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Abstract: The Teles Pires River basin in Brazil’s center-west has recently expanded agricultural
economic development at the expense of both the Amazon rainforest and Cerrado savannah. We
evaluated these changes occurring in this basin over the last 34 years. Maps were generated to
determine changes in land use classifications between 1986, 1991, 1996, 2000, 2005, 2011, 2015,
and 2020. The supervised classification of Landsat 5 and 8 images used the maximum likelihood
algorithm. Satellite spatial data on land use downloaded from the United States Geological Survey
were validated according to 1477 locations, where our research team categorized land use in the field
during 2020. The growth in agricultural crops (+643%) and pasture (+250%) from 1986 to 2020 were
detrimental to natural areas, such as the rainforest and savannah. The percentage increase in the
agricultural areas between the evaluated years peaked around 1996 and stabilized in 2020 at 40% of
the Teles Pires River basin’s land area. Land use change patterns were related to political/economic
events in Brazil, forest/pasture conversions until 2011, and the change from pasture to crops from
2011 to 2020. There was greater intensity in the changes in the upper Teles Pires River basin toward
the south, which expanded northward over time. Sustainable agricultural intensification is needed in
such stabilized, frontier areas.

Keywords: agricultural frontier; Brazil; land conversion; land use; southern Amazon; supervised
classification; Teles Pires River; territorial dynamics

1. Introduction

Humans historically have dominated their geographical surroundings, interacting,
and modifying it according to their interests. Unfortunately, this often causes degradation of
the natural resources due to the different forms of environmental impacts [1]. An important
example involves changes in land cover, which, when associated with the absence of
conservation practices, generate impacts such as a reduction in water supply [2,3] resulting
from changes in the hydrological cycle [4,5]. In Brazil, this has involved deforestation of
the Amazon rainforest and habitat conversion of the Cerrado savannahs for agricultural
use [6,7]. Natural habitat areas are typically converted to pasture for extensive livestock
(e.g., Bos taurus Nelore beef breed) grazing and/or the export of commodity crops, such as
soybeans (Glycine max L.), maize (Zea mays L.), and cotton (Gossypium sp.). These recent land
use conversions and the resulting agricultural economic development have been driven
by international demand for food and livestock feed [6]. Continued habitat conversions
and/or changes in the climate could make the sole reliance on rain-fed agriculture more
challenging if precipitation continues to decline in the Amazon [8].
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In order to meet the growing needs of humans (e.g., food) and mitigate the environ-
mental impacts of agricultural production by more efficiently using natural resources, it
is essential to adopt planning policies that integrate environmental, social, and economic
aspects [9]. Monitoring changes in land classifications (i.e., classes), as a function of dif-
ferent land uses, has become an effective tool to support land use planning. In particular,
the use of technologies such as remote sensing, which can currently count on a variety of
sensors operating at different scales, allow for the acquisition of information on land use
classifications over large areas at low cost [10,11].

Data resulting from remote sensing can be easily processed using geoprocessing
programs that make it possible to carry out different types of operations to generate
information. In studies that aim to characterize land use and occupation, the application of
the image classification method [12] stands out. This method consists of labeling the image
pixels according to their spectral characteristics, using, for this purpose, mathematical
techniques that perform the pattern recognition resulting in thematic maps [13].

Due to the global importance and recognition for the ecological services it offers, the
Amazon has been monitored for decades using remote sensing and image classification
products. This monitoring has sought to evaluate changes to this rich biome in order to
help implement public policies for Amazon conservation. In a study carried out in the
Colombian Amazon, Landsat images and supervised classification were used to map the
changes in land cover and identify locations affected by deforestation over a period of
sixteen years, between 2000 and 2016 [14]. Other researchers have dedicated themselves to
mapping and monitoring forest changes in the Brazilian Amazon in the state of Pará from
2000 to 2019, using multitemporal remote sensing data and machine learning classifica-
tion [15]. In the upper Teles Pires River basin’s transition zone between the Amazon and
Cerrado biomes, previous research mapped the spatial and temporal dynamics of land use
from 1986 to 2014, using Landsat images and supervised classification. The results showed
an intense reduction in native vegetation as a result of agricultural expansion [16].

Several other studies around the world have already employed remote sensing to
identify the forms of appropriation of spaces and changes in landscapes. Changes in land
use in poor areas of China were mapped between 2013 and 2018 [17]. Another study
monitored land cover changes in a district of India between 1990 and 2010 [18]. Other
studies focus on mapping specific targets, such as that conducted by researchers [19],
who monitored the urban spatial–temporal dynamics in Nagpur, India, between 1991 and
2010. In Brazil, one of the nationwide actions for mapping land cover and land use is the
MapBiomas project, aimed at the conservation of the different Brazilian biomes, which has
generated a historical series of annual maps from an initiative involving a collaborative
network of specialists [20].

Our present study focused on mapping the changes that occurred in the Teles Pires
River basin (Figure 1). The largest part of the Teles Pires River basin is located in the state
of Mato Grosso, Brazil. The Mato Grosso state is characterized by great socioeconomic and
ecological diversity, where the Pantanal, Amazon and Cerrado biomes share space [21].
Both the Amazon and Cerrado biomes are found within the Teles Pires River basin. The
region has been in full economic development mode, driven by industrial agricultural
exports. In the last decade, Mato Grosso has installed large hydroelectric projects, which has
resulted in profound changes to the landscape, pointing to the need to monitor such changes
in view of the possible impacts on the environment. Despite this region’s importance in the
national and international context, the region lacks continuous monitoring of the changes
in land use resulting from agricultural expansion by large farming enterprises. The goals
of our research were to expand the knowledge about the land use dynamics in the region
in order to better manage the water resources and plan economic activities. The objective
of our study was to evaluate the changes in land use in the Teles Pires River basin over a
34-year period from 1986 to 2020.
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2. Using Remotely Sensed Data for Conservation

Despite the current abundance of research that generates information on land occupa-
tion and use, globally, there is still a lack of adequate information that allows for assessing
the intensity of the changes that occur in terms of land use. This makes it impossible to
estimate and evaluate the effects, impacts, or potential expansion of agricultural production
in ecologically diverse biomes [22]. Gradually, this deficiency has been overcome thanks
to the use and improvement of technologies such as remote sensing, which facilitates the
acquisition of information in large areas and allows for the collection of historical data [23].

The longest record of orbital images of the Earth’s surface already covers five decades
and corresponds to the Landsat mission, which is a partnership between the National
Aeronautics and Space Administration (NASA) and the United States Geological Survey
(USGS), having launched the first satellite in 1972, the Landsat 1 [24]. Over the years,
the Landsat mission has outdone itself with the launch of satellites carrying increasingly
innovative sensors. Currently, the Landsat series includes the Landsat 8 and 9 satellites, the
last one having launched in September 2021 [25]. The Landsat data set currently provides a
global basis for monitoring the changes in environments due to the expansion of human
occupation, data that are freely available to the public and open source [24].

Through the use of software and geoprocessing tools, the data obtained through
remote sensing, such as satellite images, can be treated and processed, allowing for the
extraction of information of interest and the generation of products, such as thematic maps.
One of the most used processes in the generation of thematic maps from remote sensing
images is so-called image classification, which can also be distinguished as being either
supervised or unsupervised. The unsupervised classification is characterized by not requir-
ing prior knowledge of the study area, as the algorithm examines the unknown pixels of
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the image and divides them into different classes. Meanwhile, the supervised classification
demands knowledge of the study area, as it is up to the analyst to select the training pixels
representative of each class, so that the algorithm performs the classification [26]. One
of the most popular supervised classification methods used is the maximum likelihood
algorithm [18].

The maximum likelihood algorithm is based on the probability that each pixel in the
image belongs to each of the classes identified by the analyst during training. The maximum
likelihood algorithm then assigns pixels to the class with the highest likelihood of being
in a particular classification [27]. For this, it evaluates the variance and covariance of the
spectral response of the training class when classifying the unknown pixels, generating
accurate results, as it is based on statistical parameters [28].

With rapid technological advancement occurring in this area, several new methodolo-
gies have been developed and applied in satellite image processing [29], such as machine
learning techniques [30], the random forest algorithm [31], neural networks, and others [32].
Even so, classic methods such as maximum likelihood continue to be used due to their easy
access and availability in various software, and when well executed they result in land use
and occupation data of satisfactory accuracy [33].

In order to measure the quality of the information generated in the classification of
images, it is essential to validate the results, identifying the accuracy of the mapping. This
can be easily obtained by comparing a set of classified pixels with terrestrial truth data [12].
The most common way of representing the accuracy of the classification of remote sensing
data has been the use of an error matrix, which is the basis for a series of statistical analyzes,
such as general accuracy and the kappa index [34]. Together, the error matrix and the
kappa index have come to represent the standard way of evaluating the accuracy of image
classification [12]. Following such verification to improve data accuracy, such remotely
sensed data become more reliable for use. Thus, maps resulting from image classification
can be used to follow-up and monitor changes in land use and occupation, especially in
areas threatened by environmental degradation, such as tropical rainforests and savannahs.

In tropical regions, monitoring human intervention in environments is essential, given
the intense pace of the conversion of the natural areas into arable areas. About half of the
world’s remaining tropical rainforests are in Latin America. The tropical rainforests in
both Central America and South America are also experiencing the world’s highest rates of
deforestation, largely driven by large-scale commercial agricultural production [35].

Based on mapping global deforestation footprints between 2001 and 2015 [36], tropical
forests are under increasing threat. This is especially the case in tropical countries, such as
Brazil, with high historical deforestation footprints that have allowed for the production
and export of agricultural commodities, such as cattle, soybeans, coffee, cocoa, and wood,
to other countries. Thus, it is possible to associate spatial patterns of deforestation with
global supply chains [37]. Massive investments have been made to support the production
of export commodities in tropical countries, resulting in high rates of deforestation [38].
This activity requires significant conversion of the land for use. Governments sometimes
see these investments as beneficial, by improving the use of land seen as idle, disregarding
that many of these lands are occupied by traditional peoples and ignoring the ecological
importance of natural systems [38].

