2015 and changes over the two decades are shown in 

Table 4. There was a rapid increase in urban land and a significant decrease in cropland over the two 

decades. By contrast, little change was observed for forestland, grassland, water area, and other land-

use. 
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Table 4. Areas and proportions of six land-use types in the Yangtze River Delta Urban Agglomeration 

(YRDUA) in 1995, 2005, and 2015. Change rates refer to the ratio of their area change during 1995–
2015 to the original area in 1995. 

Year Unit Cropland Forestland Grassland Water Area Urban Land Other Land-Use 

1995 
area (km2) 121,871.6 58,240.1 1338.3 14,949.5 9100.7 3953.4 

proportion 58.19% 27.81% 0.64% 7.14% 4.33% 1.89% 

2005 
area(km2) 115,285.4 61,710.4 1092.0 14,642.3 14,626.8 2096.9 

proportion 55.04% 29.46% 0.51% 6.99% 6.98% 1.00% 

2015 
area(km2) 105,485.7 61,242.7 1234.1 13,801.0 25,175.9 2514.2 

proportion 50.36% 29.24% 0.59% 6.59% 12.02% 1.20% 

1995–2015 
area of change  −16,385.9 3002.6 −104.2 −1148.5 16,075.1 −1439.2 

change rate −13.45% 5.16% −7.78% −7.68% 176.64% −36.40% 

Based on the land use data given in Table 4, land-use specific carbon emissions and absorptions, 

the total carbon emissions and absorptions, and the net carbon emissions (which is the total carbon 

emissions minus the total carbon absorptions) (Table 5) were estimated with Equation (1). 

Negative figures correspond to carbon sinks, for example, for forestland, grassland, water area, 

and other land-use, while positive figures correspond to carbon sources, for example, for cropland 

and urban land (Table 5). It is noticeable that forestland and urban land were the largest contributors 

to carbon absorptions and carbon emissions, respectively. The carbon absorptions of forestland 

accounted for more than 83% of the total carbon absorptions for each period and increased from 

1251.39 × 104 t to 1315.93 × 104 t over the two decades. Regarding urban land, its carbon emissions 

were 111,578.4 × 104t (accounted for approximately 98% of the total emissions) in 2015, which was 

four times more than that in 1995. Carbon emissions from per unit urban land increased from 26.57 

kg·m−2·a−1 to 44.32 kg·m−2·a−1, and the average annual growth was 0.8875 kg·m−2. 

Overall, the two decades saw a rapid increase in the net carbon emissions, by approximately 

four times (87,055.8 × 104 t), from 24,895.3 × 104 t in 1995 to 111,951.1 × 104 t in 2015, with an average 

annual rise of 17.5%. Carbon absorptions showed only a 44.9 × 104 t increase, which was, however, 

dwarfed by the increase in carbon emissions. 

Table 5. The land-use specific carbon emissions and absorptions, the total carbon emissions and 

absorptions, and the net carbon emissions of the YRDUA for different periods (unit: 104 t). Percentages 

for cropland and urban land refer to their contribution to the net carbon emissions, while percentages 

for forestland, grassland, water area, and other land-use refer to their contribution to the carbon 

absorptions. 

Year 

Land-Use Specific Carbon Emission/Absorptions 
Total Carbon 

Emissions 

Total Carbon 

Absorptions 

Net Carbon 

Emissions Cropland Forestland Grassland 
Water 

Area 
Urban Land 

Other 

Land-Use 

1995 
2220.9 −1251.4 −1.0 −251.6 24,179.1 −0.7 26,400.0 −1504.7 

24,895.3 
8.41% 83.16% 0.07% 16.72% 91.59% 0.05% 100.00% 100.00% 

2005 
2100.9 −1326.0 −0.8 −246.4 70,728.8 −0.4 72,829.7 −1573.6 

71,256.1 
2.88% 84.26% 0.05% 15.66% 97.12% 0.02% 100.00% 100.00% 

2015 
1922.3 −1316.0 −0.9 −232.3 111,578.4 −0.5 113,500.7 −1549.6 

111,951.1 
1.69% 84.92% 0.06% 14.99% 98.31% 0.03% 100.00% 100.00% 

4.2. Spatiotemporal Characteristics of Carbon Emissions 

4.2.1. Temporal Characteristics 

Figure 4 shows the land-use specific carbon emissions (CE) and carbon absorptions (CA) of the 

