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A B S T R A C T

Understanding human disturbance regimes is cru-
cial for developing effective conservation and ecosys-
tem management plans and for targeting ecological
research to areas that define scarce ecosystem ser-
vices. We evaluate and develop a forecasting model
for land-use change in the Southern Appalachians.
We extend previous efforts by (a) addressing the
spatial diffusion of human populations, approxi-
mated by building density, (b) examining a long
time period (40 years, which is epochal in economic
terms), and (c) explicitly testing the forecasting
power of the models. The resulting model, defined
by linking a negative binomial regression model of
building density with a logit model of land cover,
was fit using spatially referenced data from four
study sites in the Southern Appalachians. All fitted
equations were significant, and coefficient estimates
indicated that topographic features as well as loca-
tion significantly shape population diffusion and
land use across these landscapes. This is especially
evident in the study sites that have experienced
development pressure over the last 40 years. Model
estimates also indicate significant spatial autocorre-
lation in land-use observations. Forecast perfor-
mance of the models was evaluated by using a
separate validation data set for each study area.

Depending on the land-use classification scheme,
the models correctly predicted between 68% and
89% of observed land uses. Tests based on informa-
tion theory reject the hypothesis that the models
have no explanatory power, and measures of en-
tropy and information gain indicate that the esti-
mated models explain between 47% and 66% of
uncertainty regarding land-use classification. Over-
all, these results indicate that modeling land-cover
change alone may not be useful over the long run,
because changing land cover reflects the outcomes
of more than one human process (for example,
agricultural decline and population growth). Here,
additional information was gained by addressing the
spatial spread of human populations. Furthermore,
coarse-scale measures of the human drivers of
landscape change (for example, population growth
measured at the county level) appear to be poor
predictors of changes realized at finer scales. Simula-
tions demonstrate how this type of approach might
be used to target scarce resources for conservation
and research efforts into ecosystem effects.
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tion theory; forecasting; spatial analysis; Southern
Appalachians.
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Among the most challenging problems in the study
of ecosystems is understanding how people, acting
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in response to various social and economic factors,
define patterns of land and resource use (Lee and
others 1992). Insights into human drivers of land-
scape change are needed to understand better how
and where human pressures are most likely to lead
to detrimental effects on the structure and function
of ecosystems. Understanding these interactions
between human activities and ecological conse-
quences is especially important in areas of the world
that are experiencing rapid change, where the
cumulative impacts of development may be realized
too late to trigger mitigation measures. In such
places, models that forecast land-use change could
provide a way to anticipate ecological problems
before they are actually observed on the landscape.
Projecting land and resource uses is also a necessary
first step in developing an effective ecosystem man-
agement strategy because it allows managers to
define critical elements of landscapes where ecologi-
cal values and probability of change are both high
(Lubchenco and others 1991; Wear and others
1996). This report examines how people have shaped
landscapes in the southern Appalachian Highlands
with an emphasis on developing and evaluating
tools for predicting land-use changes.

Changing land uses can also affect values defined
by aesthetic and other environmental qualities of a
region. In the Southern Appalachian Highlands,
aesthetics, climate, and access to recreation, have
fueled substantial population growth over the last
20 years (SAMAB 1996). Resulting changes in land
uses reflect shifts in relative land values away from
agricultural and toward residential uses, but may
also represent long-run costs in the form of reduced
water quality and scenic values (Gottfried and
others 1996). Development of lands to supply the
market for residences and associated commercial
uses could therefore reduce the very qualities that
have drawn people to this formerly remote region.
Spatial models that forecast land use are needed to
help planners evaluate the long-run effects of devel-
opment patterns on the structure of landscapes and
the values derived from them.

Economic models of land use link individual
choices in an economy to the evolution of land-
scapes. This body of work is built on the premise
that land generally is employed in its highest-value
use, that these values are influenced by various
features of the land, and, therefore, that patterns of
land use should be organized by these land features.
The Von Thiinen model of rural land use [for
example, see Samuelson (1983)]  and various mod-
els of urban development around central places [see
Katzman (1974),  for example] are built upon the
premise that the location of land defines its value for

various uses. One track of research has focused on
the formation of land prices and rents. Theoretical
studies [for example, see Capozza and Helsley
(1989)]  and empirical studies [for instance, see
Palmquist and Danielson (1989) and Geoghehan
and Bockstael 19971  have shown how land prices
are affected by location and other factors. Another
track of research has focused on estimating land-use
shares as functions of land prices or rents [see Alig
(1986) and Hardie and Parks (1997),  for example].
This body of work corroborates and extends the Von
Thiinen approach and highlights how economic
factors and physical landscape features hold impor-
tant influence over land-use allocations. However, be-
cause these models have been applied to spatially broad
units (for example, counties or county groupings), they
may not provide direct insights into the fine-scale
ecological consequences of land-use changes.

Another recent track of land-use research has
applied this same general paradigm to spatially
explicit analysis of land-use choices. Spatially ex-
plicit land-use models that relate location and other
features to the probability of land uses have been
applied in Belize (Chomitz and Gray 1995), south-
ern Mexico (Nelson and Hellerstein 1997), and
Rondonia, Brazil (Dale and others 1993). All three
studies, based on single “snapshots” of land use at
fine scales (1- to loo-ha  units), demonstrate how
road construction and access influence patterns of
land use in developing areas. Similarly, Turner and
colleagues ( 1996) estimated models of land-cover
change for the Southern Appalachian Highlands
and Olympic Peninsula regions of the United States
for three 5-year periods, finding that location and
topography as well as land ownership significantly
influence land-cover dynamics. In the Cascade Range
of Oregon, Spies and colleagues (1994) identified
distinct land-cover changes on lands of different
landowner groups. These studies show that land use
at various stages of development is significantly
influenced by site-specific and institutional factors
and, accordingly, that land-use patterns are largely
determined by the physical structure of landscapes
and socioeconomic conditions of a region. Further-
more, because these spatially explicit models can be
applied to specific places and development scenarios at
fairly fine resolution (for example, a hectare or less),
they provide a means to link human drivers of land-use
change to ecological impacts at landscape scales.

Spatially explicit land-use models have, however,
been limited in their ability to reflect certain eco-
nomic processes. One limitation has been the resolu-
tion of land-use definitions. For example, previous
studies of landscape change in the Southern Appala-
chians (Wear and Flamm 1993; Turner and others
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1996) have focused on changes in land cover inter-
preted from satellite images. Land cover alone,
however, provides only a first approximation of
how land is actually utilized and may provide only
limited insights into the ecological consequences of
human use patterns. For example, forest cover
would be observed both for remote areas with
wilderness attributes where a human presence is
largely absent, and for a low-density suburban area
where human impacts are substantial. Additionally,
previous research has been limited to either a single
point in time (Chomitz and Gray 1995; Nelson and
Hellerstein 1997) or to a fairly short period [for
example, 5 years in Turner and colleagues ( 1996)].
A longer time frame may be needed to fully repre-
sent complete adjustments to changes in land mar-
kets and other social forces.

Another area that has not been fully explored is
the validation of spatially explicit land-use models.
Although these models can be used to forecast
where land uses may change in the future, evalua-
tions of their forecasting power have been limited
(Costanza and others 1990). Most validation efforts
[for example, see Turner and others (1989),  Nelson
and Hellerstein (1997),  and Chomitz and Gray
(1995)]  judge predictive power based on the ability
of models to classify historical observations correctly
based on predicted probabilities. But, as Chomitz
and Gray suggest, these measures may fail to reflect
important information regarding low-probability
events. Furthermore, these approaches to model
validation have not been used to develop statistical
tests of forecasting power.