3. Materials and Methods
3.1. Study Area

The Teles Pires River basin is located between latitudes 7◦16′47′′ and 14◦55′17′′ south
and longitudes 53◦49′46′′ and 58◦7′58′′ west, occupying a territorial area of 141,524 square
kilometers in the Brazilian states of Mato Grosso and Pará, within the limits of the Legal
Amazon (Figure 1). Integrated into the Amazon hydrographic region, its main river is the
Teles Pires, which together with the Juruena River is responsible for the formation of the
Tapajós River, one of the main tributaries of the right bank of the Amazon River. The wide
latitudinal extension of the basin causes it to have a diversity of environments, allowing for
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easy regional classification into the upper, middle, and lower Teles Pires (Figure 1). The
lower and middle portions of the Teles Pires River basin are characterized by the presence
of the Amazon biome, while the upper Teles Pires is marked by the Cerrado biome. The
predominant climate in the area, according to Köppen’s classification, is Aw tropical climate
with dry winter and rainy summer, present in the entire upper and part of the middle Teles
Pires, while the rest of the basin has an Am humid tropical climate with a short dry season
and more precipitation [39].

3.2. Spatial Data Sources

The area of study was delimited using the ArcGis 10.1 software, the ArcHydro ex-
tension, and the Digital Elevation Model (DEM) from the Brazilian Agricultural Research
Corporation, also known as Embrapa [40]. We used Shuttle Radar Topography Mission
(SRTM) data with a spatial resolution of 90 m and the drainage network from the Brazilian
Institute of Geography and Statistics [41]. The ArcGis spatial data used a continuous
database of the Brazilian territory using a scale of 1:250,000. These were the only spatial
data sources with complete coverage for the region.

The DEM was reconditioned by imposing the drainage pattern by following an auto-
mated ArcHydro Tools algorithm in the ArcGis software (AGREE), a method that deepens
the DEM in order to coincide with the vector hydrography and assists in the hydrological
analyses in areas with low topographic differences [42]. Soon after, the correction of the
depressions was performed and the flow direction was obtained by the eight direction pour
point model method, which assumes that the water flows to one of the eight neighboring
cells according to the greatest slope, used for generating the accumulated flow, and cal-
culation of the upstream cells that drain to each cell of the raster. Spatial data in ArcGis
are either shape or gridded (i.e., raster). The raster drainage network was generated using
the threshold of 250 cells of accumulated flow to define the drainage. The outlet of the
basin was identified, located at the coordinates 7◦20′58′′ south latitude and 58◦7′57′′ west
longitude, and the area was delimited from this point.

3.3. Mapping Land Use

The data used were orbital images from the Thematic Mapper and Operational Land
Imager sensors, Landsat 5 and 8, respectively. These were obtained free of charge as Level
1 products from the Earth Explorer platform of the United States Geological Survey or
USGS [43]. The images are high quality for temporal analysis and have a spatial resolution
of 30 m for both sensors, while the radiometric resolution is 8 bits for the Thematic Mapper
sensor and 16 bits for the Operational Land Imager sensor. The ArcGis software version
10.1 and the ENVI software were used in the processing steps.

In order to characterize the changes in land use gradually, we used an average interval
of five years between the classifications. The factors influencing our choice of years were
the availability and quality of the data and the absence of apparent clouds. This resulted in
the use of data for 1986, 1991, 1996, 2000, 2005, 2011, 2015, and 2020 (Table 1). We used data
from the dry season in the region between the months of May and September, when there
is low cloudiness, which favors the classification of images.

All the images were subjected to conversion from digital number (DN) to reflectance
at the top of the atmosphere using the radiometric calibration module in ENVI and atmo-
spheric correction with the FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes) module, based on the MODTRAN (Moderate Resolution Atmospheric Trans-
mission) radiation transfer model, with the application of the tropical atmospheric model,
resulting in surface reflectance values. Thereafter, all the processing steps were carried out
in ArcGis using the spectral bands of red, near infrared, and medium infrared (measured
in micrometers or µm = 1 × 10−9 km), corresponding to bands 3 (0.63–0.69 µm), 4 (0.76–
0.90 µm), and 5 (1.55–1.75 µm) of the Thematic Mapper (TM) sensor and 4 (0.64–0.67 µm), 5
(0.85–0.88 µm), and 6 (1.57–1.65 µm) of the Operational Land Imager (OLI) sensor. Mosaics
were created and the red, green, blue (RGB) color composition was generated using the
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combination of bands 5, 4, and 3 for the TM, and 6, 5, and 4 for the OLI, which facilitates
the interpretation of images, favoring the identification of vegetated areas [44].

Table 1. Orbit/point and day/month of images used for mapping land use and occupation in the
Teles Pires River watershed.

Orbit/Point
Year

1986 1991 1996 2000 2005 2011 2015 2020

225/70 29 June 29 July 11 Aug. 21 July 17 June 20 July 16 Aug. 10 June

226/66 8 Sept. 18 June 1 July 28 July 10 July 12 Aug. 7 Aug. 3 July

226/67 8 Sept. 20 July 1 July 10 June 10 July 12 Aug. 7 Aug. 3 July

226/68 7 Aug. 20 July 1 July 10 June 26 July 12 Aug. 7 Aug. 3 July

226/69 7 Aug. 20 July 30 May 10 June 26 July 13 Sept. 7 Aug. 3 July

226/70 7 Aug. 20 July 1 July 10 June 26 July 11 July 7 Aug. 3 July

227/66 27 June 27 July 6 June 17 June 17 July 18 July 14 Aug. 10 July

227/67 27 June 27 July 6 June 17 June 17 July 3 Aug. 14 Aug. 10 July

227/68 27 June 27 July 6 June 1 June 17 July 3 Aug. 14 Aug. 10 July

227/69 27 June 27 July 6 June 1 June 17 July 3 Aug. 14 Aug. 10 July

228/65 5 Aug. 18 July 15 July 10 July 8 July 25 July 5 Aug. 17 July

228/66 5 Aug. 18 July 15 July 26 July 8 July 25 July 5 Aug. 17 July

228/67 5 Aug. 18 July 31 July 26 July 8 July 25 July 5 Aug. 15 June

229/65 28 Aug. 26 Aug. 23 Aug. 17 July 15 July 1 Aug. 12 Aug. 22 June

Sensor TM TM TM TM TM TM OLI OLI

TM = Thematic Mapper sensor; OLI = Operational Land Imager sensor.

Supervised classification was then used for identifying the classes present in the area
and selecting representative samples, which consisted of the training phase of the classifier.
At this stage, techniques for the visual interpretation of the images, based on elements
such as color, texture, shape, and pattern, were employed, creating interpretation keys for
the features [45]. In order to obtain better results in view of the variability of the spectral
responses identified for some classes, resulting from the different stages in the development
of the vegetation or crops, these classes were divided into subclasses in the training and
classification steps, and the sample sets by classes/subclasses had a value greater than
1000 pixels.

The algorithm adopted for the classification was the maximum likelihood, which
among the conventional classifiers is efficient in the classification of medium-resolution
images [18,28]. From the information determined during training, the algorithm calculates
the probability of the pixels of the image belonging to each class and assigns them to the
one with the highest probability [27]. After classification, the subclasses were grouped,
resulting in the classes summarized in Table 2.

The classifications were subjected to post-processing with the application of a filter
that eliminates isolated pixels on the map, replacing their values based on contiguous
neighbors, using the majority filter tool. The files were finally converted into vector format
and the areas occupied by each class/year were calculated. In order to check for regional
differences, the data were segmented based on the water planning units established by the
National Water Agency (ANA), which divides the basin into the upper, middle, and lower
Teles Pires [46]. To detect the area conversions that occurred, a method for comparing
different classifications was used, based on the area of polygons in 1986 and 2020. Using
the intersection tool in the ArcGis software, the two maps were crossed (1986 and 2020),
making it possible to identify the areas that remained in the same land use and occupation
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class during the period, and the areas that were converted to other classes. Such data were
compiled using cross tabulation resulting in an area conversion matrix, similar to that
produced by [17]. The area conversion matrix was used to identify the land use classes
with the most significant modifications. Thus, changes in land use were compared between
all the mapped time periods.

Table 2. Description of the land use classes mapped for the Teles Pires River basin in Brazil.

Land Use Classes Description

Water Surfaces covered by water, encompassing the water bodies of the basin.

Forest Area of tree forest vegetation with high density of trees.

Cerrado Area of vegetation with predominance of shrub stratum, showing
variations with areas of low-density forest formation.

Pasture Areas covered by natural or planted perennial forage intended for
cattle grazing.

Crops Areas intended for the cultivation of food crops, fibers, and
agribusiness commodities.

Burned area Surfaces that have undergone recent burning processes, with evidence
of the affected areas.

Other area
Formed by the junction of land occupation classes with reduced spatial
cover in the basin, including urban areas, mining areas, sandbanks, and
rock formations.

3.4. Mapping Validation

Information from ground truth was acquired to estimate the accuracy of the classifica-
tions. During field expeditions in 2020, 1477 points distributed throughout the area were
collected (Figure 2), specifically 42 for water, 350 for forest, 77 representing Cerrado, 621
for pasture, 323 in crops, and 64 others. The 2020 images used in the classification were
dated between 10 June and 17 July 2020, and field visits were carried out between 26 July
and 28 September 2020.

In order to assess the mapping accuracy of all classified years and obtain better
distribution of samples and more significant sample sets, samples were also selected
through visual identification using high-resolution historical images from the Google Earth
platform and Landsat images with dates close to those of the classifications. For the years
1986, 1991, and 1996, due to the absence of high-resolution images, sampling was performed
exclusively with Landsat images. To ensure total independence in the validation, samples
coinciding with the areas used in the classify training were not used.

Each point collected was associated with the class present at the site and its geographic
coordinates, and these data were compared with those of the corresponding classifications,
enabling the construction of error matrices. These were then used to calculate the overall,
producer, and user accuracy indices [34], and the kappa index [47].

Using the same sample set of points created in the previous step, an agreement analysis
was used between the classification results and the data set produced by the MapBiomas
project [48]. Confusion matrices were based on the methodology from Shimabukuro et al.
2020 [31]. This type of matrix shows the classification accuracy of remotely sensed spatial
data (e.g., MapBiomas) compared to ground truth classification from our ground surveys
(Figure 2), as well as from other geographic and spatial sources. Differences in legend
between the mapping in this study and MapBiomas were adjusted according to Table 3.
As there is no class corresponding to the burned area in MapBiomas, samples from this
category were not used in the analysis. The area values of the MapBiomas mapping
per class were also quantified for comparison with the areas obtained in the mapping of
this study.
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Table 3. Legend adjustments of classes mapped by the MapBiomas project with those mapped in
this study.