26 cities in 1995, 2005, and 2015. Carbon absorptions were shown to be steady, while carbon emissions 

saw contrasting increases for the 26 cities. Over the two decades, large increases in carbon emissions 

were observed for Shanghai, Suzhou, Nanjing, Ningbo, and Maanshan, while very few were 

observed for Chuzhou, Xuancheng, Chizhou, and Anqing. 
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Figure 4. Land-use specific carbon emissions (CE) and carbon absorptions (CA) of the 26 YRDUA 

cities in 1995, 2005, and 2015. 

Figure 5 presents the annual net carbon emissions (ANCE) during the first (1995–2005) and 

second (2005–2015) decades, respectively. For most Jiangsu cities, their net carbon emissions tended 

to increase steadily, and their ANCE changes were smaller in the first decade than in the second 

decade. Hangzhou, Shaoxing, Huzhou, and Jiaxing in Zhejiang Province had equivalent net carbon 

emissions in 2005 and 2015, with drastic drops in their annual average net carbon emissions. Small 

NCE changes were observed for all the eight Anhui cities, while significant increases in annual 

average net carbon emissions were shown only for Maanshan, Tongling, Wuhu, and Hefei. 

Regarding Shanghai, its net carbon emissions increased steadily in the second decade after an obvious 

rise in the first decade. 

 

Figure 5. Land-use specific net carbon emissions (NCE) and annual net carbon emissions (ANCE) for 

the 26 YRDUA cities in 1995, 2005, and 2015. 

Figure 6 shows a decreasing trend in the carbon intensities for all the YRDUA cities over the two 

decades. In addition, the gap between the carbon intensities of cities gradually narrowed. The average 

carbon intensity for the YRDUA dropped from 2.2791 t/104 Yuan to 0.8234 t/104 Yuan. The carbon 

intensities decreased significantly for Maanshan, Tongling, Hefei, and Wuhu, while it appeared to 

increase and then decreased for Suzhou, Shaoxing, Jiaxing, Zhoushan, and Chizhou. 
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Figure 6. Carbon intensities (CI) for the 26 YRDUA cities from 1995 to 2015. 

4.2.2. The Spatial Characteristics 

Based on net carbon emissions and carbon intensities, the 26 YRDUA cities were classified into 

different levels, respectively (Figure 7). 

 

Figure 7. Net carbon emissions (NCE) and carbon intensities (CI) grading for the 26 YRDUA cities in 

1995 (a), 2005 (b), and 2015 (c). 
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Despite a large difference in net carbon emissions among these cities, we noticed that along the 

Yangtze River, there were gradual increases, from Tongling to Wuhu, to Maanshan, and to Nanjing 

in the west YRDUA, and from Zhenjiang, to Changzhou, to Wuxi, to Suzhou, and to Shanghai in the 

east YRDUA, respectively. Shanghai always had the highest NCE, immediately followed by Suzhou 

and then by Wuxi in 2005 and 2015, except for in 1995. Over the two decades, the highest NCE in the 

west YRDUA was observed for Nanjing, followed by Maanshan and then by Wuhu. 

Carbon intensity of the YRDUA, however, showed contrasting spatial distribution over the three 

periods (Figure 7). For example, despite the highest net carbon emissions, Shanghai had a relatively 

low carbon intensity. Highest carbon intensities were observed for Maanshan and Tongling, both in 

Anhui. Higher intensities were mostly located in the west YRDUA in 1995, but were only in 

Maanshan and Tongling in 2015. Except for Maanshan and Tongling, carbon intensities were 

generally low in the YRDUA, all below 1.5. 

4.3. Spatial Correlation of Carbon Emissions and Carbon Intensity 

4.3.1. Global Spatial Autocorrelation 

The Global Moran’s I and z(I) of net carbon emissions and carbon intensities were calculated in 
ArcGIS10.2 (Table 6). In order to include Zhoushan for the analysis, Zhoushan and Ningbo were set 

adjacent when calculating the spatial weight matrix. 