We develop a spatially explicit analysis to exam-
ine land-use change over a 40-year period in the
Southern Appalachians in pursuit of two objectives:
(a) to test hypotheses regarding the effects of vari-
ous physical and human factors in determining
where land uses occur, and (b) to construct and
evaluate a model for forecasting land uses. We
attempt to address the limitations of previous re-
search in this area by (a) defining land use based on
human occupancy, (b) examining changes over a
long time period, and (c) specifically addressing the
ability of these models to forecast landscape struc-
ture. We defined land uses based on the intersection
of raw land-cover categories and a measure of the
intensity of human presence for each of four study
sites in the Southern Appalachians. Land cover was
derived from satellite images and aerial photos for
two points in time: 1950 and 1990. While an ideal
measure of human presence would be the local
population density defined by the decennial census
in these years, fine-scale spatial population data
were available only for 1990. In lieu of population

data, we assumed that human influence could be
approximated by the number of buildings within
the neighborhood of a site. We defined aggregate
land-use classes by overlaying land cover and build-
ing density. To test and forecast the effects of various
site and locational factors on these land-use classes,
we applied a two-stage regression approach. The
first stage estimated the future building density of
individual sites as a function of existing building
density and other factors that should influence the
valuation of land for different uses. These factors
include site attributes that influence operability for
agriculture and forestry (for example, slope and
distance to the closest road) as well as factors that
influence the desirability of a site for residential uses
(for instance, distance to the local market center and
elevation). This stage therefore describes the spread
of human populations, approximated by building
density, across a landscape. The second stage of the
analysis estimated the probabilities of observing
land-cover classes as functions of local building
density, predicted from the first stage, and other site
features. For both stages, model estimates allow testing
hypotheses regarding the effects of various site and
locational features on the spatial diffusion of human
populations and on the location of land-cover types.

The forecasting power of the estimated models
was then evaluated by using validation data sets
(that is, observations that were not used for estimat-
ing the models). The two-stage model was applied
to each observation to calculate predicted probabili-
ties for land-use classes in 1990 based on conditions
observed in 1950. Comparing predicted probabilities
with those derived from a null model, defined by
average probabilities, allows construction of informa-
tion-theoretic statistics for testing the significance and
accuracy of the historical forecasts. In addition, we
calculated the information gain over the null model.

This type of forecasting model can focus planning
and research efforts within a region. To demonstrate
these applications and focus our future endeavors,
we present 40-year forecasts of land use for our
study watersheds and highlight portions that are the
most likely to change. We conclude by discussing
issues regarding scenario design and the limitations
of the model as well as its appropriate application to
the assessment of changing ecological and economic
conditions within the region.

S T U D Y  A R E A

Our study area is in the Blue Ridge province of the
Southern Appalachian Highlands and includes all of
the mountainous portions of western North Caro-
lina, northern Georgia, and southeastern Virginia
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(Figure 1) Within this region, we chose to examine
land use in four separate study sites that exhibit a
broad range  of land-use pressures. One is the Little
Tennessee River Basin in southwestern North Caro-
lina and northern Georgia, centered at Franklin,
North Carolina, and including the Coweeta Hydro-
logic Laboratory. Further north, we examine two
areas within the French Broad River Basin, the
Cane Creek drainage in northern Henderson County,
and all of Madison County, North Carolina. We also
examine Grayson  County, Virginia, which borders
North Carolina. All four sites were essentially rural
in 1950 but have since experienced different levels
of development.

The Southern Appalachian region as a whole
experienced population growth between 1950 and
1990. However, growth patterns have not been con-
stant across all counties in the region and, as shown
in Figure 2, the counties in the vicinity of our study
areas show different patterns of growth. Henderson
County, which contains the Cane Creek study area
and the city of Hendersonville, experienced a 124%
increase in population between 1950 and 1990 (US
Census Bureau). In contrast, the population of
Madison County was 17.4% less than it was in
1950. The population count in Grayson  County was
relatively stable over this period (roughly 8% more
people in I990 than in 1950), and growth was
moderately strong in Macon County-which repre-
sents a majority of the land in the Little Tennessee
River Basin-with an increase of 45.3%.

Another important force behind landscape change
in the Southern Appalachians has been a decline in

Figure 1. Location of four
study sites in the Southern
Appalachian Highlands.

Macon county Henderson  county mayson  county Madison  county

Figure 2. Total population for counties coincident with
the four study areas 1950-90. (Macon County, NC,
constitutes a majority of the Little Tennessee River Basin
study area and a majority of the Cane Creek study area is
in Henderson County.) Values are from the decennial
censuses of population (US Census Bureau).

agriculture. Not surprisingly, as this formerly iso-
lated area has become better integrated into broad
regional and national markets for agricultural
products, local demand for farmland has declined.
This change is clearly reflected in the counties
containing our study sites (Figure 3). All of the refer-
enced counties show declines in land in farms between
1978 and 1992 (respective US Censuses of Agriculture).
Figure 3 also demonstrates a broad range of agricultural
presence in the study sites, from only 7% of land
area in farms in Macon County to 47% in Grayson
County.
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Figure 3. Share of land in farms in 1978 and 1992 for
counties coincident with the four study areas.

METHODS

Data-Base Development

To evaluate overall changes and estimate land-use
models, spatial data were developed for two points
in time-1950 and 1990-and compiled in a Geo-
graphic Information System (GIS). All data were
developed into the Universal Transverse Mercator
(UTM) coordinate system, zone 17. Original data
sources (for example, aerial photographs, maps,
satellite and imagery) were obtained as close as
possible to the target date. In most cases, however,
simultaneous coverage was not available for all
required data layers, although most data were co-
lected  within 4 years of the target years.

Early 1950s’ land-cover data were derived from
1:20,000  panchromatic aerial photographs in a
9-inch format taken by the US Soil Conservation
Service. Most photographs were leaf-on, early
springtime collections although, for some areas,
photos were taken during leaf-off condition. Land use
was manually interpreted into forest, nonforest, aban-
doned old-field, and shrub-early successional classes
within the neat area of each image, and polygon
boundaries were digitized using a high-precision (O.OOl-
inch) coordinate digitizer. Ground control points were
photo-identified and marked, and ground coordinates
were determined either from field global positioning
system readings or from serial transformations from US
Geological Survey (USGS) 1:24,000-scale  quadrangle
maps. Data were terrain and tilt corrected using a single
photo resection (Wolf 1983),  based on 30-m digital
elevation models (DEMs).  Single photo images were
then combined in a mosaic to create land-cover maps
for each study area.

Land-cover data for the 1990s were derived from
maximum-likelihood classifications of Landsat the-
matic mapper (TM) data. To provide complete coverage
of the study sites, parts of seven TM scenes were
required. Midsummer data collected in the early 1990s
were geocorrected and georeferenced. Training data
were collected for known land-cover types, based both

on field visits and on air-photo interpretation. Classifica-
tion was aggregated into forest and nonforest classes,
and accuracy of both land-cover classifications was
verified to be over 95 % (Lillesand and Kiefer 1994).

Road and building location data were determined
from 1:24,000-scale  USGS maps, and updates were
produced in both time periods. Clean, unfolded
paper maps were affixed to a coordinate digitizer
and georeferenced using the eight corner and cen-
tral graticule marks. Road centerlines were digitized
for all paved and unpaved roads at the time of map
compilation. Road type and capacity were attributed
to each digitized segment. Building locations and
epoch were recorded based on mapped information.
Market centers were identified, and point locations
were digitized. All data were converted to l-ha-
resolution raster format. Slope and aspect were derived
from the DEM data, using a third-order finite differ-
ence algorithm (Bernhardsen 1992). Minimum road
distance and travel times to nearest market centers
were estimated for each point in each study area,
based on an off-road average 3-km/h travel speed
over steep terrain, S-km/h on off-road flat terrain,
and design-estimated speeds on roadways. Neighbor-
hood building densities were determined from a
9-ha moving sum operator (Bernhardsen 1992).

