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Rapid global economic development has resulted in a corresponding intensification
of urbanization, which has in turn impacted the ecology of vast regions of the world.
A series of problems have thus been introduced, such as changes in land-use/land-cover
(LULC) and changes in local climate. The process of urbanization predominantly repre-
sents changes in land-use, and is deemed by researchers to be the chief cause of climate
change and ecological change. One of the principal purposes of the research in this
field is to find ways to mitigate the influence of land-use change on local or global
environments. In the study presented in this article, satellite images were utilized to
extract information regarding land-use in Beijing City, and to develop maps of land
surface temperature (LST) during two different periods of time: 2 August 1999 and
8 August 2010. A supervised classification scheme, a support vector machine, was used
to derive the land-use change map for the above periods. Maps of surface temperature
are derived from the thermal band of Landsat images using the mono-window algorithm.
Results from post-classification comparison indicated that an increase in impervious
surface areas was found to be dramatic, while the area of farmland decreased rapidly.
The changes in LULC were found to have led to a variation in surface temperature, as
well as a spatial distribution pattern of the urban heat island phenomenon. This research
revealed that the hotspots were mainly located in areas dominated by three kinds of
material: bare soil, rooftops, and marble surfaces. Results from the local Moran’s I
index indicated that the use of lower surface temperature materials will help to mitigate
the influence of the urban heat island phenomenon. The results of this research study
provide a reference for government departments involved in the process of designing
residential regions. Such a reference should enable the development of areas sympa-
thetic to environmental changes and hence mitigate the effects of the growing intensity
of urbanization.

1. Introduction

Urbanization has become an inevitable worldwide trend, resulting from rapid global eco-

nomic development and the corresponding increase in population. The latter is composed

of the workers necessary to feed such expansion, as well as those eager to prosper from the

potentially high living standards that economic development may bring. Agriculture and

land-use change during the process of urbanization is recognized as the most important

anthropogenic influence on climate change (Jones et al. 1990; Kalnay and Cai 2003; Owen,
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5504 H. Ding and W. Shi

Carlson, and Gilies 1998). Kalnay and Cai (2003) concluded that half the observed decrease

in diurnal temperature range was due to urban sprawl and land-use changes. In 1998,

the land-cover index (LCI) was proposed by Owen, Carlson, and Gilies (1998) as a new

approach to enable quantitative description of the climatic effect of urbanization, such as

the urban heat island (UHI) effect. The function of this index is to enable the analysis of

urban temperature changes, with specific reference to an analysis of the changes in land-use

on a neighbourhood scale. Clear influences of urbanization on the landscape such as water-

sheds, riparian areas, wildlife habitat, and water supplies have been observed in European

cities and several US cities (Alig, Kline, and Lichtenstein 2004; Antrop 2004; Buyantuyev,

Wu, and Gries 2007; Rottenborn 1999). Rottenborn (1999) found that bird species richness

and density decreased at a location when the number of bridges near that location increased

and the volume of native vegetation also decreased. Dewan and Yamaguchi (2009) found

that substantial growth of built-up areas in Greater Dhaka resulted in a significant decrease

in the area of water bodies, cultivated land, vegetation, and wetlands. In addition, rapid

urban expansion induced a wide range of environmental impacts, including habitat quality

(Bayarsaikhan et al. 2009; Dewan and Yamaguchi 2009; Li and Zhao 2003).

Another significant effect of urbanization is seen as variation in surface temperature

(Chen et al. 2006; Hamdi 2010), and in some cases has become known as the UHI. Typical

characteristics of UHI surface temperature variation include simultaneous differences in

air and land surface temperature (LST) from those in the surrounding rural regions (Hart

and Sailor 2009; Hu and Jia 2010; Zhang and Wang 2008). Over the past 30 years, such

phenomena have been extensively studied in America, Europe, and Asia (Imhoff et al.

2010; Lee and French 2009; Li et al. 2009; Memon, Leung, and Liu 2009; Streutker 2003).