There was significant positive spatial autocorrelation in the net carbon emissions of the YRDUA 

in 2005 and 2015 as the Moran’s I values were positive and the z(I) was greater than 1.96 for the two 

periods. Regarding carbon intensity, although all the Moran’s I values for the three periods were 
positive, none were significant. 

Table 6. The global Moran’s I and z(I) of carbon emissions and carbon intensities of the YRDUA in 

1995, 2005, and 2015. 

 Net Carbon Emissions Carbon Intensities 

Year 1995 2005 2015 1995 2005 2015 

Moran’s I −0.0012 0.1984 0.1910 0.0729 0.0412 0.0056 

z(I) * 0.3894 2.6056 2.0116 1.3937 0.7064 0.4574 

* z(I) > 1.96 indicates significance at the 5% level, and z(I) > 2.58 indicates significance at the 1% level. 

4.3.2. Local Spatial Autocorrelation 

As the global Moran’s I values of net carbon emissions in 2005 and 2015 passed the significance 
test, we drew the Moran scatter plots of net carbon emissions for two periods (Figure 8). The number 

of cities in the HH and LL quadrants was fourteen and fifteen, accounting for 54% and 58% of the 

total (26 cities) in 2005 and 2015, respectively, indicating that spatial homogeneity and local 

accumulation pattern of net carbon emissions were significant. 

In addition, the LISA cluster maps (Figure 9) were also produced to show the type of the cities 

that passed the significance test. From Figure 9, it was observed that (1) Shanghai and Suzhou (Figure 

9b,c) had a relatively high degree of stability in the “hot” cities of net carbon emissions from 2005 to 
2015; (2) the “cold” cities of net carbon emissions (Figure 9a–c) varied greatly—they decreased in 

number and shifted to the southeast over the two decades; and (3) the significant “cold” cities of 
carbon intensity were located in Zhejiang province, while Wuhu remained a significant “hot” city in 
20 years (Figure 9d–f). According to Figure 2, the per capita GDP and population density of Shanghai 

and Suzhou were similar and large in 2005 and 2015. Also, Wuxi, Nantong, and Jiaxing, which are 

adjacent to Shanghai and Suzhou, have a relatively high population density. This may result in both 

adjacent cities being “hot” cities of net carbon emissions in 2005 and 2015, as the impact of population 
and economy on carbon emissions is positive. 
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Figure 8. Moran scatter plots of net carbon emissions for the YRDUA in 2005 (a) and 2015 (b). Green, 

blue, yellow, and rose represent the cities of Anhui, Jiangsu, and Zhejiang provinces, and Shanghai, 

respectively. H—high; L—low. 

 

Figure 9. LISA cluster maps of net carbon emissions (a–c) and carbon intensities (d–f) for the YRDUA 

in 1995, 2005, and 2015. 



Remote Sens. 2018, 10, 1334 14 of 19 

 

5. Interpretation and Discussion 

In our study, we obtained land use information from multi-temporal Landsat images by 

applying random forest classification and estimated land-use specific carbon emissions for the 

YRDUA in 1995, 2005, and 2015. In addition, the spatial correlation of net carbon emissions and 

carbon intensities were also calculated. In this section, we interpreted the results and discussed their 

implications. 

5.1. Carbon Sources and Carbon Sinks 

Multi-temporal land cover/use mapping illustrated a rapid increase in urban land and a 

significant decrease in cropland in the YRDUA over the entire study period (Table 4). The was 

because, since the beginning of the 1990s, the entire Yangtze River Delta (YRD) has entered an era of 

rapid economic development [46]. It was characterized by unprecedented industrialization and 

urbanization, resulting in growing cities and towns, and continuous conversion from cropland into 

urban land [47,48]. As such, carbon emissions from urban land increased accordingly (Table 4). It is 

noted that urban land changed 177.6%, while carbon emissions changed 361.5%, which is much larger 

than the increase of urban land. We can conclude that the increase of area is not the main reason for 

the increase in carbon emissions from urban land. We considered that the main reason is the growing 

population. Figure 2 shows an increasing trend in the population density for most of the YRDUA 

cities over the two decades. The impact of population on carbon emissions is mainly reflected in two 

aspects: on the one hand, the increase in population leads to rising demand for food, clothing, 

housing, and transportation service, which has promoted production; on the other hand, 

overconsumption and waste become increasingly remarkable in China as human consumption habits 

change. 