Land-use classes were defined by overlaying land
cover with neighborhood building densities in the
two periods. We used two classification schemes.
One identified three broad land-use classes: nonfor-
est, forest with no buildings, and forest with buildings. A
fine-resolution scheme was also applied that split
the forest-with-buildings class into four subcatego-
ries: l-2, 3-5, 6-8, and more than 8 buildings per
hectare area for each cell, to identify a gradation of
intensities of land use. Both schemes were used to
evaluate the forecast performance of estimated models.

All referenced variables were compiled as data
layers in a grid-based GIS. To define observations for
model estimation and validation, a sample of 5000
landscape cells in private ownership was defined by
random draw without replacement for each study
site. A total of 4000 cells were used to estimate the
models. The remaining 1000 cells for each study site
were reserved as validation data sets to test the
forecasting performance of the estimated models.

Models of Land-Use Changes
Our modeling approach viewed land-use choices as
being influenced by features of each site and the
spatial contagion of development. The influence of
location has been the emphasis of spatial land-use
models descended from Von Thiinen’s  analysis of
rural land-use specialization [for example, see
Samuelson (1983)]  and central business district mod-
els that describe the spatial development of urban
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areas (Katzman  1983). These models focus on the
influence of distance from the site to markets for
agricultural products or to the location of essential
services on relative land values and land-use choices.
We adopt the same general approach but also allow
land values and uses to be similarly influenced by
several other variables. We also allow for spatial
contagion of land-use choices that would define
spatial autocorrelation in an uncorrected model.

Historical land-use changes were examined using
a two-stage regression approach. The first stage was
to estimate the building count within the 9-ha
neighborhood of a landscape cell in 1990 (B,,) as a
function of conditions in 1950. We posited that the
value of land for development (and therefore the
building count) in I990 would be positively influ-
enced by the building count in 1950 (BsO)  and
negatively influenced by the cost of access to the
site. Access was represented by two variables: the
distance from the site to the closest road (DtR,,) and
shortest travel time to and along the road network
to the local market center (DtMSO).  In addition,
because of its influence on costs of access and
construction, we anticipated that building count
would be negatively influenced by the slope. We
also included the elevation (elev) of a site, positing
that views afforded by higher elevations would
increase the value for development. The general
form of the regression equation is:

B 90 = f (B,,, DtM,,, DtR,,, slope, elev) (I)

The second stage of the analysis estimated the
probability that land cover in a landscape cell (LC)
would be forest (F) or nonforest (NF) in 1990 as a
function of the building count as well as other
explanatory variables. We posited that the probabil-
ity of nonforest cover was positively related to the
building density examined in the first stages of the
analysis. We also posited that the probability of
nonforest cover would be negatively related to the
elevation of a site due to increased exposure. Slope
should also be negatively related to nonforest cover
due to its influence on both the cost of access and on
the operating costs for farming. The general equa-
tion form is

pr(LC,,  = NF) = P,,

= 9 U%w NF,,, slope, elev) (2)

F7rWGo = F) = 1 - P,,

where NF5,, is the measure of nonforest cover in
adjacent areas and other variables are as previously
defined. Several statistical issues needed to be ad-
dressed before estimating these equations:

1. Count data. Because the dependent variable in
Eq. (l),  B,,, is not a continuous variable but is
measured as a count, we estimated Eq. (1) using a
negative binomial regression model, a general form
of the Poisson regression model. (In particular, it
relaxes the Poisson’s assumption that the mean of
the dependent variable is equal to its variance.) In
addition, because few observations have building
counts greater than 9, we censored B,, by lumping
all values greater than 8 into a single category. This
censoring was accounted for in the estimation of the
regression model and the calculation of predicted
values [see Greene (1995: 548-9)].

Assuming that BY0 is distributed as Poisson defines
the following negative binomial model:

pr(B,,  = YiIy) = i
Y,!

yj = 0,1,2,  . . ; i = 1,2. . ,M (3)

where In (Xi)  = In (x,) + y = B’ x, + y

where y is a random variable such that exp(y)  has a
gamma distribution with mean 1 and variance (Y, x,
is the vector of independent variables, and B is a
vector of coefficients to be estimated [see, generally,
Cameron and Trivedi (1986) for a complete develop-
ment of negative binomial models]. The Poisson
regression model would be defined if the random
variable y were not included. Including y allows for
overdispersion in the model [that is, for var(B,,) >
E(B,,)]  but also requires estimation of the additional
parameter (Y. Equation (3) was estimated using
maximum-likelihood estimation in the software
package LIMDEP (Greene 1995).

The overall significance of the model was tested
using a likelihood ratio test where the null hypoth-
esis holds all slope coefficients equal to zero. The
significance of individual variables in predicting
building count was tested using a z statistic for each
marginal effects coefficient derived from the esti-
mated negative binomial model. The marginal ef-
fects coefficients were calculated as:

a E[B,,Ix,]laxi  = iip (4)

with the values of x set at their mean values.
2. Simultaneity. Another potential statistical issue

defined by Eq. (1) and (2) is the inclusion of the
endogenous variable in Eq. (1) (B,,) on the right-
hand side of Eq. (2). This issue was addressed by first
estimating Eq. (3) and then using predicted values
of the building count as the explanatory variable in
Eq. (2)-that is, predicted values define an instru-
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mental variable for B,,,. The expected value of BqO
was defined as:

i- I i-1

EB,,=zPii+  (1 -2Pi)c (5)

where the probabilities are those predicted by the
fitted negative binomial model and c is the upper
limit on building counts (in this case, c = 9). This
sequential approach to estimation corrects for simul-
taneous equation bias and is essential for the fore-
casting model. By using the expected value of
B,,,(EB,,) in Eq. (2), land use in 1990 (t) is predicted
strictly as a function of conditions in 1950 (t - 1).

3. Nominal land cover. Because land cover is
defined by two discrete classes (forest and nonfor-
est), we applied the binomial logit regression model
to Eq. (2):

1
pr(LC,,  = NF) = P,, = I + epfi’z, (6)

where Z, is the vector of variables on the right-hand
side of Eq. (2) and 6 is the vector of corresponding
estimated coefficients. These equations were esti-
mated using maximum-likelihood methods in LIM-
DEP, and overall significance was tested using a
likelihood ratio test. The test statistic for the null
hypothesis that all coefficients are equal to zero is
distributed as a chi square with degrees of freedom
equal to the number of explanatory variables. The
significance of individual variables was tested using
z statistics for the marginal effects coefficients [see
Greene (1995: 432)].

4. Spatial autocorrelation was also a statistical con-
cern in modeling the probability of land-cover
classes. For example, the probability that an area
will be in nonforest cover is likely to be, ceteris
paribus, higher in the vicinity of other areas that
have nonforest cover; that is, we hypothesize that
there could be a clumping of land cover, not fully
explained by the location or condition of individual
landscape cells. Dubin (1995) has shown that exclud-
ing terms that represent spatial interactions can lead
to inconsistency in estimates of the logit  model. To
account for spatial autocorrelation here, we defined
a spatial weighting matrix of nonforest cover for
each cell in the landscape:

w h e r e  L,,, = 1 if LC,,,,,k =  nonfores t (7)

L,., = 0 otherwise

where i and j are used to identify the row and
column location of the referenced landscape cell.
NFSo  is therefore the portion of landscape cells that
were in nonforest cover in 1950 within the nine-cell
neighborhood (inclusive) of the referenced cell. The
neighborhood is made up of horizontally, vertically,
and diagonally adjacent cells. This variable was
included in the Z vector in Eq. (6), and a significance
test of its estimated coefficient was used as a test for
spatial autocorrelation.