It has been found that changes in land-use/land-cover (LULC) influenced the composition

of ground substances, such as major impacts on the evaporation of water and the process

of energy exchange (Hung et al. 2006; Stathopoulou and Cartalis 2007; Umamaheshwaran

and Weng 2009).

To analyse or quantify the effect of UHI, researchers have employed remotely

sensed images such as Landsat Thematic Mapper/Enhanced Thematic Mapper Plus

(TM/ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very

High Resolution Radiometer (AVHRR), and Advanced Spaceborne Thermal Emission and

Reflection (ASTER) data to obtain large-scale observations (Liu and Weng 2008; Nichol

et al. 2009; Qian, Cui, and Chang 2006; Srivastava, Majumdar, and Bhattacharya 2009;

Xiao and Weng 2007). AVHRR data were used by Streutker (2003) to analyse UHI charac-

teristics in Houston, USA. To understand the impacts of urbanization, Hung et al. (2006),

using remotely sensed images, analysed the effects of UHI in 18 major cities. Qian, Cui,

and Chang (2006) utilized Landsat TM/ETM+ data and geographic information system

(GIS) technologies to identify patterns of LULC and to quantify the relationship between

LULC change and the variation of LST. They found that urban growth caused LST to rise

by 4.56◦C between 1990 and 2000.

The majority of the studies above revealed that LULC change had a predominant impact

on local environments, in the form of local climate change, watershed alteration, and the

degradation of forests. Although much attention had been paid to the relationship between

LULC and LST, further studies are necessary to achieve greater extracted land surface

parameter accuracy, and also to focus on the exploration of the relationships between LULC

and LST change, in order to better understand the environmental influence of urbanization.

This research study aims to investigate the influence of urbanization on land-cover and

the resulting overall changes caused by the ensuing urban expansion into rural or less urban-

ized areas. An example of an area of rapid economic and urban expansion is provided by
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the city of Beijing, which is the focus of this research study. The speed and volume of

development that has taken place in Beijing over the past 30 years is such that the UHI

effect upon the region has become the focus of discussion and research studies for approxi-

mately the last 10 years. The results of these research studies form a foundation from which

the present authors explore the relationship between urban LULC change and the pattern

of LST at different times. Landsat TM/ETM+ images are used to derive data on LST

and LULC change. The widespread post-classification comparison and image difference

methods are used to extract LULC change information and to identify locations exhibiting

temperature variation.

2. Study area, data, and methodologies

2.1. Study area and data

The study area, the city of Beijing, is located to the north of the North China Plain, and

extends from 39◦ N to 41◦ N (latitude) and 115◦ E to 117◦ E (longitude) (Figure 1). The

area covers 16,410 km2. In recent years, Beijing has been ranked as one of the fastest-

growing cities in China, both economically and in area. Its gross domestic product (GDP)

increased from 217.45 billion (×109) Yuan in 1999 to 900 billion Yuan in 2007, and it is

reported that in 2009 it reached 1.186 trillion (×1012) Yuan. During the period 1999 to

2007, Beijing experienced a rapid population increase from 12.57 million in 1999 to 16.33

million in 2007. This rapid population increase and economic growth have resulted in the

city’s accelerated urbanization and, as such, provides a scenario for which monitoring and

analysis, in terms of LULC, is worthwhile.

Landsat images have been extensively utilized for UHI study (Buyantuyev, Wu, and

Gries 2007; Kato and Yamaguchi 2005; Li and Zhao 2003; Lu and Weng 2005; Sobrino,

Jimenez-Munoz, and Paolini 2004; Srivastava, Majumdar, and Bhattacharya 2009). Landsat

5 provides TM images that have six bands in the visible and near infrared regions with 30 m

spatial resolution, and one thermal infrared band with 120 m spatial resolution. Landsat

7 provides eight bands, i.e. six each in the visible and near infrared regions with 30 m spatial

resolution, one thermal infrared band with 60 m spatial resolution and one panchromatic

band with 15 m spatial resolution. Because of the higher spatial resolution of the thermal

infrared band, Landsat images were chosen as a suitable medium for the investigation of

LULC and LST change. Landsat TM/ETM+ images, dated 2 August 1999 and 8 August

2010, were used in this research as representatively reflecting quantitatively the change in

LULC and LST.