Classification MapBiomas

Water River, lake, and ocean.
Forest Forest training and silviculture.

Cerrado Savanna formation, grassland formation, and other non-forest
natural formations.

Pasture Pasture.

Crops Crops, temporary crops, sugarcane, soybeans, other temporary
crops, and cotton.

Burned area -
Other area Urbanized area, other non-vegetated areas, and mining.

4. Results

The Teles Pires River basin has an area of 141,524 square kilometers (km2), of which
34,453 km2 corresponds to the region of the upper Teles Pires, 55,890 km2 to the middle
Teles Pires, and 51,181 km2 to the lower Teles Pires. These regions represent 24.34%, 39.49%,
and 36.16% of the basin, respectively. Figures 3 and A1 show the maps obtained in the
classification of land use for the basin between 1986 and 2020. The results of the accuracy
indices generated in the validation step are shown in Tables 4, 5, A1 and A2.
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Table 4. Results of the accuracy indices of land use classifications for all mapped years for Brazil’s
Teles Pires River basin based on Google Earth and Landsat data.

1986 1991 1996 2000 2005 2011 2015 2020

Kappa Index 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97

Overall Accuracy (%) 98.43 97.97 98.73 98.03 98.24 98.49 98.04 98.46

Producer Accuracy (%)
Water 100 100 100 100 100 100 100 100
Forest 100 100 100 100 100 99.99 100 99.98
Cerrado 93.27 94.46 93.44 91.06 89.93 92.56 91.97 95.96
Pasture 98.58 98.65 99.21 97.55 98.29 98.71 97.90 97.67
Crops 99.46 93.09 98.45 99.16 97.79 98.53 97.06 97.30
Burned area 100 100 100 99.93 100 100 99.57 100
Other area 75.66 79.45 86.67 71.70 79.14 74.60 74.72 83.50

User Accuracy (%)
Water 100 100 100 100 100 100 100 100
Forest 98.75 98.88 98.77 98.18 98.54 98.81 98.77 99.18
Cerrado 100 100 100 100 100 100 100 99.95
Pasture 96.23 92.73 97.84 98.65 97.64 98.78 95.45 97.72
Crops 89.94 92.62 92.39 93.23 95.14 93.22 94.76 92.51
Burned area 100 100 100 100 100 100 100 100
Other area 100 100 100 100 100 100 100 100

Table 5. Confusion matrix between classification and field data for the year 2020.

2020
Earthly Truth

Water Forest Cerrado Pasture Crops Burned Area Other Area Total UA (%)

Water 42 0 0 0 0 0 0 42 100.00
Forest 0 346 7 1 1 0 0 355 97.46
Cerrado 0 2 59 0 0 0 0 61 96.72
Pasture 0 0 7 545 33 0 0 585 93.16
Crops 0 2 4 75 289 0 24 394 73.35
Burned area 0 0 0 0 0 0 0 0 -
Other area 0 0 0 0 0 0 40 40 100.00
Total 42 350 77 621 323 0 64 1477

PA (%) 100.00 98.86 76.62 87.76 89.47 - 62.50
Overall
accuracy (%): 89.44 Kappa Index: 0.85

PA = producer accuracy; UA = user accuracy.

The overall accuracy of the classifications based on Google Earth and Landsat data
varied between 97.97 and 98.73%, while the kappa index values were between 0.96 and 0.97
(Table 4), classified as excellent according to the evaluation proposed by [49]. The general
accuracy obtained for 2020, considering only the data collected in the field, was 89.44%,
and the kappa index was 0.85 (Table 5), still considered excellent for being in the range of
0.80 and 1 [49]. The agreement between the mapping generated in this study and that of
the MapBiomas project also had a satisfactory result, with overall accuracy between 91.60
and 96.56%, and a kappa index between 0.83 and 0.94 (Tables A1 and A2).

In general, producer accuracy was superior for the classifications for natural areas,
such as water and forest as well as for burned areas, indicating that they are more likely to
be correctly classified. The user accuracy was higher for the classes for water, the Cerrado
biome, burned areas, and other areas, indicating higher probability of the classified areas
actually representing these categories in the field. Table 6 presents the areas for land use and
occupation obtained from these classifications, in addition to those for crops and pasture.
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Changes over time for these classifications are shown in Figure 4 (1986, 1991, 2005, and
2020) and Figure A2 (1996, 2000, 2011, and 2015), respectively.

Table 6. Areas corresponding to the classes of land use and occupation in Brazil’s Teles Pires River
basin mapped between 1986 and 2020.

Land Use Classes 1986 1991 1996 2000 2005 2011 2015 2020
Percent
Change

1986–2020

Water
km2 686.6 762.6 747.1 718.8 724.7 737.2 924.8 1159.1

68.82% of total 0.49 0.54 0.53 0.51 0.51 0.52 0.65 0.82
% change - 11.07 −2.03 −3.79 0.82 1.73 25.45 25.34

Forest
km2 114,444.0 111,470.4 100,091.7 96,777.9 83,218.4 80,710.7 79,330.5 78,979.0

−30.99% of total 80.87 78.77 70.73 68.39 58.81 57.03 56.06 55.81
% change - −2.60 −10.21 −3.31 −14.01 −3.01 −1.71 −0.44

Cerrado
km2 13,069.5 11,923.2 11,416.0 8381.7 7927.5 5805.7 5196.4 5356.1

−59.02% of total 9.24 8.43 8.07 5.92 5.60 4.10 3.67 3.78
% change - −8.77 −4.25 −26.58 −5.42 −26.77 −10.49 3.07

Pasture
km2 8839.7 11,658.0 20,248.2 23,533.1 32,385.7 34,423.2 34,643.2 30,988.6

250.56% of total 6.25 8.24 14.31 16.63 22.89 24.33 24.48 21.90
% change - 31.88 73.69 16.22 37.62 6.29 0.64 −10.55

Crops
km2 3244.0 4098.7 8150.7 11,194.6 16,177.6 19,201.6 20,787.8 24,105.9

643.09% of total 2.29 2.90 5.76 7.91 11.43 13.57 14.69 17.03
% change - 26.35 98.86 37.35 44.51 18.69 8.26 15.96

Burned
area

km2 708.4 902.0 509.9 406.2 412.3 145.6 125.9 163.8
−76.87% of total 0.50 0.64 0.36 0.29 0.29 0.10 0.09 0.12

% change - 27.33 −43.47 −20.34 1.50 −64.69 −13.53 30.10

Other
area

km2 522.8 699.4 350.0 502.5 667.2 489.4 505.1 757.9
44.98% 0.37 0.49 0.25 0.36 0.47 0.35 0.36 0.54

% change - 33.78 −49.96 43.57 32.78 −26.65 3.21 50.05
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Our land use classifications when compared to the ground truth data we collected
had a relatively lower accuracy (289/394 = 73.35%) for crops compared to other land use
categories, which all had >93% accuracy (Table 5). The times that we misclassified crops as
something else was highest for the pasture (75), other area (24), Cerrado (4), and forest (2),
land use classes (Table 5). Our land use classifications using Landsat data in 2020 for crops
was (3280/3463 = 94.72%) (Table A2). Misclassification as something other than crops were
for other areas (143), and pasture (38). Misclassification of crops with some other land use
ranged from 89.39% in 1986 (Table A1) to 95.14% in 2005 (Table A2).

Our results indicated growth of areas occupied by agricultural areas (i.e., pasture and
crops), which led to the reduction of native vegetation (i.e., forest and Cerrado savannah)
with recent stabilization to ~60% native vegetation and ~40% crops for the Teles Pires River
basin (Figure 5a). Figure 5b presents the changes between the time periods evaluated. The
percent growth in agricultural areas increased drastically by 80% from 1991 to 1996, and
then by 40% from 2000 to 2005, while more recently declining by −0.6% from 2015 to 2020.
This recent minor decline in total agricultural area is driven by the−10.55% drop in pasture,
which takes up more land area than crops which actually increased from 2015 to 2020
(Table 6). The percentage reduction in native vegetation has been less drastic, with greater
declines from 1991 to 1996 (−9.6%) and from 2000 to 2005 (−13.3%), with stabilization to
around zero with −0.2% growth from 2015 to 2020 (Figure 5b). This has predominantly
been driven by reductions in forest, since the Cerrado increased slightly by 3.05% from 2015
to 2020 (Table 6). Between 2015 and 2020, both declines in the increase in agricultural areas
and the decrease in native vegetation to near 0% (Figure 5b) does not mean that there was
no expansion of agriculture or deforestation. Rather this indicates a relative stabilization of
the recent rates of agricultural expansion and deforestation.
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Figure 5. Native vegetation and agricultural (a) area, and (b) percent change from the previous time
period, and water, other, and burned (c) areas, and (d) percent change from previous time period, in
Brazil’s Teles Pires River basin from 1986 to 2020.

The regionalization of land use and occupation show differences in the occupation
patterns of the different parts of the Teles Pires River basin (Figure 6). Forest was the
predominant class in the basin in both years, but showed great variation of the area in
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the period, from 114,400 to 78,900 km2. More than 80% of the entire mapped forest was
located in the regions of the lower and middle Teles Pires, which in 1986 had forest areas
corresponding to 49,200 and 49,300 km2, respectively. The lower Teles Pires had the smallest
decline in forest areas, still showing about 43,300 km2 in 2020. In the upper Teles Pires,
forests share the space with areas of the Cerrado, which also corresponds to the indigenous
environment of this sub-region.
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In the upper Teles Pires, forest areas showed variation between 15,700 and 7700 square
kilometers (km2) of occupied area during the period, while the Cerrado areas varied
between 13,000 and 5300 km2, the latter represented the class with the greatest percentage
reduction in our study. Considering the forest and Cerrado classes together, in the upper
Teles Pires, there was an area variation from 28,800 to 13,000 km2 between 1986 and 2020,
corresponding to 84% and 38% of the region, respectively. This was the part of the Teles
Pires River basin with the lowest percentage of natural vegetation in 2020.