Forecasting Performance

In addition to testing for the overall significance of
estimated equations and the significance of mar-
ginal effects in both the building count and the
land-cover models, we also tested the ability of the
estimated equations to predict land uses in 1990
based on conditions observed for 1950. These tests
were conducted on validation data sets made up of
1000 observations for each of the study sites. Valida-
tion data were used to test whether the estimated
models improved on “naive” or null models of
land-use change defined by average probabilities.
Because a primary objective was to construct robust
projections of land use, tests of forecasting power
provided crucial evaluations of model performance.

Evaluating the performance of discrete choice
models such as the logit and negative binomial is
challenging because the models generate condi-
tional probabilities while observed choices are dis-
crete events. Because the dependent variable is not
continuous, standard measures of forecast or simu-
lation performance that are based on direct compari-
sons of predicted versus observed outcomes cannot
be used. Instead, evaluation of model predictions
must focus on the ability of the estimated model to
provide predictions that are better than the best
available naive or null model. Statistical tests ad-
dress whether the estimated models contribute addi-
tional information about the evaluated system.

We evaluated the ability of the two estimated Eqs.
(3) and (6) to discriminate among the six aggregate
land-use classes: (a) nonforest and forest with (b) no
buildings, (c) l-2 buildings, (d) 3-5 buildings, (e)
6-8 buildings, and (f) more than 8 buildings. For
comparison, we also evaluated predictive ability for
two coarse land-classification schemes: (a) broad
building classes: forest with buildings, forest with-
out buildings, and nonforest; and (b) simple land
cover: forest versus nonforest. To construct predic-
tions for each observation in the validation data set,
we defined the xi and zi variables and calculated the
conditional probabilities of all possible classes by
using estimates of Eqs. (3) and (6). Three statistics
based on information theory (Hauser  1978; Judge
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and others 1985: 777) were then used to evaluate
model performance [see Colwell (1974) and Turner
and others ( 1989) for applications of similar informa-
tion-theory concepts to the evaluation of the aggre-
gate performance of ecological models]. These statis-
tics are derived from the following three basic
information concepts [see Hauser  (1978)]:

1. The prior entropy of the system, defined as

H(A) = -C P(Qj) In [PI (8)
;=I

where p(Uj)  is the probability of land-use class j
defined by a prior or null model and A is the set of J
potential land-use classes. H(A) measures the total
uncertainty inherent in the null model or the
maximum uncertainty that could be explained by
the estimated model. We define the null model by
setting the p(aj)  terms to the proportion of observa-
tions in land-use class a]. Entropy is at a maximum
when the probability of each land-use class is l/J
(that is, equal probabilities of all land-use class) and
approaches zero as the probability of one land-use
class approaches unity (that is, complete certainty
about the outcome).

2. The additional information contained in the
estimated model is defined as

I(A;X,Z)  = k $ i Qln (9)
i-l /=I

where 6, = 1 if state j is observed at cell i (6,, = 1
otherwise), xi and z, are the independent variables
describing cell I, and p(ai xi; zi) is the conditional
probability of land-use class j defined by the esti-
mated models [Eqs. (3) and (6)], and m is the
number of cells in the validation sample. The esti-
mated models provide additional information about
the land-use classification of a cell [that is, adds to
I(o)] if the conditional probability of the observed
land-use class is greater than the probability defined
by the null model.

3. The expected information provided by the
estimated model is defined as:

EI(A;X,Z) = i 2 i p(ajIXi;Zi)  In
P(a,ixi;zi)1 1 (10)i-1 ;=I F7@,1)

As with I(.), expected additional information is low
if the conditional probabilities are always close to
the prior probabilities. Based on these concepts,
Hauser  (1978) defines three tests for a probabilistic
system:

1. Usefulness test: Define U2 = I(A;X,Z)/H(A).  U2 is
the proportion of entropy (uncertainty) explained

by the model defining a pseudo-r2  that ranges from
0 (no additional information) to 1 (complete expla-
nation).

2. Accuracy test: Hauser  shows I(A;X,Z)  to be
normally distributed with mean EI(A;X,Z) and a
variance V(A;X,Z) under the null hypothesis that
the estimated model is true. If I(A;X,Z) is outside the
confidence interval for EI(A;X,Z), then we reject
that the estimated model fully explains the land
uses observed in 1990.

3. Significance test: The overall significance of the
estimated system can be tested by comparison to the
null model. The null hypothesis is defined by the
prior probabilities. The log-likelihood ratio is de-
fined as L = 2nI(A;X,Z)  and is distributed as a chi
square with degrees of freedom equal to 11, the
number of estimated parameters in Eqs. (3) and (6)
[see Kullback  ( 1959: 98)].

In calculating all of these statistics, the prior
model was defined as the frequencies of land-use
classes calculated from estimation data sets for the
study areas.

R E S U L T S

Descriptive Statistics

Little Tennessee River Basin (LTRB). Between 1950
and 1990, the share of the LTRB in forest cover
increased by 12.02% in spite of substantial popula-
tion growth (Table 2); 26% of the LTRB experienced
change in major land-use categories [forest-with
buildings (FWB), forest-no buildings (FNB), and
nonforest]. The major shift was out of nonforest and
FNB to FWB (+ 10.12% and +9.02%, respectively;
Table 2); 4.42% of the area shifted from nonforest to
FNB and a total of 2.48% shifted from forest to
nonforest. As a result and consistent with a develop-
ing landscape, the area of forested land without
buildings declined by 6% and the area of forests
with buildings increased by 18.2 %.

Changes in the means of the independent vari-
ables also reflect a developing landscape (Table 3).
There was a near tripling of the average building
density between 1950 and 1990 (+183.64%).  The
LTRB lost land in the 0 and 1 building (bldg) per
9-ha land classes and gained area in all other
building-density classes (Figure 4). Gains were sub-
stantial in the 2, 3, 4, and 5 bldg/9-ha classes,
suggesting low-density residential development.
There was also a gain in the 29 bldg/9-ha  class,
indicating some expansion in high-density areas.
Relative location of cells also changed over this
period. The average travel time to the closest market
center (MC) declined slightly (-0.66%) while the
average distance to roads declined by 15.21%.
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Table 1. Land-Use and Land-Cover Characteristics, Both Public and Private Land for the Four Study Areas

Cane Creek Grayson County LTRB Madison County

1950 1990 1950 1990 1950 1990 1950 1990

% Forest 59.7 65.3 41.6 65.6 81.4 89.7 62.5 82.1
% Agriculture 36.1 28.6 50.2 30.3 15.3 7.5 28.1 12.3
% Urban 2.9 5.7 1.4 1.6 1.0 2.0 0.8 1.0
Mean distance to road (rn) 253 196 337 319 557 425 433 381
Buildings/ha 0.14 0.25 0.16 0.17 0.11 0.22 0.04 0.09
Mean patch size (ha) 39.8 41.6 35.2 60.0 54.8 79.1 31.8 37.7
Area-weighted median patch size (km2) 0.32 0.46 0.74 0.56 11.56 12.91 1.27 3.61
% Core area 52.8 59.1 49.2 63.3 73.0 82.1 49.8 70.0
Contagion 55.3 57.3 47.8 62.9 69.3 78.7 49.9 67.0

Table 2. Land Uses for 1950 and 1990 and Changes in Private Land Uses Between 1950 and 1990 Based on
a Random Sample of 1 -ha Landscape Cells (M = 5000 for Each Study Area)

LTRB Cane Creek Grayson County Madison County

% % % %
1950 1990 Change” 1950 1990 Change 1950 1990 Change 1950 1990 Change

Land-use class (% area)
Forest

0 Bcildings
l-2 Buildings
3-5 Buildings
6-8 Buildings
>8 Buildings

Nonforest

58.42 52.36 -6.06 46.92 41.62 -5.30 33.62 49.42 15.8 51.90 55.26 3.36
11.88 20.22 8.34 8.68 12.80 4.12 5.76 11.52 5.76 11.42 20.76 9.34