Urban land was responsible for most of the carbon emissions in the YRDUA, which is consistent 

with previous studies [12,49]. Its contribution to carbon emissions increased from 91.6% to 98.3% 

from 1995 to 2015 (Table 5). Although forestland can absorb carbon dioxide, its area made little gains 

during the two decades (Table 4). This suggests that the increase in carbon emissions from urban land 

was far greater than the increase in carbon absorption by forestland. The ratio of carbon emissions 

from urban land to carbon absorption by forestland rose from 19.3 in 1995 to 84.8 in 2015. 

Therefore, carbon emission reduction should be focused on controlling carbon emissions from 

urban land and maintain, if not expand, forestland and grassland. The key to reducing carbon 

emissions from urban land is optimizing land-use management and structure. It has been proven that 

land-use structure and land-use management have a positive influence on carbon emission reduction 

in China [5,12]. Still, as the largest populated developing country in the world, China is however not 

determined to reduce carbon emissions too much at the cost of slowing down its economic growth. 

5.2. Characteristics of Carbon Emissions and Carbon Intensity 

In summary, from the perspective of the YRDUA, Shanghai and cities along the Yangtze River 

had high carbon emissions (Figure 7). Cities in Anhui had high carbon intensity particularly in 1995 

and 2005 (Figure 6), mainly because of its slow economic development, inappropriate industrial 

structure, energy consumption structure, and large primary energy consumption [50]. Statistics show 

that its secondary industry proportion of Anhui has exceeded 50% and that its energy consumption 

has been traditionally dominated by coal and oil. In China, secondary industries proportion and 

primary energy consumption usually tend to strengthen carbon intensity [50,51]. Located in central 

China, Anhui has been traditionally neglected by the central government in terms of regional 

development strategy. Until 2014, it was officially included in the Yangtze River Delta. It was no 

surprise that its economic development lagged and will continue to lag behind its coastal neighbors 

such as Jiangsu, Zhejiang, and Shanghai. 

Net carbon emissions in Shanghai rose significantly from 1994 to 2016 (Figure 5)—due mainly 

to its prosperous Pudong New District, which was established in 1990 and later recognized as a 

national strategic position in 1992 [52,53]. Pudong New District has since promoted the rapid 
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economic development of Shanghai in the following decades. Shanghai’s proportion of China’s GDP 
rose from 4.08% in 1995 to 4.92% in 2005—this process went with increased energy consumption and 

carbon emissions [50,54]. 

It is interesting that the highest carbon intensities were observed for Maanshan and Tongling, 

much larger than those for the other 24 cities, particularly in 1995 (Figure 7). This could be explained 

by the fact that both Maanshan and Tongling are typical mineral resource-based cities. The economic 

accumulation of resource-based cities is mainly based on the exploitation of large quantities of raw 

resources [55]. Resource-based cities in China are usually characterized by a heavy economic 

dependency on the exploitation and consumption of large quantities of raw resources [55]. Maanshan 

and Tongling have large iron and copper reserves, respectively, and there are many factories related 

to steel, foundry, machinery, and so on. In earlier decades, low efficiency and a waste of resources 

were serious in these industries due to technological limitations and carbon intensities of the two 

cities being high in the 1990s. 

Based on the results and analysis, the carbon emissions of Shanghai, Nanjing, Suzhou, Wuxi, 

and Changzhou along the Yangtze River should be strictly controlled. Regarding cities in Anhui 

province, it is necessary to accelerate the optimization and upgrading of their industrial structures, 

and thus to promote technological innovation in carbon emission reduction [16,56]. 