Crops was the land use class with the greatest growth in the period. In 1986, it
occupied about 2% of the basin and increased to about 16% in 2020, from 3200 to 24,100 km2

of the area. Most of the area mapped as agriculture is concentrated in the upper Teles Pires,
a region that in 2020 was more than 70% agriculture. Crops already occupy approximately
50% of the upper Teles Pires. In the middle Teles Pires, crops have increased, occupying
about 10% of the region in 2020, whereas in the lower Teles Pires crops are less than 0.5% of
the land area (Figure 6). Pasture represents the predominant form of agricultural land use
in the basin, covering more than 8000 km2 in 1986, corresponding to 6% of the total area of
the basin. Pastures occupied 31,000 km2 in 2020, 22% of the land area, decreasing from the
peak values of 32,385.7 and 34,643.2 km2 that it occupied between 2005 and 2015 (Table 6).
It is in the middle Teles Pires that most of the pastures mapped are concentrated, with more
than 20,000 km2 of pasture areas in 2020, equivalent to 37% of the land area in this region.

Water also increased between 2011 and 2020, from 737 to 1159 square kilometers, a 57%
growth in surface area over this 9-year period (Figure 5c). The percentage increase from
one time period to the next was more variable for other area and burned area (Figure 5d).
Formed by the junction between areas of minority territorial occupation, the classifica-
tion of other area also showed an increase, primarily from the growth of urban areas in
23 municipalities within the basin. Mining areas were mostly located on the banks of large
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tributaries of the Teles Pires River, especially in the middle portion of the basin. Burned
areas could not be analyzed. Mapping burned areas requires consideration of the temporal
distribution of wildfires, using images with dates that correspond to the end of the wildfire
season taking place during the dry season, with 80 to 90% of fires occurring between the
months of June and October [50].

The area conversions that occurred between land use classes were detected using a
method for comparing different maps, based on the classifications of 1986 and 2020, and
then the area conversion matrix presented in Table 7 was generated. This made it possible
to identify the losses experienced by each of the classes, as well as the allocation classes of
these areas. In the matrix, the values in the diagonal cells indicate the area that remained in
the same class of land use and occupation between 1986 and 2020, while the other values
indicate the changes that occurred in the area. The rows in Table 7 identify the losses for
each land use class, while the columns correspond to the gains and their origin.

Table 7. Matrix of conversion of areas in square kilometers (km2) for land use classifications in the
Teles Pires River basin between 1986 and 2020.

Columns = Gains for Each Class between 1986 and 2020

Class Water Forest Cerrado Pasture Crops Burned
Area

Other
Area Total Losses

(1986–2020)

R
ow

s
=

Lo
ss

es
fo

r
ea

ch
cl

as
s

be
tw

ee
n

19
86

an
d

20
20

Water 523.50 145.76 4.04 4.29 2.00 0.82 6.11 686.52 163.03

Forest 537.86 76,550.19 925.63 23,232.59 12,694.87 61.91 421.31 114,424.40 37,874.17

Cerrado 26.89 1012.66 4011.00 2081.09 5822.54 87.63 20.17 13,061.98 9050.97

Pasture 40.20 1132.88 195.12 5055.31 2296.68 8.63 108.04 8836.86 3781.55

Crops 4.57 21.85 131.03 245.18 2812.59 2.99 24.41 3242.62 430.04

Burned area 10.49 33.88 85.85 167.17 404.29 1.55 4.93 708.16 706.61

Other area 15.56 74.18 1.10 199.58 59.03 0.30 172.71 522.46 349.76

Total 1159.07 78,971.40 5353.77 30,985.21 24,092.00 163.83 757.68

Gains
(1986–2020) 635.57 2421.21 1342.77 25,929.90 21,279.41 162.28 584.98

Bold numbers on the diagonal indicate the area in each class that was maintained in 1986 and 2020.

The conversion matrix makes it evident that the greatest losses of Cerrado and forest
areas resulted from their conversion to crops and pasture. The forest had the highest loss of
37,900 km2, where 23,200 km2 was converted to pasture, and 12,700 km2 transitioned to
crops. Forest losses were also recorded due to the conversion to water. The Cerrado had the
highest proportion of losses compared to the pre-existing area, with 69% being converted
to other uses, representing 9000 km2 of the lost area, of which 5800 km2 was converted
to crops and 2100 km2 was opened to pasture. Losses of pasture area were also recorded
during this period (1986 to 2020), and these were mainly due to the conversion to crops. As
the main area conversions identified in the basin were from forest to crops (F/CP), forest to
pasture (F/P), Cerrado to crops (C/CP), Cerrado to pasture (C/P), and pasture to crops
(P/CP), these conversions were compared for all the yearly intervals mapped (Figure 7).

Forest areas showed greater conversion to pasture for all the evaluated time periods,
with higher values recorded between 2000 and 2005, when more than 10,000 km2 was
converted. This period was also responsible for the greatest conversion of forest into
crops. The replacement of the Cerrado areas with pasture and crops varied between the
periods. From 1986 to 1991 and from 2000 to 2015, the conversion of Cerrado to pasture
was higher, whereas from 1991 to 2000 the conversion of Cerrado to crops was higher, with
the peak conversion recorded between 1991 and 1996. The dynamics of pasture conversion
to crops was characterized by progressive growth, representing the most significant type of
conversion in more recent periods.
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Figure 7. Conversion of areas between forest (F), pasture (P), crops (CP), and Cerrado (C) land use
classes between the years mapped in the Teles Pires River basin.

Figure 8 shows the values of the conversion of pasture to crops over the years, mapped
for all three sub-regions of the Teles Pires River basin. In the upper Teles Pires, this form of
conversion from pasture to crops increased, peaking between 2000 and 2005, when about
53% of the pastures in the region were converted to crops. This type of land use conversion
subsequently decreased. In the middle Teles Pires, the conversion of pastures to crops has
increased, with a conversion of 3900 km2 recorded between 2015 and 2020, representing
16% of the pre-existing pastures in 2015. In the lower Teles Pires, this type of conversion is
still a recent phenomenon.
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5. Discussion
5.1. Potential Misclassifications and Comparisons to Previous Studies

The occupation of states belonging to the Legal Amazon was historically marked by
policies to encourage land occupation [51]. This occurred through a colonization model that
led to disorderly occupation of the region, contributing to high rates of deforestation [52].
In our study of the Teles Pires River basin, which is located in the states of Mato Grosso
and Pará, our results indicate a significant reduction in natural areas between 1986 and
2020, a period marked by intense occupation of the region. One of the greatest challenges
encountered during the study is the presence of Cerrado and transition areas, which results
in difficulties in the mapping of these areas due to the different plant physiognomies and
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the natural dynamics shown by this classification, leading to varied spectral responses,
which hinders the correct mapping of these features [53]. This is demonstrated by the
omission of significant areas of the Cerrado, erroneously classified as forest.

Another class that also had areas omitted during the classification of images was
the other land use class, which was confused with crops and pasture. The other class
encompassed categories of territorial occupation that were spatially limited and had mostly
heterogeneous spectral response, such as urban and mining areas. The maximum likelihood
classifier assumes that the training data are representative and normally distributed, but
highly heterogeneous response classes do not have this type of data distribution, leading
to low efficacy of the classification. This is one of the main limitations of the classification
method we adopted [54].

When comparing the data obtained in the present study with the areas mapped by
the MapBiomas project’s collection 4, for the Teles Pires River basin area, similar classes
were identified and some of these showed very similar results, corroborating our results.
Considering the forest cover classes of MapBiomas, values between 116,100 and 79,200 km2

were found for the basin area for 1986 and 2015, respectively. Values very close to those
found in our study were also documented by MapBiomas for the years 1991, 1996, 2011,
and 2015. The areas of crops, represented in the MapBiomas by three categories ((1) Pasture,
(2) Annual crops, and (3) Perennial crops), ranged from 3 to 14% between 1986 and 2015, and
the percentages of pasture varied between 6 and 24% between 1986 and 2015, respectively.
The areas occupied by water in the Teles Pires River basin, according to MapBiomas data,
were between 0.5% and 0.6% between 1986 and 2015. These values are consistent with
our results.

In addition to pointing out the accelerated decline of the natural areas in the basin, our
research shows that most of the area losses have been occurring in the upper and middle
regions of the Teles Pires, which are most impacted by human occupation. Meanwhile,
the lower Teles Pires still conserves much of its natural areas and stands out for covering
protected areas corresponding to portions of the Juruena National Park, and Munduruku
and Kayabi indigenous lands. This highlights the role of protected areas in curbing defor-
estation in the Legal Amazon [55,56]. The greatest losses of natural area were recorded in
the upper Teles Pires, giving the region the status of strongly altered area, due to the high
percentage of the area that is already suffering from deforestation [57].

The Teles Pires River basin has more significant losses of natural areas to the south,
upper Teles Pires, which evolve in the north direction, toward the middle and lower Teles
Pires. Other researchers [58] have already reported the occurrence of this phenomenon in
the region where the changes caused by deforestation expand from south to north in the
state of Mato Grosso, destroying areas of primary vegetation for agricultural production in
the central areas of the state and for livestock farming to the north.

Crops currently represents the predominant land use in the upper Teles Pires. This is
consistent with [16], who found that 47.8% of the land area in the region was for agricultural
use in 2014. The middle part of the basin is characterized by wide anthropic occupation
of the areas by pasture. Livestock farming was the primary driver of deforestation in the
municipality of Paranaíta, with an area corresponding to 6445.05 km2, located in the Teles
Pires River basin between the middle and lower portions, with 32.73% of the municipality
occupied by pasture in 2016 [52]. This result is similar to the pattern found in the middle
Teles Pires region in the present study.

The significant growth of the areas occupied by water observed in the basin can
be explained by the construction of four large dams for the installation of hydroelectric
power plants (HPPs) in the course of the Teles Pires River in recent years. This has created
lakes upstream of the Teles Pires, São Manoel, Colíder, and Sinop HPPs, built between
2011 and 2020. The installation of these HPPs results in an increase in water surfaces and
generally also contributes to the reduction of native vegetation [59]. Native vegetation
was suppressed in the Teles Pires River basin during the installation of the Teles Pires
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HPP between the municipalities of Paranaíta, Mato Grosso, and Jacareacanga, Pará, with
negative impacts such as deforestation and fragmentation of the areas [52].