1.20 8.60 7.40 3.70 6.88 3.18 0.90 2.66 1.76 0.42 5.74 5.32
0.14 1.86 1.72 0.70 1.90 1.20 0.04 0.38 0.34 0.02 0.76 0.74
0.02 0.64 0.62 0.18 1.42 1.24 0.02 0.06 0.04 0.02 0.24 0.22

28.18 16.06 -12.12 39.72 35.26 -4.46 58.92 35.18 -23.74 35.56 16.36 -19.20

Major land-use changes
(% area)

Forest (w/no
b l d g ) - n o n f o r e s t  -

Nonforest-forest (w/o
bldg)

Nonforest-forest (w/bldg) -
Forest (w/o bldg)-forest

(w/bldg)
Forest (w/bldg)-nonforest  -
Forest (w/bldg)-forest

(w/o bldg)
Total changes

1.40 - 3.02 - 2.14 - 1.20

4.42 - 4.56 - 18.32 -
10.12 - 7.42 - - 8.62 -

9.02 -
1.08 -

6.82 -
4.50 -

0.00 -
26.04 -

0.00 -
- 26.32 -

0.44 -
- 1.14 -

0.00 -
30.66 -

9.60
- 11.52

4.88
- 0.78

- 0.00
27.98

Taken together, these changes indicate a filling in of Cane Creek. The Cane Creek area experienced
the road network rather than an expansion of the patterns of change similar to those observed for the
network at the remote margin. Among study areas, LTRB: 26.32% of land shifted among the major
the LTRB had the highest average slope (14.44”) and land-use classes, and change was dominated by
the greatest variability in slope (standard deviation, shifts to the FWB class (+14.42%);  3.02% and
8.96”),  suggesting a fairly rugged landscape and 4.5% of the landscape shifted from FNB and FWB to
explaining the small share of land dedicated to nonforest, respectively. Total forested land increased
agriculture (Figure 3). by 4.46%,  but there was a 9.76% increase in the
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Table 3. Descriptive Statistics for Private Land in the Four Study Sites Based on a Random Sample
of l-ha Landscape Cells (n = 5000 for Each Study Site)

LTRB

1950 1990

C a n e  C r e e k Grayson  C o u n t y M a d i s o n  C o u n t y

x % % %

C h a n g e ” 1950 1990 C h a n g e 1950 1990 C h a n g e 1950 1990 C h a n g e

Building  density

(bldgi9 ha)

Meall 0 .483 1 .370 183 .64 1 .266

Range O&19 O-33 O-36

S D 1.191 2 . 6 0 8 2 . 7 1 9

Travel  tm,e to m a r k e t

c e n t e r  (rnin)

Mea11 2 6 . 0 9 0 2 5 . 9 1 8 ~0.66 31 .401

Rang? I - 1 2 7 I - 1 3 6 1 o-97

S D 14 .868 14 .729 12 .507

Distance  to road (m)

Meal1 2 4 5 . 8 9 0 2 0 8 . 4 8 4 - 1 5 . 2 1 2 4 1 . 8 1 8

Range

SD

Elevation (m)

M e a n

Range

S D

Slope  (degree\)

Meall

RZit1ge

SD _

O - 2 3 2 9 I - 1 8 3 1

2 5 4 . 0 0 7 212 .291

8 1 9 . 5 8 1  -

5 6 5 - 1 4 9 3  -

1 8 4 . 7 3 8  -

1 4 . 4 4 2  -

O-87 -

8.961 -

O-l 603

2 5 6 . 8 7 9

788 .732 8 7 8 . 8 1 9  -

627- l  326 6 4 6 - 1 4 9 5  ~

141 .240 1 3 3 . 6 3 2  -

8 . 5 3 0

O-68

6.X32

2 .666 110 .58 0 . 7 1 7 0 .791

O-52 O-32 O-33

4 .833 1 .657 1 .x39

30 .426 - 3 . 1 0 3x .445 35 .894

IO-71 3-95 3 - 9 9

10 .600 14 .693 1 5 4 1 4

184 .972 ~23.51 2 6 9 . 7 2 3 2 6 6 . 3 0 9

O&l 108 O-1930 O - 1 9 3 0

191 .055 266 .892 2 6 6 . 5 9 6

7 . 7 1 9  -

O-31 ~

5.108 -

10.32

-6.64

ml.27

0 .445 I .030 13 I .46

O-23 O-30

1 .139 2 . 0 9 9

4 9 . 2 9 8 4 8 . 7 3 6 PI.14

IS-115 I S - 1 0 5

15 .806 15.3X6

323 .123 293 .629 -9.13

O-2264 O-2264

331 .913 307.4X6

YOl.700 -

3 7 8 - 1 4 6 2  -

1 9 7 . 5 8 6  -

1 2 . 5 4 2  ~

O-66 -

6.991 -

area of forests with buildings. As a result, the area of
forests without buildings declined by 5.3%.

The average building density in the Cane Creek
area increased by 110.58% between 1950 and 1990.
The shifts in building-density classes (Figure 4)
indicate more of an expansion in high-density areas
than observed for other study sites (that is, the
category with more than 8 buildings saw the great-
est gains between 1950 and 1990). As in the LTRB,
average travel time to MC and average distance to
roads declined (-3.10% and -23.51%,  respec-
tively), suggesting a substantial filling in of the road
network and some expansion in its extent.

Grayson  County. Unlike the LTRB and Cane
Creek study areas, Grayson  County had an essen-
tially stable population between 1950 and 1990. A
different pattern of change among major land-use
classes resulted. Among the study areas, Grayson
County experienced the greatest total land-use
change, with 30.66% of the area changing major
classes: 18.32% of the area shifted from nonforest to
FNB, reflecting a substantial decline in farmland in
the county; in addition, 8.62% of the area shifted
from nonforest to forest with buildings. As a result,

the amount of forest area increased by 23.74%. In
contrast to all other study areas, the area of forest
without buildings also increased between 1950 and
1990 (+ 15.8%). There was also a 7.94% increase in
the area of forest with buildings.

Grayson  County was also unique in experiencing
only a small change in the average building density
(+10.32% while all other areas at least doubled).
Figure 4 shows only about 1% of the area changing
building classes between 1950 and 1990. Change in
location variables were also distinct. Travel time to
the MC decreased the most among study areas
(-6.64%) while distance to road decreased the least
(-1.27%). This suggests that the road network
expanded outward at the remote margin but did not
fill in substantially. The average slope was only
7.72%, and the range of slopes observed for our
observations was less than half that observed in the
other study areas. According to these measures,
Grayson  County had the most gentle terrain of the
four study sites.

Madison County. Madison County had 17% fewer
people in 1990 than it did in 1950, and land use
shifted toward forest cover (+ 19.2 %). Like Grayson
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increasedCounty, fo res t without buildings
(+3.36%).  However, forest with buildings also ex-
panded, similar to Cane Creek and the LTRB.

Average building density more than doubled over
this period (+ 131.46%). The amount of change in
building-density classes was similar to those ob-
served for the LTRB and Cane Creek, with most
gains in the 2, 3, 4 and 5 bldg/9-ha  classes, indicat-
ing expansion in the area of low-density residential
developments for this site. A 1.14% decrease in
travel time to MC indicates only a slight expansion
in the road network, whereas a 9.13% decrease in
distance to roads indicates some filling in of the
network, though to a lesser degree than observed
for the LTRB and Cane Creek study areas.