2.2. Methodologies used

Since no cloud cover was noted during image acquisition, atmospheric corrections are

not included. Spatial registration was conducted on the six spectral bands of both images

acquired over two days: 2 August 1999 and 8 August 2010. About 20 control points were

manually selected from typical features and unchanged structures such as road intersec-

tions. To avoid the detection of ‘false’ change, polynomial warp was executed by use of a

residual error of less than 0.1 pixel.

2.2.1. Image classification and accuracy assessment

The LULC change resulting from the rapid expansion of the city over the past 10 years

can be quantified by image classification and segmentation. As a non-parametric method

and statistical learning theory, a support vector machine (SVM) can learn from a smaller
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N
1,3500 2,700 8,1005,400 10,800

m

Figure 1. The study area, the city of Beijing (TM image, 8 August 2010).

number of training samples and has better pattern recognition capabilities. Therefore, the

SVM classification model in Environment for Visualizing Images (ENVI) software was

used in this research to extract the LULC information (Exelis Visual Information Solutions,

Inc., Boulder, CO, USA). Six distinctive LULC types (i.e. trees, bare soil, water bodies,

vegetation, built-up areas, and marble surfaces) were identified from the image acquired on

2 August 1999. The mountains located at west of Beijing were covered by trees which had

the spectral characteristics of vegetation, and therefore this tree type was identified as an

individual land-cover type. The urban regions were composed of roads covered with asphalt

or concrete, buildings, and impervious surface areas. The marble surface at Beijing airport,

specified as an impervious surface, had a particular spectral reflection on the satellite image.

Seven land-use types were recognized from the TM data acquired on 8 August 2010. These

included trees, vegetation, water bodies, bare soil, built-up areas, concrete surfaces, and

rooftops. Different from other land-cover types, concrete surfaces were found to have a

high albedo, and thus a single land-use type was defined and identified. Rooftops were

considered as a single land-use type, thus accommodating a diversity of factories with huge

rooftops covered by blue plastic material. A detailed description of LULC type is given in

Table 1.

Assessment of classification accuracy is important in accurate quantification of change

detection. Regions of interest, modelled using ENVI software, were used as reference data
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Table 1. Land-use/land cover types for classification.

Land-use/land-cover types Description

Trees Mountain forest, farmland trees, roadside
trees, trees around water bodies

Vegetation Farmland, gardens
Water bodies Rivers, lakes
Built-up Roads, buildings, residential areas
Soil Bare soil, farmland
Marble Paved square
Rooftops Manufactory roofs

(a) (b)

Figure 2. Distribution of samples of different classes for accuracy assessment. (a) 2 August 1999;
(b) 8 August 2010. Colour coding: trees, maroon; vegetation, red; water, cyan; soil, blue; built-up,
yellow; marble, magenta; rooftops, green.

for different LULC types. A total of 10,334 point samples were randomly selected for

the ETM+ data from 2 August 1999, and a total of 12,796 point samples were randomly

selected for the TM data from 8 August 2010 (Figure 2). QuickBird and Ikonos images

acquired during 2006, 2007, and 2008 were used to verify the reference point samples for

some parts of the study area. Google Earth was used to identify the rooftop type and to help

in extraction of ground truth samples.

Confusion matrices for different image data were created using the test samples to check

the accuracy of the classification results, as shown in Tables 2 and 3. It will be seen in the

tables that the overall accuracy for 1999 and 2010 was 94.62% and 97.08%, respectively,

and the Kappa coefficients for corresponding maps were 0.9325 and 0.965, respectively.

LULC change data could be deduced from these data, which were qualified by further

analysis.

LULC changes occurring over the previous 10 years were detected using a post-

classification comparison method, which has been extensively utilized to demonstrate the

LULC change process. The accuracy of classification results and post-classification method

enabled the development of a cross-matrix to describe change types within the study area.