The construction of dams in the Amazon generates impacts that can spread on a local,
regional, and global scale. Dams modify the natural flow of the watercourse, changing
upstream environments from lotic to lentic, which affects water quality and the transport of
sediments and nutrients [60]. These changes can reduce local biodiversity, being especially
harmful to migratory and endemic aquatic species, and favoring generalist species [61].
The impacts of dams go far beyond directly influencing rivers. Sometimes dams displaced
people to make way for the development and this can increase deforestation from the
opening of new roads [62]. Dams with large hydroelectric plants located in tropical regions
can also generate significant emissions of greenhouse gases, such as carbon dioxide and
methane [63].

As for the conversion of areas in the basin, there is a clear, intense replacement of
natural, Cerrado and forest areas with agricultural and pasture areas, which have been
pointed out as the main drivers of deforestation in the region for a long time, both by
direct conversion and indirect conversion through the displacement of the forms of land
use [64–66]. The Cerrado, identified in this study as the class with the highest proportion of
area losses, has had its destruction documented for years [67,68]. The Cerrado is the most
threatened biome in Brazil, with deforestation rates higher than those of the Amazon [69,70],
due to more scarce protection policies [70]. In addition to the high losses of natural
areas, another evident phenomenon of the conversion in the Teles Pires River basin is the
conversion of pastures, resulting from their transformation into agricultural areas. This
occurrence in the state of Mato Grosso has also been reported by other researchers [69,71].

Our results suggest that more ground truthing is needed to confirm whether the
misclassification of crops is as prevalent in other areas in Brazil outside of the Teles Pires
River basin. Improved ground truthing using real-world data collected in the field is clearly
needed since our land use classifications using Landsat data from 2020 had a much greater
classification accuracy for crops at 94.72% when compared to MapBiomas (Table A2),
versus only 73.35% accuracy when validating against ground truth data collected in the
field (Table 5). While MapBiomas is annually produced, other land use data sets, such
as TerraClass which is released biennially, may be able to distinguish more accurately
between forest and successional stages of forest regrowth, as well as between agriculture
and pasture [20]. Thus, TerraClass could be used for future validations.

5.2. Agricultural Development Policies and Future Sustainable Intensification

In the Brazilian Legal Amazon, deforestation rates have followed the political and
economic scenario, and the results found here reflect this pattern. For instance, high
conversion of forest areas were recorded between 1991 and 1996, which may have been
associated with high deforestation rates recorded in the Amazon after the implementation
of the Real Plan in 1994 [72]. Peak deforestation occurred between 2000 and 2005, which
may be associated with the increase in prices of agricultural commodities, especially
soybean [73]. In this context, policies to reduce deforestation, such as changes made to the
Forest Code [74], also stand out, and more recently deforestation rates of the Legal Amazon
have slowed due to policies to combat deforestation [65].

In the Teles Pires River basin, high values of forest conversion to crops were recorded
between 1991 and 2005, with a peak recorded in the last five years of this period. Between
2001 and 2006, soybean plantations expanded in the Amazon and record deforestation
rates were found, with the occurrence of direct conversion of forests to agricultural pro-
duction [68]. The subsequent reduction in this conversion is associated with the Soy
Moratorium, an agreement signed aimed at reducing deforestation caused by the expan-
sion of soybeans in the Brazilian Amazon. Launched in 2006, the Soy Moratorium involved
civil society organizations and companies linked to the soybean industry committing to
not buying soybean grown on deforested land after July 2006 [75,76]. This triggered the
expansion of soybean production to pasture areas, which originated from previously de-
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forested areas [70]. Our results show that in the Teles Pires River basin, the conversion of
pastures to crops increased, especially in the middle part of the basin since the mid-1990s,
with higher conversion rates recorded after 2005, corresponding to the period following
the adoption of the Soy Moratorium.

It is more common for agricultural production to expand through the conversion of
pastures, with the establishment of these pastures to newly deforested areas [76]. Thus,
agricultural expansion of Brazil’s beef industry, historically used for holding claim to
land, has indirectly caused deforestation [68]. This has occurred in the Teles Pires River
basin, where pastures continue to expand through the occupation of natural areas. When
analyzing changes in land use and occupation between 1986 and 2014 in the upper Teles
Pires, [16] reported this pattern of replacement of natural areas first with pastures and then
with crops, which corroborates the occurrence of the high values of pasture conversion to
crops found in our study. Such pasture to crops conversions may be even greater, since
the interval between mapped years may have been insufficient to portray such dynamics.
It is worth pointing out that in this region, commodity cropping is already the dominant
land use, covering about half of the region’s total area in 2020, while pasture areas have
declined. Based on the high percentages of pasture conversion to crops found in the upper
Teles Pires region, this type of conversion tends to expand in the north direction of the
basin, to the middle and lower Teles Pires regions, where there is a large number of pasture
areas available for conversion.

The prevalence of conversions of areas of natural vegetation to pasture and agriculture
can cause changes in soil cover resulting in potential negative environmental impacts, such
as soil degradation and changes to the physical properties of the soil [69,77,78], as well as
changes in water availability and quality [56,79,80]. Therefore, the need to evaluate the
occurrence of such impacts in the Teles Pires River basin is evident. Improved organization
of production and optimization of the use of the natural resources can improve economic
development of the Mato Grosso state in Brazil, while adopting better management prac-
tices to help conserve river basins. These practices include sustainable intensification
strategies for Brazil’s beef and commodity crop industries to increase production on an
agricultural land base that has stabilized (Figure 5a). Mato Grosso’s beef production can
potentially increase on the same pasture area by supplementing pasture with grain, re-
seeding degraded pastures [81], integrating cattle with crops [82], and reducing the time
to slaughter [83]. Increasing commodity crop productivity can be accomplished by better
hybrid development, especially for maize versus soybeans [84], as well as irrigation during
the dry season, to allow for three cropping seasons per year compared to the current two
seasons [85].

5.3. Policy Implications

Since deforestation is the main threat to biodiversity, mapping and quantifying changes
in land use and occupation is necessary for understanding the dynamics of the landscape
to adequately manage development through improved decision-making [18]. Thus, re-
motely sensed satellite data and maps developed over time can help public policy makers
identify critical locations and potential environmental fragility and where efforts to contain
deforestation should be prioritized [86]. Only through efficient land governance will it
be possible to reduce deforestation in areas such as the Amazon [87]. Such governance
must encompass rules and processes that inform decision makers about land use and
control, how decisions are implemented, and how antagonistic interests in land use can
be resolved. It is worth highlighting the importance of understanding the link between
deforestation and global food supply chains in order to create better regulatory policies to
protect tropical forests in biodiversity hotspots [36]. The conservation of tropical forests
requires comprehensive and long-term solutions, understanding potential socio-ecological
trade-offs, and ensuring a balance between land use, environmental goals, and sustainable
development [38].
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6. Conclusions

Agriculture (e.g., commodity crops) has been the classification with greatest growth
in the Teles Pires River basin and, despite the current policies to curb deforestation, it
continues to expand by incorporating anthropic areas already consolidated, through the
conversion of pasture areas, which has led to their displacement to new areas, maintaining
the continuity of deforestation in the basin, even if at lower rates. High values of direct
conversion of natural areas to crops were recorded until the year 2005, from which this type
of conversion decreased and the growth of agricultural areas through the conversion of
pastures began to prevail. In recent years, the middle Teles Pires has stood out for having
high occurrences of this type of conversion.

The changes that occurred in the Teles Pires River basin may be related to the expansion
of areas for crops and pasture, while the form and intensity of area conversions between
the analyzed years accompanied regional trends, denoting the strong influence of Brazil’s
economic and political dynamics. The different sub-regions of the basin have experienced
different stages of land conversion, with the upper Teles Pires toward the south of the basin,
showing a higher degree of anthropic alteration. This conversion has expanded northwards
over time. The northernmost part of the basin, the lower Teles Pires, continues to have
the highest percentage of natural areas. Current land use is characterized by commodity
agriculture in the upper Teles Pires, pasture in the middle Teles Pires, and native forest in
the lower Teles Pires. The construction of infrastructure for implementing hydroelectric
projects along the course of the Teles Pires River in the last decade has also contributed to
the reduction of natural areas in this river basin.
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Figure A1. Maps of land use in the Teles Pires River basin during 1996, 2000, 2011, and 2015.
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Table A1. Confusion matrix between the mapping in this article and the MapBiomas project for the
years 1986, 1991, 1996, and 2000.

MapBiomas

1986 Water Forest Cerrado Pasture Crops Other area Total UA (%)

Water 1419 0 0 0 0 0 1419 100.00
Forest 0 20,023 12 0 0 0 20,035 99.94

Cerrado 0 1281 2199 0 0 0 3480 63.19
Pasture 0 0 3 1455 8 44 1510 96.36
Crops 0 0 0 26 1475 149 1650 89.39

Other area 21 0 22 159 28 373 603 61.86
Total 1440 21,304 2236 1640 1511 566 28,697

PA (%) 98.54 93.99 98.35 88.72 97.62 65.90
Overall accuracy (%): 93.89 Kappa Index: 0.87

1991 Water Forest Cerrado Pasture Crops Other area Total UA (%)

Water 1870 1 0 0 0 0 1871 99.95
Forest 0 18,678 5 0 0 0 18,683 99.97

Cerrado 0 1120 2461 0 0 0 3581 68.72
Pasture 0 0 0 3087 216 12 3315 93.12
Crops 0 0 0 45 2939 158 3142 93.54

Other area 9 0 42 433 12 335 831 40.31
Total 1879 19,799 2508 3565 3167 505 31,423

PA (%) 99.52 94.34 98.13 86.59 92.80 66.34
Overall accuracy (%): 93.47 Kappa Index: 0.89

1996 Water Forest Cerrado Pasture Crops Other area Total UA (%)

Water 1306 0 0 0 0 0 1306 100.00
Forest 0 21,211 1 26 0 0 21,238 99.87

Cerrado 0 2229 1491 0 0 0 3720 40.08
Pasture 0 1 0 4030 17 71 4119 97.84
Crops 0 0 0 32 831 31 894 92.95

Other area 0 0 34 165 80 443 722 61.36
Total 1306 23,441 1526 4253 928 545 31,999

PA (%) 100.00 90.49 97.71 94.76 89.55 81.28
Overall accuracy (%): 91.60 Kappa Index: 0.83
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Table A1. Cont.