AZ1 study areas. All study areas showed large
increases in forest cover, largely at the expense of
agricultural land (Table 1). Agricultural land use
was prevalent in all four study areas in the 195Os,
claiming from 15% to 50% of the land surface.
Agriculture dominated the flatter lands in all study
areas; the lower proportion of agricultural land in
the Little Tennessee River in part reflects steeper,
more variable terrain. Forest cover increased for
study areas that had been heavily agricultural (Cane
Creek and Grayson  County) and for the two less-
farmed study areas (the Little Tennessee River and
Madison County). Urban land use was a small
portion of each study area in the early 1950s and,

00

Figure 4. Net changes in
building-density classes for
land in the four study sites
based on sample of land-
scape grid cells (M = 5000
for each site).

1 2 3 4 5 6 7 8 9

Building Density (Bldgs/9ha)

although increases on a percentage basis were quite
large, the absolute increases were generally small.

These land-use changes are reflected in a number
of structural indices of land cover and land use. The
mean patch size increased for all four study areas,
and the area-weighted median patch size increased
for three of the four study areas, with Grayson
County as the lone exception. Forests comprised the
largest patches in all study areas, and the increase in
patch size reflects an increase in forest cover. The
mean patch size is approximately 24 orders of
magnitude smaller than the area-weighted patch
size indicating a large number of small patches.
These small patches represent a small portion of the
aggregate study area but, when averaged, signifi-
cantly reduce mean patch size. When weighted by
area, the influence of large forest patches is ob-
served. Grayson  County differs from the other study
areas in that more than half of its area was in
agriculture in 1950, with larger, contiguous blocks
of agriculture. As these become more broken with
forest regrowth, the median area-weighted patch
size decreases. The percent core area also increased,
representing the proportion of the landscape more
than 100 m from a change in land use. Contagion
also increased, reflecting greater patch connection
across the landscape. All of these measures repre-
sent the reduction in agricultural land, both the
complete “absorption” of small, isolated farm par-
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Table 4. Marginal Effects Coefficients of Referenced Variable on Building Counts from Estimated Negative
Binomial Regression Models and Log-likelihood Ratio for Each Model

Study Area

Variable LTRB Cane Creek Grayson County Madison County

BD5o 0.53570 0.44363 0.31559 0.60746

DtKo -0.03070 0.01920 NS -0.01735

DtRso -0.00257 -0.00526 -0.00240 -0.00139

Slope -0.04014 -0.05871 NS -0.02971

Elevation 0.00126 -0.00351 NS NS

LLR-Poisson 7378.62 17957.23 6987.59 6419.12

LLR-Neg. binomial 639.28 798.73 12.16 208.38

Reported vulms urc  synificmt  at the 5 “% Ieve/  based on fhe z sf~~irsirc  ,for coefficients.  a chi-squared test  with 5 df for thr li?q-likelrhnod  ratio testing overall si~qmficance  of the
Poisson model,  and n ch-squared test  with I dffor the  l(plikclihond ratio testwg  Ggnificance  of the niyatwe  binomial model against the m/i of the Poisson model. NS, that thr
coefficiem is mr synificmt;  the  other nhhreviatiom  arc d&red m the  text

eels into the surrounding forest matrix, and the
growth of forest along agricultural edges. As this
change occurs, the remaining forests become larger
(larger patch size), have less edge (larger core areas),
and are more likely to span the landscape (increased
contagion).

Other-indices reflect the greater urbanization in
the study areas. The mean distance from any point
in the landscape to the nearest road decreased for all
four study areas. Initial distances varied from 0.25 to
0.5 km, values typical of rural areas, and decreased
from slightly (Grayson  County) to substantially
(Cane Creek), reflecting little to substantial new
road construction. There was a concomitant increase
in mean building density at all four study sites.
Urban densities were typically from 3 to 18 struc-
tures/ha and, when averaged over the nonurban
land uses, yield study-area averages of 0.04-0.16lha
in the 1950s. In three of four study areas, the
number of buildings nearly doubled (Table 1). Gray-
son County was the exception, with only a slight
increase in building density. These trends were
observed when considering all land but were ampli-
fied when restricted to private land, because nearly
all public land was and has remained in forest.

Estimation Results
Btiilditig-density equation. Estimates of the nega-

tive binomial regression for building density [Eq.
(3)]  indicate that equations for all study sites were
significant. Chi-squared tests (Table 4) indicate that
the Poisson regressions were all significant (df = 5
and P 5 0.05) and that the negative binomial
regression provided a significant improvement over
the Poisson (df = 1 and P 5 0.05). We therefore
reject the hypothesis that the building-density mod-
els do not have explanatory power.

Tests regarding the significance of explanatory
variables in the building-density equations varied
across sites. For all sites, the marginal effects coeffi-
cient for lagged building density was significantly
positive (P 5 0.05) consistent with expectations.
Slope had a significant and negative effect on building
density for all study sites except Grayson  County
(where it was not a significant variable), and dis-
tance to road had a significant and negative effect on
all study sites. Travel time to MC was significant and
negative for the LTRB and the Madison County
study sites, consistent with expectations, but it was
significant and positive for the Cane Creek site. It
was insignificant in the Grayson  County site. Eleva-
tion was significantly positive in the LTRB but
significant and negative in Cane Creek. It was
insignificant for the other two study areas. Of the 20
estimated coefficients, 16 were significant and, of
these, 14 were consistent with expectations based
on theory. For the three study sites with substantial
development (LTRB, Cane Creek, and Madison
County), only one coefficient among 15 did not
have a significant effect on building density.

Land-cover equations. Logit  regression models of
the probability of forest versus nonforest land cover
were all significant (Table 5). We rejected no explana-
tory power based on the log-likelihood ratio test
(df = 4 and P 5 0.05). Marginal effects coefficients
listed in Table 5 were measured with respect to the
probability of observing nonforest cover. All coeffi-
cients for expected building density (EB) were
significant and positive, consistent with theory. The
slope coefficient was significant and negative for all
four areas. The elevation coefficients were signifi-
cant and negative in the LTRB, Cane Creek, and
Madison County areas.
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Table 5. Marginal Effects Coefficients of Referenced Variable on the Probability That Land Is Nonforest
Derived from Estimated Logit  Models of Land Cover and Log-likelihood Ratio for Each Mode1

Study Area

Variable LTRB

NF5o 0.00155
E&o 0.01 148
Slope -0.00457
Elevation -0.00004
LLR 1568.1

Cane Creek Grayson County Madison County

0.00351 0.00845 0.00166
0.02977 0.03784 0.00959

-0.03004 -0.01944 -0.006589
-0.00056 NS -0.00007

2656.59 1643.23 1389.39

The coefficients on the share of nonforest area in
the 9-ha neighborhood of each cell (NF) were
significant and positive for all study sites. This
variable provides a measure of the spatial contagion
of land cover, separate from the effects of the other
variables, and therefore defines a test for spatial
autocorrelation of land cover. The finding of signifi-
cant and positive effects indicates that we reject the
null hypothesis of no spatial autocorrelation. Of 16
coefficient estimates in the land-cover models, 15
were significant, and all signs were consistent with
our expectations.

Plots of predicted probabilities (Figure 5) provide
additional insight into the influence of location and
topographic variables on land uses. Figure 5 charts
the probability of land uses and the diversity of
predicted land uses in 1990 for land that was forest
with no buildings in 1950 in the Little Tennessee
River Basin. Comparisons between rows show the
effect of slope while comparisons between columns
show the effect of distance to roads on these values.
The probability of forested land converting to non-
forest is small throughout the range of scenarios and
is discernible only on flat land (slope = 0’). On this
portion of the landscape, the probability of forest
with buildings is also highest. The effect of distance
to roads can be evaluated by comparing graphs in
the top row of Figure 5. With decreasing distance to
road, forest with buildings dominates on land fur-
ther from the MC. At DtR,” = 0, forest without
buildings dominates from the MC [Pr(FNB) > 0.51
up to about 50 min from the center; up to 35 min at
DtR,,  = 250 and up to 15 min at DtR,,  = 500. At
slope = 30, forest without buildings dominates over
nearly the entire range of DtR,” and travel time. The
exception is where DtR 50 = 0 and travel time is less
than 10 min. At slope = 60, forest without buildings
unambiguously dominates the landscape. The diver-
sity of land uses is also influenced by DtR,

slope, and travel time. Land use is most diverse on
flat land at a moderate distance from the MC. It
declines with travel time to an asymptote of 0.2 for
slope = 0 and to 0.0 for slope = 30 and 60.