2.2.2. Retrieval of land surface temperature

The LST was retrieved by utilization of thermal infrared band (10.4–12.5 µm) data from

TM/ETM+. The extraction of the temperature data from the high-gain band was used as it

had a less striped texture and a wider range of recorded digital number (DN) values. First,
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5508 H. Ding and W. Shi

Table 2. Confusion matrices of pre-image LULC classification, 2 August 1999.

Reference data

Trees Vegetation Water Soil Built-up Marble

Trees 2323 450 0 0 0 0
Vegetation 0 1878 0 0 0 0
Water 0 0 978 0 0 0
Soil 0 58 0 2206 5 1
Built-up 0 0 0 0 2342 0
Marble 0 0 0 51 0 259

Total 2323 2386 978 2257 2350 260

Producer’s
accuracy (%)

100 78.71 100 97.74 99.66 99.62

Table 3. Confusion matrices of post-image LULC classification, 8 August 2010.

Reference data

Trees Vegetation Water Soil Built-up Marble Rooftops

Trees 1483 237 0 0 0 0 0
Vegetation 241 1998 0 0 0 0 0
Water 0 0 1114 0 0 0 0
Soil 0 0 0 563 0 7 0
Built-up 0 0 0 0 1621 0 6
Marble 0 0 0 0 4 771 3
Rooftops 0 0 0 0 0 0 999

Total 1724 2235 1114 563 1625 778 1008

Producer’s
accuracy (%)

100 89.40 100 100 99.75 99.10 99.11

the DN values were converted to the top-of-atmosphere (TOA) radiance measured by an

instrument using the following equation (1):

Lλ=
Lmax − Lmin

(QCAL)max − (QCAL)min

((DN) − (QCAL)min) + Lmin, (1)

where λ is wavelength; Lλ is the TOA radiance at the sensor’s aperture in W m−2 sr−1

µm−1 and QCALmax and QCALmin are the highest and the lowest points of the range of

rescaled radiance in DN, with values 255 and 0, respectively. Lmin and Lmax are the TOA

radiances that are scaled to QCALmin and QCALmax in W m−2 sr−1
µm−1 and can be found

in the Landsat 7 Science Data Users Handbook (http://landsathandbook.gsfc.nasa.gov/pdfs/

Landsat7_Handbook.pdf).

The spectral radiance Lλ should be further converted to the at-sensor brightness

temperature BT in kelvin and the conversion equation can be written as

BT =
K2

ln
(

K1

Lλ

)

+ 1
, (2)

where BT is the at-sensor brightness temperature in kelvin; K1 (1282.71 K) and K2

(666.09 Wm−2 sr−1
µm−1) are calibration constants. Brightness temperature is that

obtained by a blackbody to produce the same radiance at the same wavelength. This means
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that the brightness temperature cannot reflect the ‘real’ LST because of the various emis-

sions from different land-cover types. Hence, the brightness temperature must be converted

to the LST using the following formula:

LST =
(BT)

1 +
λ(BT)

ρ
ln ε

, (3)

where LST is the LST in kelvin, BT is the at-sensor brightness temperature in kelvin, λ

(11.5 µm) is the wavelength of emitted radiance: ρ = h × c/σ = 1.438 × 10−2 mK, σ is

the Stefan–Boltzmann constant, h is Planck’s constant, c is the velocity of light, and ε is

the land surface emissivity (LSE).

LSE is a key parameter in the measurement of LST. It is difficult, however, to retrieve

LSE directly from remotely sensed images. An optimization method was proposed to esti-

mate LSE and LST simultaneously (Liang 2001), but this requires multiple thermal bands

of which there is a shortage for Landsat images. Another method to estimate emissivity is

to use the classification results. Each land-cover type realized from the classification results

is allocated the corresponding emissivity. Classification errors and mixed pixels, however,

introduce further severe emissivity error. In other studies reported in the literature, the rela-

tionship between emissivity and normalized difference vegetation index (NDVI) was found

by means of empirical approaches. When NDVI < 0.2, the pixels are considered to be

revealing bare soil and emissivity is assumed to be 0.97. When NDVI > 0.5, the pixels are

considered to be revealing a fully vegetated area and a constant value for the emissivity is

assumed to be 0.99. When 0.2 ≤ NDVI ≤ 0.5, the pixel is composed of a mixture of bare

soil and vegetation, and emissivity is calculated according to the following equation:

εTM6 = 0.004 · Pv + 0.986, (4)

where εTM6 is surface emissivity and Pv is the vegetation proportion obtained according to

Sobrino, Jimenez-Munoz, and Paolini (2004):

Pv =

[

(NDVI) − (NDVI)min

(NDVI)max − (NDVI)min

]2

, (5)

where NDVImax = 0.5 is the threshold to separate the bare soil pixel and the mixed pixels;

and NDVImin = 0.2 is the threshold to separate the full vegetation pixel and the mixed

pixels. NDVI can be expressed using the following equation:

NDVI =
ρ(band4) − ρ(band3)

ρ(band4) + ρ(band3)
, (6)

where ρ(band4) and ρ(band3) are the spectral reflectances of bands 4 and 3, respectively,

for Landsat images. The parameters used to convert DN to spectral reflectance can be found

in the metadata file associated with Landsat images.

2.2.3. Local pattern of LST

As spatial data, LST variation depends on the LULC distribution pattern (i.e. LST exhibits

spatial dependency). Spatial dependency refers to those objects closely positioned in space,

which tend to be more alike than objects that are further apart. Spatial similarity is usually

expressed using autocorrelation of one variable. Moran’s I index, which measures spatial

autocorrelation in a signal among nearby locations in space, has been extensively utilized
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5510 H. Ding and W. Shi

to analyse the global level of autocorrelation by setting a series of lag distances. The local

Moran’s I, however, is more appropriate for assessing the autocorrelation character in the

local region. The clustering of similar values in the local region can be represented using

the positive value of Moran’s I, while its negative value explains the clustering of dissimilar

values; a value of zero indicates zero spatial autocorrelation. Due to the fact that the LST

of surface materials is closely related to its composition, LST spatial distribution in the

local region is closely associated with the shape of the materials, such as the strip-type of

the road, the rectangle-type of squares and rooftops, and irregular shape of bare soil cover

types. Therefore, in this research, using a 3 pixel × 3 pixel moving window with Queen’s

case contiguity, in which case eight neighbouring pixels all have been selected, the local

Moran’s I index was calculated to quantify the autocorrelation of LST in the local region.

3. Results and discussion

3.1. LULC change analysis

Spatial patterns of LULC in the study area for 1999 and 2010 are shown in Figure 3.

In 1999, built-up, vegetation and soil were the dominant land-use types, with percentages

of 25.77%, 25.75%, and 25.52%, respectively. It was found that there were dense built-

up surfaces in the urban area, which were surrounded by farmland and mountains. Using

the ring road constructed in recent years, land-use types were clearly separated one from

each other. In this way, the urban area was mainly confined within the fourth ring road, the

suburban region was mainly located between the fourth and fifth ring roads and the rural

region was located outside the fifth ring road.

In 2010, built-up surface areas were the dominant land-use type with a percentage of

50.87, followed by tree groupings and vegetation (24.81% and 14.86%, respectively). The

urban area was bounded by the fifth ring road, and the suburban region was located between

the fifth and sixth ring roads. Many factory areas found in the classification map provided

evidence of the development of the economy, while the emergence of factory rooftop types

illustrated the decrease in farmland area.

The statistical post-classification comparison results are shown in Table 4. This com-

parison demonstrates the significant increase in the area of built-up surfaces; for example,

about 52.45% of soil area and 34.25% of vegetation area in 1999 have been converted to

built-up surfaces. The most notable change occurred in the LULC type ‘soil’, of which

about 97.08% had changed to other land-use types, such as built-up, trees, vegetation, and

rooftops. Another evident land-use change was found in the marble type, of which about

64.28% and 10.56% had been converted to built-up and rooftop areas, respectively. About

74.02% of the vegetation area had changed, with 34.25% and 6.16% becoming built-up and

rooftop, respectively. In summary, over the past 10 years, significant increases in built-up

surface area and a decrease in farmland surface had taken place.