MapBiomas

2000 Water Forest Cerrado Pasture Crops Other area Total UA (%)

Water 2049 1 0 0 0 0 2050 99.95
Forest 0 19,774 9 0 0 0 19,783 99.95

Cerrado 0 1320 2355 0 0 0 3675 64.08
Pasture 0 0 0 4791 64 27 4882 98.14
Crops 0 0 9 113 4121 176 4419 93.26

Other area 14 5 0 85 22 401 527 76.09
Total 2063 21,100 2373 4989 4207 604 35,336

PA (%) 99.32 93.72 99.24 96.03 97.96 66.39
Overall accuracy (%): 94.78 Kappa Index: 0.92

PA = producer accuracy; UA = user accuracy.

Table A2. Confusion matrix between the mapping in this article and the MapBiomas project for the
years 2005, 2011, 2015, and 2020.

MapBiomas

2005 Water Forest Cerrado Pasture Crops Other area Total UA (%)

Water 737 0 0 0 0 0 737 100.00
Forest 0 20,805 77 0 0 0 20,882 99.63

Cerrado 0 1302 1422 1 0 0 2725 52.18
Pasture 0 0 0 4110 117 11 4238 96.98
Crops 0 0 0 72 3931 129 4132 95.14

Other area 14 0 0 38 34 445 531 83.80
Total 751 22,107 1499 4221 4082 585 33,245

PA (%) 98.14 94.11 94.86 97.37 96.30 76.07
Overall accuracy (%): 94.60 Kappa Index: 0.90

2011 Water Forest Cerrado Pasture Crops Other area Total UA (%)

Water 803 0 0 0 0 0 803 100.00
Forest 0 23,060 107 0 0 0 23,167 99.54

Cerrado 0 904 2519 0 0 0 3423 73.59
Pasture 0 2 214 4157 46 6 4425 93.94
Crops 0 0 0 57 3081 167 3305 93.22

Other area 17 2 0 43 10 436 508 85.83
Total 820 23,968 2840 4257 3137 609 35,631

PA (%) 97.93 96.21 88.70 97.65 98.21 71.59
Overall accuracy (%): 95.58 Kappa Index: 0.92

2015 Water Forest Cerrado Pasture Crops Other area Total UA (%)

Water 1160 0 0 0 0 0 1160 100.00
Forest 0 19,801 55 0 0 0 19,856 99.72

Cerrado 0 1116 1668 0 0 11 2795 59.68
Pasture 0 0 8 3720 138 44 3910 95.14
Crops 0 0 0 77 4242 146 4465 95.01

Other area 10 0 15 50 51 468 594 78.79
Total 1170 20,917 1746 3847 4431 669 32,780

PA (%) 99.15 94.66 95.53 96.70 95.73 69.96
Overall accuracy (%): 94.75 Kappa Index: 0.91

2020 Water Forest Cerrado Pasture Crops Other area Total UA (%)

Water 1541 0 0 0 0 0 1541 100.00
Forest 0 19,907 100 1 0 0 20,008 99.50

Cerrado 0 144 3917 205 0 0 4266 91.82
Pasture 0 0 4 3864 470 0 4338 89.07
Crops 2 0 0 38 3280 143 3463 94.72

Other area 64 10 4 0 0 737 815 90.43
Total 1607 20,061 4025 4108 3750 880 34,431

PA (%) 95.89 99.23 97.32 94.06 87.47 83.75
Overall accuracy (%): 96.56 Kappa Index: 0.94

PA = producer accuracy; UA = user accuracy.



Sustainability 2023, 15, 4611 23 of 26

References
1. Verma, A.K. Sustainable Development and Environmental Ethics. Int. J. Environ. Sci. 2019, 10, 1–5. Available online: https:

//ssrn.com/abstract=3689046 (accessed on 1 July 2022).
2. Araújo Neto, J.R.; Andrade, E.M.; Palácio, H.A.Q.; Sales, M.M.; Maia, A.R.S. Influence of land use/occupation on water quality in

the Trussu river valley, Ceará, Brazil. Rev. Ciênc. Agron. 2017, 48, 59–69. [CrossRef]
3. Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial

scales. Catena 2017, 151, 182–190. [CrossRef]
4. McMillan, H.; Montanari, A.; Cudennec, C.; Savenije, H.; Kreibich, H.; Krueger, T.; Liu, J.; Mejia, A.; Van Loon, A.F.; Aksoy, H.;

et al. Panta Rhei 2013–2015: Global perspectives on hydrology, society and change. Hydrol. Sci. J. 2016, 61, 1174–1191. [CrossRef]
5. Van Loon, A.F.; Rangecroft, S.; Coxon, G.; Naranjo, J.A.B.; Van Ogtrop, F.; Van Lanen, H.A.J. Using paired catchments to quantify

the human influence on hydrological droughts. Hydrol. Earth Syst. Sci. 2019, 23, 1725–1739. [CrossRef]
6. Joly, C.A.; Scarano, F.R.; Bustamante, M.; Gadda, T.M.C.; Metzger, J.P.W.; Seixas, C.S.; Ometto, J.P.H.B.; Pires, A.P.F.; Boesing, A.L.;

Sousa, F.D.R.; et al. Brazilian assessment on biodiversity and ecosystem services: Summary for policy makers. Biota Neotrop. 2019,
19, e20190865. [CrossRef]

7. Silva, C.M. Entre Fênix e Ceres: A grande aceleração e a fronteira agrícola no Cerrado. Var. Hist. 2018, 34, 409–444. [CrossRef]
8. Lathuillière, M.J.; Coe, M.T.; Johnson, M.S. A review of green- and blue-water resources and their trade-offs for future agricultural

production in the Amazon Basin: What could irrigated agriculture mean for Amazonia? Hydrol. Earth Syst. Sci. 2016, 20,
2179–2194. [CrossRef]

9. Butler, D.; Ward, S.; Sweetapple, C.; Astaraie-Imani, M.; Diao, K.; Farmani, R.; Fu, G. Reliable, resilient and sustainable water
management: The Safe & SuRe approach. Glob. Chall. 2016, 1, 63–77. [CrossRef]

10. Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plann. 2004,
61, 301–325. [CrossRef]

11. Liping, C.; Yujun, S.; Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS
techniques—A case study of a hilly area, Jiangle, China. PloS ONE 2018, 13, e0200493. [CrossRef]

12. Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int.
J. Geosci. 2017, 8, 611–622. [CrossRef]

13. Mahmon, N.A.; Ya’acob, N.; Yusof, A.L. Differences of image classification techniques for land use and land cover classification.
In Proceedings of the 2015 IEEE 11th International Colloquium on Signal Processing & Its Applications (CSPA), Kuala Lumpur,
Malaysia, 6–8 March 2015; pp. 90–94. [CrossRef]

14. Murad, C.A.; Pearse, J. Landsat study of deforestation in the Amazon region of Colombia: Departments of Caquetá and Putumayo
Remote Sens. Appl. Soc. Environ. 2018, 11, 161–171. [CrossRef]

15. Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and
Machine Learning Classification on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. [CrossRef]

16. Zaiatz, A.P.S.R.; Zolin, C.A.; Vendrusculo, L.G.; Lopes, T.R.; Paulino, J. Agricultural land use and cover change in the Cer-
rado/Amazon ecotone: A case study of the upper Teles Pires river basin. Acta Amazon. 2018, 48, 168–177. [CrossRef]

17. Ge, Y.; Hu, S.; Ren, Z.; Jia, Y.; Wang, J.; Liu, M.; Zhang, D.; Zhao, W.; Luo, Y.; Fu, Y.; et al. Mapping annual land use changes in
China’s poverty-stricken areas from 2013 to 2018. Remote Sens. Environ. 2019, 232, e111285. [CrossRef]

18. Rawat, J.S.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh
block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [CrossRef]

19. Kar, R.; Obi Reddy, G.P.; Kumar, N.; Singh, S.K. Monitoring spatio-temporal dynamics of urban and peri-urban landscape using
remote sensing and GIS—A case study from Central India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 401–411. [CrossRef]

20. Neves, A.K.; Korting, T.S.; Fonseca, L.M.G.; Escada, M.I.S. Assessment of TerraClass and MapBiomas data on legend and map
agreement for the Brazilian Amazon biome. Acta Amazon. 2020, 50, 170–182. [CrossRef]

21. Souza, A.P.; Mota, L.L.; Zamadei, T.; Martim, C.C.; Almeida, F.T.; Paulino, J. Climate classification and climatic water balance in
Mato Grosso state, Brazil. Nativa. 2013, 1, 34–43. Available online: https://periodicoscientificos.ufmt.br/ojs/index.php/nativa/
article/view/1334 (accessed on 1 July 2022). [CrossRef]

22. Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al.
Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [CrossRef]
[PubMed]

23. Souza, S.O. Geotechnologies applied to time-space analysis of land use and occupation in coastal plain of Caravelas (BA). Goiano
Bull. Geogr. 2015, 35, 71–89. [CrossRef]

24. Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.;
Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [CrossRef]

25. Showstack, R. Landsat 9 Satellite Continues Half-Century of Earth Observations: Eyes in the sky serve as a valuable tool for
stewardship. BioScience 2022, 72, 226–232. [CrossRef]

26. Jog, S.; Dixit, M. Supervised classification of satellite images. In Proceedings of the 2016 Conference on Advances in Signal
Processing (CASP), Pune, India, 9–11 June 2016; pp. 93–98. [CrossRef]