Forecast  Evaluation

Forecasts of land use for observations in the valida-
tion data sets indicated mixed success in predicting
specific land-use categories. For the fine-resolution
building classes, the share of the landscape correctly
predicted by the forecasting mode1 ranged from
67.63% in the LTRB to 71.61% in Grayson  County
(Table 6). The mode1 had the most success in
predicting land in forest without buildings (correct
predictions of FNB ranged from 87.65% to 96.86%).
The model also correctly predicted the location of a
majority of nonforest cover (between 61.63% and
79.67%) for the LTRB, Cane Creek, and Grayson
County areas. The mode1 had less success in predict-
ing the specific building density for forested land
with buildings, with success declining as building
density increased. Predictions for the broad building
classes (Table 6) shows that, in the Little Tennessee
and Cane Creek, the models correctly predict roughly
one-half of the forest area with buildings (55.31%
and 49.59%,  respectively). In contrast to these areas
with the highest growth over the study period, the
model correctly predicted much less of the forest
with buildings in Grayson  County (25.50%) and
Madison County (38.54%). Results for the land-
cover classes alone (Table 6c) indicate that the
mode1 correctly predicted land-cover classes for
between 79.50% (Grayson  County) and 89.38%
(Little Tennessee) of the validation data.

The information-theoretic statistics (Table 7),
which are based on an assessment of improvements
in the accuracy of the predicted probabilities, indi-
cate that the forecast models are significant and that
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Figure 5. Predicted probability of broad land-use classes in 1990 for land that was forested without buildings in 1950 based
on models for the Little Tennessee River Basin. Scenarios are defined with NF 50 = 0 and elevation = 800. Other variables
[slope (degrees) and DtR,“, and DtMTO  (minutes of travel time)] are varied as shown in the panels. Diversity is measured
relative to maximum possible diversity using the Shannon-Weaver index. NF,o, DtRTO,  and DtMSo  are defined in the text.

they provide significant improvements over null
models of land use. Hauser’s  significame test based
on the log-likelihood ratio test indicates rejection of
the hypothesis that the model provides no improve-
ment over the null mode1 for all four of the study
areas. U* statistics (Hauser’s useJ%lness measure; Table
7) indicate that the forecasting model reduces the
residual uncertainty of the null model-defined by
the frequencies of land uses in the estimation data
sets-by between 47% and 66%. Results of the
accwmy  tests (Table 7),7),  which compare I(A;X,Z)
with the confidence interval around the expected
information EI(A;X,Z), are, however, mixed. For
the LTRB and Cane Creek study sites, we cannot
reject the hypothesis that the estimated models
explain the observations in the validation data set (z
test with P 5 0.05). For Grayson  and Madison
Counties, the hypothesis is rejected, indicating that,

although the estimated models have explanatory
power (based on usefulness and significance tests),
additional work on their specification is warranted.

Landscape Simulations

To demonstrate application of these models further,
we developed land-use forecasts for our four study
sites. Equations (3) and (6) were applied to GIS data
layers for all cells in the referenced landscapes.
Conditions in 1990 were then used to forecast land
use in 2030, in effect applying the processes behind
land-use changes over the 1950-90  period to simu-
late the next 40 years.

Results (Figures 6 and 7) forecast increases in
building density and some change in land cover.
Overall, land cover appears relatively stable, while
human populations continue to grow across these
landscapes. One exception is in Cane Creek, where
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Table 6. Percentage of Correct Predictions for Table 7. Information Indices and Derived
Three Classification Schemes: Fine-Resolution Statistics for the Forecasting Model Applied to
Building Classes, Broad Building Classes, and Land Validation Data Sets by Using the Fine-Resolution
Cover Alone Building Classes

Percent Correctly Predicted Study Area

Land-Use Class
Cane Grayson Madison

LTRB Creek County County
Index/ Cane Grayson Madison
Statistic LTRB Creek County County

I(A;X,Z) 0.598 0.728 0.418b 0.532h
El(A;X,Z) 0.602 0.713 0.333 0.441
V(&X,Z) 0.0011 0.0011 0.0005 0.0007
H(A) 0.988 1.102 0.890 0.982
u2 0.605 0.660 0.469 0.541
LLR 1188.3” 1446.3” 830.06” 1057.0”

Fine-resolution building classes
Forest

0 Buildings 90.32 88.13
l-2 Buildings 46.73 43.18
3-5 Buildings 17.78 20.00
6-8 Buildings 13.64 4.35
>8 Buildings 0.00 0.00

Nonforest 61.63 79.67
Total 67.63 70.87

Broad building classes
Forest

0 Buildings 90.32 88.13
With buildings 55.31 49.59

Nonforest 61.63 79.69
Total 74.15 75.67

Land cover alone
Forest 95.16 88.44
Nonforest 61.63 79.67
Total 89.38 85.29

87.65
19.13
9.09
0.00

71.98
71.61

87.65 96.86
25.50 38.54
71.98 49.39
72.93 72.14

83.41 94.58
71.98 49.39
79.50 87.19

96.86
33.03

6.90
28.57

0.00
49.39
68.91

projected growth in building density would lead to a
substantial agglomeration of nonforest cover. This
finding suggests that land-cover trends in other
areas may be reversed as well. Shifts toward forest
cover have been fueled by declining agricultural
uses over the past 40 years. However, as indicated
by the land-cover model, as building densities in-
crease in response to population growth, land will
eventually shift from forest with buildings to nonfor-
est.

These simulations highlight portions of the land-
scapes where land uses would be relatively stable.
For example, areas in public ownership (almost
exclusively National Forests; Figure S), where land
use is restricted by law and administrative rules, are
highly stable. Additionally, areas with high slopes
and low access (for example, see simulations for
Cane Creek) remain in forest without buildings in
spite of strong development pressures. As suggested
by the coefficients of the estimated models, change
is most likely to occur in areas close to roads and
with low slopes.

,,Sl‘qnifi~ani  nr P = 0.05.
“lndicnres  i/m  I(A;X,Z)  is skyqrz~icm//y  difirerzi  from  El(A;X,Z).

D I S C U S S I O N

Estimates of both building-density and land-cover
equations reinforce previous findings regarding the
effects of location on land uses. We find that
topographic features-that is, slope and elevation-
hold significant influence on land uses/cover and
therefore on landscape configurations, as did Wear
and Flamm (1994),  Turner and colleagues (1996),
Nelson and Hellerstein (1997),  and Chomitz and
Gray (1995). Topography is, therefore, a significant
constraining factor in these heterogeneous land-
scapes, limiting intensive land uses to only certain
portions (Figure 5). Accordingly, some areas will
likely persist in forest cover regardless of develop-
ment pressures. However, these constraints will also
concentrate agricultural and residential/urban uses
onto specific portions of the landscape.

Similarly, we find, as have others (Chomitz and
Gray 1995; Nelson and Hellerstein 1997; Turner and
others 1996), that land-use changes are also strongly
influenced by the location of sites measured in
terms of distance to roads and travel time to the
closest MC. These findings further corroborate the
dominant Von Thiinen model of rural land-use
specialization and central business district models of
urban development [for example, see Capozza and
Helmsley (1989)].  While distance and travel time
variables influence land-use patterns in a manner
similar to topography, it is important to remember
that distance factors are mutable. Road construction
and improvements have ramifications for the subse-
quent evolution of rural landscapes. Our findings
highlight that constructing roads for one purpose-
for example, access to a new subdivision-will likely
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1950

Building Density

1990 2030

Figure 6. Observed (1950
and 1990) and predicted
(2030) building-density
classes for the four study
sites.