3.2. Spatial and temporal characteristics of LST variation

3.2.1. Spatial and temporal distribution of LST pattern

Descriptive LST statistics for the study area were calculated, and are shown in Table 5.

In 1999, LST ranged from 21.33◦C to 44.96◦C (mean, 28.83◦C), while the corresponding

figures for 2010 were 17.47–44.01◦C (mean, 29.39◦C). The mean LST of these two time

points demonstrates that 8 August 2010 was a little warmer than 2 August 1999.

The LST maps for these dates are shown in Figure 4 to demonstrate the LST spatial

distribution pattern. Several characters will be observed on the LST map for 1999. First,
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LULC

Trees

Vegetation

Soil

Water

Built-up

Marble

LULC

Trees

Vegetation

Soil

Water

Built-up

Marble

Rooftop

(a)

(b)

Figure 3. LULC maps of study area. (a) 2 August 1999; (b) 8 August 2010.

Table 4. Change detection statistics for LULC (%).

2 August 1999

8 August 2010 Trees Vegetation Water Built-up

Trees 53.67 29.95 13.86 5.44
Vegetation 15.18 25.98 12.51 2.76
Water 0.50 0.79 37.82 0.67
Built-up 24.64 34.25 29.24 86.04
Marble 0.76 0.92 0.66 0.65
Soil 1.52 1.96 1.09 1.19
Rooftop 3.73 6.16 4.81 3.25
Class changes 46.33 74.02 62.18 13.96
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5512 H. Ding and W. Shi

Table 5. Descriptive statistics of LST for different time points.

Minimum Maximum Mean Standa

2 August 1999 (◦C) 21.33 44.96 28.83
8 August 2010 (◦C) 17.47 44.01 29.30

Third ring road Third ring road

Four ring road Four ring road

Five ring road
Five ring road

Six ring road Six ring road

(a) (b)

40

35

30

25

Figure 4. LST for 2 August 1999 (a) and 8 August 2010 (b).

there was a clear temperature gradient between the urban and rural areas due to the fact that

the urban area surface was composed of roads and buildings covered with materials such

as asphalt and concrete, all of which have a higher radiant temperature. Second, hotspots

were mainly located in three land-use types: built-up, bare soil, and marble surfaces.

According to the LST map for 2010, the expansion of high-LST surfaces was significant

in comparison with the 1999 map. It appears that these high-temperature surfaces were

closely associated with impervious surfaces such as built-up, marble, and rooftop areas.

The rural region of 1999 had become the suburban area of 2010, to accommodate the

expansion of the city. The LST map indicates that the higher-LST areas were bounded by

the fifth ring road and between the fifth and sixth ring roads, and that the low-LST area was

located outside the sixth ring road. Three types of hotspot location were identified in 2010:

Beijing International Airport, factory rooftops, and bare soils.

3.2.2. Local autocorrelation of LST

The local measure of Moran’s I was calculated using ENVI software, and the maps are

shown in Figure 5. For 1999, the value of global Moran’s I was 0.9683, which indicates

that there was positive autocorrelation among LST when the lag distance was one pixel.

In the left-hand map, the value of local Moran’s I ranged between –0.2539 and 23.53, and

its average of 0.8582 indicates that most locations had an LST value similar to that of

their eight neighbours. Soil, trees, and vegetation had higher Moran’s I due to weak spatial

heterogeneity, while this value was lower in built-up locations in the urban area since there

was a significant mixture of materials such as trees, buildings, and roads.

In 2010, the value of global Moran’s I was 0.9652, which was similar to that in 1999,

while the range of local Moran’s I found was between –0.1825 and 47.33 (average, 1.29).

Higher values of Moran’s I appeared in locations characterized by single building materi-

als such as airport and rooftop surfaces. Unlike trees and vegetation types, the pixel and its
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Figure 5. Maps of local Moran’s I index using LST data: 2 August 1999 (a) and 8 August 2010 (b).

neighbouring pixels among these land surface types had almost the same radiant tempera-

ture, thus inducing higher autocorrelation. Trees and rooftops had a high Moran’s I index in

2010, consistent with that in 1999. Although average Moran’s I was higher in 2010, values

were smaller in most sites as a result of urban expansion.