27. Ali, M.Z.; Qazi, W.; Aslam, N. A comparative study of ALOS-2 PALSAR and landsat-8 imagery for landcover classification using
maximum likelihood classifier. Egypt. J. Remote Sens. Space Sci. 2018, 21, 329–330. [CrossRef]

https://ssrn.com/abstract=3689046
https://ssrn.com/abstract=3689046
http://doi.org/10.5935/1806-6690.20170007
http://doi.org/10.1016/j.catena.2016.12.017
http://doi.org/10.1080/02626667.2016.1159308
http://doi.org/10.5194/hess-23-1725-2019
http://doi.org/10.1590/1676-0611-bn-2019-0865
http://doi.org/10.1590/0104-87752018000200006
http://doi.org/10.5194/hess-20-2179-2016
http://doi.org/10.1002/gch2.1010
http://doi.org/10.1016/S0305-9006(03)00066-7
http://doi.org/10.1371/journal.pone.0200493
http://doi.org/10.4236/ijg.2017.84033
http://doi.org/10.1109/CSPA.2015.7225624
http://doi.org/10.1016/j.rsase.2018.07.003
http://doi.org/10.3390/ijgi9100580
http://doi.org/10.1590/1809-4392201701930
http://doi.org/10.1016/j.rse.2019.111285
http://doi.org/10.1016/j.ejrs.2015.02.002
http://doi.org/10.1016/j.ejrs.2017.12.006
http://doi.org/10.1590/1809-4392201900981
https://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/1334
https://periodicoscientificos.ufmt.br/ojs/index.php/nativa/article/view/1334
http://doi.org/10.14583/2318-7670.v01n01a07
http://doi.org/10.1016/j.cosust.2013.06.002
http://www.ncbi.nlm.nih.gov/pubmed/24143157
http://doi.org/10.5216/bgg.v35i1.35485
http://doi.org/10.1016/j.rse.2022.113195
http://doi.org/10.1093/biosci/biab145
http://doi.org/10.1109/CASP.2016.7746144
http://doi.org/10.1016/j.ejrs.2018.03.003


Sustainability 2023, 15, 4611 24 of 26

28. Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwest-
ern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [CrossRef]

29. Asokan, A.; Anitha, J.; Ciobanu, M.; Gabor, A.; Naaji, A.; Hemanth, D.J. Image Processing Techniques for Analysis of Satellite
Images for Historical Maps Classification—An Overview. Appl. Sci. 2020, 10, 4207. [CrossRef]

30. Souza, C.M., Jr.; Z.Shimbo, J.; Rosa, M.R.; Parente, L.L.; A.Alencar, A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; G.Ferreira,
L.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with
Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [CrossRef]

31. Shimabukuro, Y.E.; Arai, E.; Duarte, V.; Dutra, A.C.; Cassol, H.L.G.; Sano, E.E.; Hoffmann, T.B. Discriminating Land Use and
Land Cover Classes in Brazil Based on the Annual PROBA-V 100 m Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2020, 13, 3409–3420. [CrossRef]

32. Gavade, A.B.; Rajpurohit, V.S. Systematic analysis of satellite image-based land cover classification techniques: Literature review
and challenges. Int. J. Comput. Appl. 2019, 43, 514–523. [CrossRef]

33. Opedes, H.; Mücher, S.; Baartman, J.E.M.; Nedala, S.; Mugagga, F. Land Cover Change Detection and Subsistence Farming
Dynamics in the Fringes of Mount Elgon National Park, Uganda from 1978–2020. Remote Sens. 2022, 14, 2423. [CrossRef]

34. Congalton, R.G. A review of assessing the accuracy classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46.
[CrossRef]

35. Pendrill, F.; Persson, U.M. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America:
Limitations and challenges. PLoS ONE 2017, 12, e0181202. [CrossRef]

36. Hoang, N.T.; Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol.
Evol. 2021, 5, 845–853. [CrossRef]

37. Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T. Deforestation displaced: Trade in forest-risk commodities and the prospects for a
global forest transition Environ. Res. Lett. 2019, 14, 055003. [CrossRef]

38. Davis, K.F.; Koo, H.I.; Dell’Angelo, J.; D’Ororico, P.; Estes, L.; Kehoe, L.; Kharratzadeh, M.; Kuemmerle, T.; Machava, D.; Rodrigues
Pais, A.J.; et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 2020, 13, 482–488. [CrossRef]

39. Dubreuil, V.; Pechutti, F.K.; Planchon, O.; Sant’anna Neto, J.L. The types of annual climates in Brazil: An application of the
classification of Köppen from 1961 to 2015. Confins 2018, 37. [CrossRef]

40. Brazilian Agricultural Research Corporation—Embrapa. Brazil in Relief. Available online: https://www.cnpm.embrapa.br/
projetos/relevobr/ (accessed on 1 July 2022).

41. Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística or IBGE). Statistics and Geosciences
Downloads. Available online: https://downloads.ibge.gov.br/index.htm (accessed on 1 July 2022).

42. Ettritch, G.; Hardy, A.; Bojang, L.; Cross, D.; Bunting, P.; Brewer, P. Enhancing digital elevation models for hydraulic modelling
using flood frequency detection. Remote Sens. Environ. 2018, 217, 506–522. [CrossRef]

43. United States Geological Survey (USGS). EarthExplorer. Available online: http://earthexplorer.usgs.gov/ (accessed on
1 July 2022).

44. Santos, L.A.C.; Batista, A.C.; Neves, C.O.M.; Carvalho, E.V.; Santos, M.M.; Giongo, M. Multi-temporal analysis of land use and
cover in nine municipalities in the south of Tocantins using Landsat images. Rev. Agroambiente 2017, 11, 111–118. [CrossRef]

45. Furtado, L.G.; Morales, G.P.; Silva, D.F.; Pontes, A.N. Land use and land cover transformations in the Murucupi river basin,
Barcarena, Pará. Rev. Bras. Geogr. Física 2020, 13, 2340–2354. [CrossRef]

46. National Water Agency (Agência Nacional de Águas e Saneamento Básico or ANA). Dados Abertos da Agência Nacional de
Águas e Saneamento Básico. Available online: https://dadosabertos.ana.gov.br (accessed on 1 July 2022).

47. Cohen, J.A. Coefficient of agreement for nominal scales. Educational and Psycol. Meas. 1960, 20, 37–46. [CrossRef]
48. MapBiomas. Annual Mapping of Land Cover and Land Use in Brazil. Available online: http://mapbiomas.org (accessed on

1 February 2023).
49. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [CrossRef]

[PubMed]
50. Shimabukuro, Y.E.; Miettinen, J.; Beuchle, R.; Grecchi, R.C.; Simonetti, D.; Achard, F. Estimating burned area in Mato Grosso,

Brazil, using an object-based classification method on a systematic sample of medium resolution satellite images. IEEE J. Select.
Top. Appl. Earth Observ. Rem. Sens. 2015, 8, 4502–4508. [CrossRef]

51. Oliveira, N.A. “Winning the West”: Amazônia Legal Brasileira and the case of Nova Xavantina/MT. Front. Rev. Hist. 2015, 17,
248–272. Available online: https://1library.org/document/zgg09p2z-conquistando-oeste-amazonia-legal-brasileira-caso-nova-
xavantina.html (accessed on 1 July 2022).

52. Silva, M.; Deluski, E.C.; Santos, S.K.F.; Claudino, W.V.; Silva, E.P. Use of geotechnologies in the dynamics of soil occupation in the
Municipality of Paranaita-MT. Agr. Acad. 2018, 5, 334–346. [CrossRef]

53. Batista, F.R.Q.; Nogueira, S.H.; Ferreira, L.G. Mapping of Cerrado Phytophysiognomies by Remote Sensing: Challenges and
Possibilities. In Brazilian Symposium on Remote Sensing (SBSR), 19, 2019, Santos; Electronic analytics; INPE: São José dos Campos,
Brazil, 2019; pp. 403–406. Available online: http://urlib.net/rep/8JMKD3MGP6W34M/3TUPA2H (accessed on 1 July 2022).

54. Phiri, D.; Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 2017, 9, 967.
[CrossRef]

http://doi.org/10.1016/j.apgeog.2006.09.004
http://doi.org/10.3390/app10124207
http://doi.org/10.3390/rs12172735
http://doi.org/10.1109/JSTARS.2020.2994893
http://doi.org/10.1080/1206212X.2019.1573946
http://doi.org/10.3390/rs14102423
http://doi.org/10.1016/0034-4257(91)90048-B
http://doi.org/10.1371/journal.pone.0181202
http://doi.org/10.1038/s41559-021-01417-z
http://doi.org/10.1088/1748-9326/ab0d41
http://doi.org/10.1038/s41561-020-0592-3
http://doi.org/10.4000/confins.15738
https://www.cnpm.embrapa.br/projetos/relevobr/
https://www.cnpm.embrapa.br/projetos/relevobr/
https://downloads.ibge.gov.br/index.htm
http://doi.org/10.1016/j.rse.2018.08.029
http://earthexplorer.usgs.gov/
http://doi.org/10.18227/1982-8470ragro.v11i2.3915
http://doi.org/10.26848/rbgf.v13.5.p2340-2354
https://dadosabertos.ana.gov.br
http://doi.org/10.1177/001316446002000104
http://mapbiomas.org
http://doi.org/10.2307/2529310
http://www.ncbi.nlm.nih.gov/pubmed/843571
http://doi.org/10.1109/JSTARS.2015.2464097
https://1library.org/document/zgg09p2z-conquistando-oeste-amazonia-legal-brasileira-caso-nova-xavantina.html
https://1library.org/document/zgg09p2z-conquistando-oeste-amazonia-legal-brasileira-caso-nova-xavantina.html
http://doi.org/10.18677/Agrarian_Academy_2018a33
http://urlib.net/rep/8JMKD3MGP6W34M/3TUPA2H
http://doi.org/10.3390/rs9090967


Sustainability 2023, 15, 4611 25 of 26

55. Santos, F.A.A.; Rocha, E.J.P.; Santos, J.S. Dynamics of Landscape and its Environmental Impacts in the Amazon. Rev. Bras. Geogr.
Física 2019, 12, 1794–1815. [CrossRef]

56. Santos, V.; Laurent, F.; Abe, C.; Messner, F. Hydrologic response to land use change in a large basin in Eastern Amazon. Water
2018, 10, 429. [CrossRef]

57. Zeilhofer, P.; Alcantara, L.H.; Fantin-Cruz, I. Effects of deforestation on spatio-temporal runoff patterns in the upper Teles Pires
watershed, Mato Grosso, Brazil. Rev. Bras. Geogr. Física 2018, 11, 1889–1901. [CrossRef]

58. Yoshikawa, S.; Sanga-Ngoie, K. Deforestation dynamics in Mato Grosso in the southern Brazilian Amazon using GIS and
NOAA/AVHRR data. Int. J. Remote Sens. 2011, 32, 523–544. [CrossRef]

59. Diniz, M.B.; Oliveira Junior, J.N.; Neto, N.T.; Diniz, M.J.T. Causes of deforestation in the Amazon: An application of the Granger
causality test on the main sources of deforestation in the municipalities of the Brazilian legal Amazon. Nova Econ. 2009, 19,
121–151. [CrossRef]

60. Timpe, K.; Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 2017, 3, e1700611. [CrossRef]
61. Lees, A.C.; Peres, C.A.; Fearnside, P.M.; Schneider, M.; Zuanon, J.A.S. Hydropower and the future of Amazonian biodiversity.