Little Tennessee River Basin

Cane Creek

Madison

Grayson

have secondary and tertiary impacts on a larger
portion of the referenced landscape.

There has been little expansion of the road net-
work in all study sites between 1950 and 1990.
Rather, it appears that the primary road network
has been fairly stable since 1950 in all four study
areas. Construction generally filled in the road
network, thereby bringing land closer to the road
network. As a result, the average distance to road
declined substantially between 1950 and 1990 in
the three study areas experiencing growth. In con-
trast, there was little change in Grayson  County.

Taken together, influences of topographic and
distance variables on land use may concentrate
development in riparian areas, an especially impor-
tant portion of the landscape. Our models indicate

that the highest probability of intensive land use
occurs where land is relatively level, close to roads,
and close to MCs. Since MCs are located on the
rivers of the region, these factors unambiguously
concentrate development around water courses.
Water quality and the structure and function of
aquatic ecosystems in this region have been heavily
influenced by massive deforestation at the turn of
the century, followed by decades of agricultural
uses. Our analysis of land-use changes indicates that
these areas will further be effected by shifts toward
residential uses. Conversely, a large portion of up-
land areas on moderate-to-steep slopes are likely to
be retained in a forest cover without buildings.
While occasional timber harvesting is likely, our
models identify large portions of the study areas
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Land Cover Figure 7. Observed ( 1950
and 1990) and predicted
(2030) land-cover classes for
the four study sites (green is
forest and orange is nonfor-
est cover).2030

Little Tennessee River Basin

Cane Creek

Madison

Grayson

where land cover and usage will be relatively stable
in the future.

These findings, along with our land-use projec-
tions, suggest how spatial models such as these
could be used to design development and conserva-
tion strategies that address specific ecological con-
cerns in specific places. For example, in rapidly
developing study areas, it appears that the ecologi-
cal consequences of land-use changes will be most
severe in riparian areas. The potential ecological
benefits of buffering development in this relatively
small portion of the landscape-that is, mitigating
temperature gains, changes in stream chemistry,
and consequent alterations in species diversity-
could be high relative to the area impacted. In
comparison, efforts to maintain connectivity in

upland areas may have relatively low returns if
these areas have fairly stable land-cover conditions.
In this way, modeling human dynamics can identify
where ecological benefits will be relatively scarce or
plentiful. Costs need also to be considered. Because
the value of land is generally much greater in
accessible riparian areas than in upland areas, the
per-acre cost of conservation easements or regula-
tions may be relatively high in these important areas
and therefore more difficult to implement. These
types of cost-benefit trade-offs are a critical part of
designing effective conservation plans. Of course,
development of effective conservation strategies
requires more than just projections of land uses. It
requires meaningful insights into the effects of land
use on ecosystem structure and function. Nonethe-
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Little Tennessee
River Basin

Cane Creek

Madison

Grayson

- Public Land Private Land

Figure 8. Broad land-ownership categories for the four
study sites.

less, landscape models can help focus investigation
on portions of the landscape that are most likely to
change.

Estimates of the land-cover logit models all show
a significant positive effect of neighborhood nonfor-
est cover (NF,,). As a result, we reject the hypoth-
esis of no spatial autocorrelation. Dubin  (1995) has
shown that unaddressed spatial autocorrelation can
be a significant misspecification of the logit maxi-
mum-likelihood function, leading to inconsistent
estimators. We have applied a plausible correction
(using a simple, spatially weighted explanatory
variable) without directly modeling the cause of the
autocorrelation. Clearly, other formulations may be
appropriate, and this defines an issue for future
research.

One of our objectives was to refine the definition
of land use by using building density to approximate
human presence. Incorporation of this layer of data
leads to fundamentally different insights into land-
scape change in the Southern Appalachians. Al-
though all study sites experienced increases in forest
cover between 1950 and 1990, ostensibly reflecting
the reversion of agricultural land to forests, this
apparent transition to a more natural cover masked

significant human impacts revealed by changes in
building densities. In the three study sites experienc-
ing development pressures (LTRB, Cane Creek, and
Madison County), the amount of forest without
buildings declined substantially, while the area of
forest with buildings and the average building den-
sity increased. Observations of land-cover change
alone may prove misleading because they measure
the net outcome of more than one process (in this
case, agricultural decline combined with population
growth.)

These results also show that changes measured at
coarse scales may not reflect change at spatially fine
scales. This effect can be seen especially in Madison
County, where total population actually declined
between 1950 and 1990 (-17.4%) with nearly all
of this change occurring between 1950 and 1960.
The total population of the county was essentially
stable between 1960 and 1990. However, the spatial
distribution of the population clearly changed. The
average building density more than doubled over
this period (from 0.45 to 1 .O), and shifts in building-
density classes were comparable to changes ob-
served in areas with substantial population growth
(LTRB and Cane Creek). These changes in building
densities suggest a shift toward fewer people per
household in addition to a spreading out of resi-
dences within the county (Figure 6). Such a change
is confirmed by data from the US Census Bureau. In
Madison County, persons per household fell 22%,
from 3.17 to 2.48, between 1970 and 1990. In
effect, then, no change in total population masks an
increase in the number and spatial distribution of
households and, therefore, in the area effected by
human presence.

Although composite land-use classes offer im-
provement over land cover alone for explaining
land-use change, they are untested as ecological
units. Additional research is needed to define the
ecological implications of building density and other
measures of human presence. For example, at what
level does building density impede the dispersal of
organisms or reduce forest-interior species? These
kinds of insights are needed to define ecologically
meaningful land-use categories and, more gener-
ally, to understand the effects of urban-rural gradi-
ents on ecosystem structure and function. In addi-
tion, it might be possible to refine our building
categories either by recognizing different types of
buildings (for example, dwellings vs barns vs com-
mercial facilities) or by incorporating altogether
different measures of human presence (for instance,
population density).

While we sought to evaluate land-use change
over a long period, the 40-year time step may have
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proved a limitation of our analysis. We expect that
structural changes in factors such as access (for
example, development of interstate highways) and
agricultural markets (for example, reform of farm
subsidies) may have shifted land-use regimes within
this time frame. Future research should focus not
only on shortening the time step but, more gener-
ally, on defining appropriate temporal and spatial
scales for land-use change analysis.

In spite of these limitations, the forecasting model
developed here was able to explain SOY-89%  of
land cover, 73%-76%  of broad land-use classes, and
68%-75%  of the fine land-use classes in 1990 based
on conditions observed in 1950. These validation
tests, along with the results of significance and
accuracy tests, indicates that these models are pow-
erful tools for explaining observed changes over the
historical period. As is the case with any forecasting
model, however, there is unquantifiable uncer-
tainty regarding a model’s ability to forecast change
beyond this historical period. These models apply
the processes that changed landscapes between
1950 and 1990 to current landscapes. But, just as
changes in access, agricultural markets, and popula-
tion growth altered demands for land over this
40-yea?  period, we could reasonably expect addi-
tional structural changes in the future. Forecasts
necessarily should be viewed with trepidation.

However, in the context of evaluating future
ecological impacts or conservation strategies, we are
not as interested in predicting a specific land use in a
particular place as we are interested in understand-
ing where the relative probability of change is high
and where it is low. Land-use forecasting models
can be used to drive hazard or risk assessments
where land-use maps are linked to ecological impact
models. In this kind of analysis, the focus shifts to
understanding where human activities are most
likely to generate significant ecological conse-
quences. Thie type of hazard analysis could focus
subsequent research and planning in areas that are
the most critical in supporting ecological health.
Linking the spatial dynamics of human populations
to potential ecological impacts defines an important
emphasis for future research.
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