5.3. Spatial Autocorrelation of Carbon Emissions and Carbon Intensity 

Values of net carbon emissions for the YRUDA in 2005 and 2015 were shown to have significant 

spatial autocorrelations. From the Moran scatter plots (Figure 8), we observed that Moran scatters 

were mainly focused on the LL quadrant, which is consistent with the grading of net carbon 

commission (Figure 7). The net carbon emissions from the north, west, and south of the YRDUA were 

all lower and there were more cities with the lowest level carbon emissions. Both indicate that in the 

YRDUA, the low-value cluster was obvious in 2005 and 2015. 

Shanghai and Suzhou were significant “hot” cities (Figure 9b,c), mainly because of rapid 

economic development. It has been proven that economic growth accelerates carbon emissions in 

China [51]. The decreasing number and shift to the southeast of “cold” cities (Figure 9a–c) were 

because traditional high-energy-consuming industries had gradually been relocated from eastern 

coastal regions to central and western provinces. This also explains why Hangzhou changed from a 

high-low city in 1995 to a low-low city in 2015. In 1995, there was no “hot” city (Figure 9a). Cities 
with the largest carbon emissions were Shanghai, immediately followed by Nanjing, and then by 

Ningbo and Maanshan. They were scattered, thus there was no high-value cluster. 

Zhejiang province was found to have the most “cold” cities (Figure 9d–f) in terms of carbon 

intensity, because Zhejiang had already made an effort to adjust and upgrade its industrial structure, 

pursuing an economic structure decreasingly dependent on energy, but driven by knowledge 

innovation and capital intensiveness. In the first decade, Wuhu was a significant “hot” city (Figure 
9d,f) in terms of carbon intensity because Wuhu is adjacent to high carbon intensity cities, particularly 

Maanshan and Tongling. We hope that this finding may help the provincial and local governments 

of Anhui raise general awareness of their high carbon intensities. 

5.4. Limitations 

Although this study has improved the accuracy of land cover/use mapping by performing 

robust random forest classification on Landsat remote sensing image data, and although it used the 

carbon emission coefficients applicable for the Chinese context, caution should be taken in over-

interpreting our results: (1) because of data acquisition limitations, only energy consumption of 

industries was considered for estimating carbon emissions from urban land—this means that we 

might underestimate the carbon emissions for the YRDUA, and that the underestimate might be 5–
10% [18,57,58]; (2) carbon emission coefficients for cropland, forestland, grassland, water area, and 

other land use were acquired from multiple studies where these coefficients were determined using 

a variety of methods. More work is needed to verify or improve these coefficients. 
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6. Conclusions 

To provide carbon emission characteristics for policymakers to formulate carbon emission 

reduction policies, this study focuses on remote sensing-based carbon emissions estimation for the 

Yangtze River Delta Urban Agglomeration over two decades from 1995 to 2015. In addition, both 

global and local Moran’s I statistics were used to analyze the spatial autocorrelations of net carbon 
emissions and carbon intensities. The key findings and main conclusions are summarized as follows: 

• In the YRDUA, urban land contributed to almost all carbon emissions. Furthermore, total carbon 

emissions and per unit of carbon emissions from urban land increased rapidly over twenty 

years. Thus, carbon emission reduction should be focused on controlling carbon emissions from 

urban land. 

• There were high carbon emissions for cities along the Yangtze River and high carbon intensities 

for cities in Anhui. Therefore, the carbon emissions of Shanghai and other cities along the 

Yangtze River should be strictly controlled. Regarding cities in Anhui province, it is necessary 

to accelerate the optimization and upgrading of their industrial structures to low carbon 

intensity. 

• Carbon intensities of Maanshan and Tongling, known as resource-based cities, were much 

higher than those of the other 24 cities. The government of Anhui Province should pay more 

attention to the economic development model and carbon intensities of resourced-based cities. 

In summary, carbon emissions from urban land should be strictly controlled, especially for cities 

along the Yangtze River, and industrial structure and energy structure of Anhui province need to be 

optimized to improve the low-carbon economy. Our study will contribute to decision-makers to 

develop carbon emission reduction policies for the YRDUA. 
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