Biodivers. Conserv. 2016, 25, 451–466. [CrossRef]
62. Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.;

Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128–129.
[CrossRef] [PubMed]

63. Faria, F.A.M.; Jaramillo, P.; Sawakuchi, H.O.; Richey, J.E.; Barros, N. Estimating greenhouse gas emissions from future Amazonian
hydroelectric reservoirs Environ. Res. Lett. 2015, 10, 124019. [CrossRef]

64. Gollnow, F.; Lakes, T. Policy change, land use, and agriculture: The case of soy production and cattle ranching in Brazil, 2001-2012.
Appl. Geogr. 2014, 55, 203–211. [CrossRef]

65. Gusso, A.; Ducati, J.R.; Bortolotto, V.C. Analysis of soybean cropland expansion in the southern Brazilian Amazon and its relation
to economic drivers. Acta Amazon. 2017, 47, 281–292. [CrossRef]

66. Simões, R.; Picoli, M.C.A.; Camara, G.; Maciel, A.; Santos, L.; Andrade, P.R.; Sánches, A.; Ferreira, K.; Carvalho, A. Land use and
cover maps for Mato Grosso State in Brazil from 2001 to 2017. Sci. Data 2020, 7, 1–10. [CrossRef]

67. Klink, C.A.; Machado, R.B. Conservation of the Brazilian Cerrado. Conserv. Biol. 2005, 19, 707–713. [CrossRef]
68. Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares Filho, B.; Barreto, P.; Micol, L.; Walker, N.F.

Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [CrossRef]
69. Hunke, P.; Roller, R.; Zeilhofer, P.; Schröder, B.; Mueller, E.N. Soil changes under different land-use in the Cerrado of Mato Grosso,

Brazil. Geoderma Reg. 2015, 4, 31–43. [CrossRef]
70. Picoli, M.C.A.; Rorato, A.; Leitão, P.; Camara, G.; Maciel, A.; Hostert, P.; Sanches, I.D. Impacts of public and private sector policies

on soybean and pasture expansion in Mato Grosso-Brazil from 2001 to 2017. Land 2020, 9, 20. [CrossRef]
71. Cohn, A.S.; Gil, J.; Berger, T.; Pellegrina, H.; Toledo, C. Patterns and processes of pasture to crop conversion in Brazil: Evidence

from Mato Grosso State. Land Use Policy 2016, 55, 108–120. [CrossRef]
72. Fearnside, P.M. Deforestation in Brazilian Amazonia: History, Rates, and Consequences. Conserv. Biol. 2005, 19, 680–688.

[CrossRef]
73. Ferreira, M.D.P.; Coelho, A.B. Recent Deforestation in the States of the Legal Amazon: An analysis of the contribution of

agricultural prices and government policies. Rev. Econ. Sociol. Rural 2015, 53, 93–108. [CrossRef]
74. Pacheco, R.; Rajão, R.; Soares-Filho, B.; Hoff, R.V.D. Regularization of Legal Reserve Debts: Perceptions of rural producers in the

state of Pará and Mato Grosso in Brazil. Ambient. Soc. 2017, 20, 181–200. [CrossRef]
75. Rudorff, B.F.T.; Adami, M.; Aguiar, D.A.; Moreira, M.A.; Mello, M.P.; Fabiani, L.; Amaral, D.F.; Pires, B.M. The soy moratorium in

the Amazon biome monitored by remote sensing images. Remote Sens. 2011, 3, 185–202. [CrossRef]
76. Spera, S.A.; Cohn, A.S.; VanWey, L.K.; Mostarda, J.F.; Rudorff, B.F.; Risso, J.; Adami, M. Recent cropping frequency, expansion,

and abandonment in Mato Grosso, Brazil had selective land characteristics. Environ. Res. Lett. 2014, 9, 064010. [CrossRef]
77. Zilverberg, C.J.; Heimerl, K.; Schumacher, T.E.; Malo, D.D.; Schumacher, J.A.; Johnson, W.C. Landscape dependent changes in

soil properties due to long-term cultivation and subsequent conversion to native grass agriculture. Catena 2018, 160, 282–297.
[CrossRef]

78. Dionizio, E.A.; Costa, M.H. Influence of land use and land cover on hydraulic and physical soil properties at the Cerrado
Agricultural Frontier. Agric. 2019, 9, 24. [CrossRef]

79. Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water
resources: Quantity versus quality. Water Resour. Res. 2007, 43, W03437. [CrossRef]

80. Borella, D.R.; de Souza, A.P.; de Almeida, F.T.; de Abreu, D.C.; Hoshide, A.K.; Carvalho, G.A.; Pereira, R.R.; da Silva, A.F.
Dynamics of Sediment Transport in the Teles Pires River Basin in the Cerrado-Amazon, Brazil. Sustainability 2022, 14, 16050.
[CrossRef]

81. Pedrosa, L.M.; Hoshide, A.K.; Abreu, D.C.; de Molossi, L.; Couto, E.G. Financial transition and costs of sustainable agricultural
intensification practices on a beef cattle and crop farm in Brazil’s Amazon. Renew. Agric. Food Sys. 2019, 36, 26–37. [CrossRef]

82. Molossi, L.; Hoshide, A.K.; Pedrosa, L.M.; Oliveira, A.S.; Abreu, D.C. Improve pasture or feed grain? Greenhouse gas emissions,
profitability, and resource use for Nelore beef cattle in Brazil’s Cerrado and Amazon biomes. Animals 2020, 10, 1386. [CrossRef]
[PubMed]

http://doi.org/10.26848/rbgf.v12.5.p1794-1815
http://doi.org/10.3390/w10040429
http://doi.org/10.26848/rbgf.v11.5.p1889-1901
http://doi.org/10.1080/01431160903475225
http://doi.org/10.1590/S0103-63512009000100006
http://doi.org/10.1126/sciadv.1700611
http://doi.org/10.1007/s10531-016-1072-3
http://doi.org/10.1126/science.aac7082
http://www.ncbi.nlm.nih.gov/pubmed/26744397
http://doi.org/10.1088/1748-9326/10/12/124019
http://doi.org/10.1016/j.apgeog.2014.09.003
http://doi.org/10.1590/1809-4392201700543
http://doi.org/10.1038/s41597-020-0371-4
http://doi.org/10.1111/j.1523-1739.2005.00702.x
http://doi.org/10.1126/science.aaa0181
http://doi.org/10.1016/j.geodrs.2014.12.001
http://doi.org/10.3390/land9010020
http://doi.org/10.1016/j.landusepol.2016.03.005
http://doi.org/10.1111/j.1523-1739.2005.00697.x
http://doi.org/10.1590/1234-56781806-9479005301005
http://doi.org/10.1590/1809-4422asoc0012r1v2022017
http://doi.org/10.3390/rs3010185
http://doi.org/10.1088/1748-9326/9/6/064010
http://doi.org/10.1016/j.catena.2017.09.020
http://doi.org/10.3390/agriculture9010024
http://doi.org/10.1029/2006WR005486
http://doi.org/10.3390/su142316050
http://doi.org/10.1017/S1742170519000413
http://doi.org/10.3390/ani10081386
http://www.ncbi.nlm.nih.gov/pubmed/32785150


Sustainability 2023, 15, 4611 26 of 26

83. Skidmore, M.E.; Sims, K.M.; Rausch, L.L.; Gibbs, H.K. Sustainable intensification in the Brazilian cattle industry: The role for
reduced slaughter age. Environ. Res. Lett. 2022, 17, 064026. [CrossRef]

84. Pinheiro, D.T.; Santos, D.M.S.; Martins, A.R.R.; da Silva, W.M.; de Araújo, C.V.; de Abreu, D.C.; Hoshide, A.K.; Molossi, L.; de
Oliveira, R.A. Closing the gap: Sustainable intensification implications of increased corn yields and quality for second-crop
(safrinha) in Mato Grosso, Brazil. Sustainability 2021, 13, 13325. [CrossRef]

85. Da Silva, W.M.; Bianchini, A.; Amorim, R.S.S.; Couto, E.G.; dos Santos Weber, O.L.; Hoshide, A.K.; Pereira, P.S.X.; Cremon, C.; de
Abreu, D.C. Soil efflux of carbon dioxide in Brazilian Cerrado wheat under variable soil preparation and irrigation. Agriculture
2022, 12, 163. [CrossRef]

86. Kraeski, A.; Almeida, F.T.; Carvalho, T.M.; Souza, A.P. Identification of land use conflicts in Permanent Preservation Area in a
Brazilian Amazon sub-basin. Soc. E Nat. 2022, 35, e65951. [CrossRef]

87. Reydon, B.P.; Fernandes, V.B.; Telles, T.S. Land governance as a precondition for decreasing deforestation in the Brazilian Amazon.
Land Use Policy 2020, 94, 104313. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1088/1748-9326/ac6f70
http://doi.org/10.3390/su132313325
http://doi.org/10.3390/agriculture12020163
http://doi.org/10.14393/SN-v35-2023-65724
http://doi.org/10.1016/j.landusepol.2019.104313

	Introduction 
	Using Remotely Sensed Data for Conservation 
	Materials and Methods 
	Study Area 
	Spatial Data Sources 
	Mapping Land Use 
	Mapping Validation 

	Results 
	Discussion 
	Potential Misclassifications and Comparisons to Previous Studies 
	Agricultural Development Policies and Future Sustainable Intensification 
	Policy Implications 

	Conclusions 
	Appendix A
	References