3.3. Relationship between LST and LULC

Data from the literature in regard to the UHI phenomenon prove that LST is closely asso-

ciated with the land-cover composition of materials, such as vegetation, forest, and soil.

Therefore, it was found necessary to explore the relationship between LST and LULC to

gain an insight into the establishment of UHI during the process of urbanization. Average

LST and standard deviation (Std) associated with different land-cover types are shown in

Table 6. In 1999, the maximum average LST was found in built-up areas, followed by mar-

ble and bare soil surfaces. The three LULC types trees, vegetation, and water had a lower

LST compared with built-up areas. In 2010, similar to the results of 1999, four LULC

types: rooftop, marble, soil, and built-up areas, had an average LST over 30◦C, while the

remaining three types had a lower LST. Rooftop surfaces converted from other LULC types

such as soil, vegetation, and marble surfaces had the maximum average LST. This indicates

that the process of urbanization induced an increase in LST when land-cover type changed

from pervious to impervious materials, which have a higher radiant temperature. Further,

air temperature increased during the complicated energy exchange process.

To analyse the influence of LULC change on LST change, the image difference method

was used for LST maps to derive a temperature difference map (Figure 6). Six classes of

temperature change were extracted according to the relationship between differences in

LST, mean value (Mean), and Std of the LST difference image. For example, class 2 was

identified as those pixels located at the interval (Mean + Std, Mean + 2 × Std) and the

Table 6. Mean LST of different land-cover types (mean value plus/minus standard deviation).

Trees Vegetation Soil Water Built-up

1999 (◦C) 26.85 ± 1.50 25.92 ± 1.63 30.13 ± 2.01 27.80 ± 2.25 31.77 ± 1.93
2010 (◦C) 27.21 ± 1.30 26.90 ± 1.07 31.35 ± 1.88 27.94 ± 1.79 30.70 ± 1.78
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Figure 6. Temperature change maps derived by image difference method.

pixel labelled as class 1 located at the interval (Mean – Std, Mean). The temperature change

gradient was clearly observed and most of the urban areas were classified as class 1, which

means that the LST on 8 August 2010 was lower than that on 2 August 1999. The reason

for this may be the increase in vegetation cover in the urban area, which can be seen in

Table 4. LST increased quickly, due to most farmland in the rural area being converted to

built-up and factory areas. LST was then classified as classes 2 and 3, as shown in Figure 6.

However, because the soil type in the southwest of Beijing City had changed to other land-

cover types such as vegetation or trees, these areas were classified as class 3, indicating

decreased LST due to the change of land-use.

Samples for different LULC types were taken from the images to demonstrate the

temperature difference when the land-use type changed (Table 7). It was noted that when

previous land-cover types became a type with an impervious surface, such as that created

by built-up, rooftop, and marble cover types, there was a clear increase in LST. The average

LST decreased by about 8.64◦C when soil was converted to vegetation cover type.

4. Driving force

4.1. Driving force from economic growth

Economic growth over the past 10 years has been the prominent driving force behind the

urbanization of Beijing City. Data from the National Bureau of Statistics of China reveal

that GDP in 2010 was 1.37779 trillion Yuan, while in 1999 it was 217.45 billion Yuan,

showing a significant increase in economic income.

Table 7. Temperature change according to change in LULC type, 1999–2010.

Veg. → Built-up Veg. → Rooftops Veg. → Marble

Temp. diff (◦C) 8.02 ± 1.30 9.52 ± 1.03 7.72 ± 0.83
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4.2. Driving force from population growth

Population growth has been the second driving force behind the expansion of Beijing.

Statistical data from the National Bureau of Statistics of China show that the population

of Beijing City rose from 12.57 million in 1999 to 19.61 million in 2010. This increase

in population naturally necessitated the provision of more houses, jobs, and public places.

Lack of the latter would be likely to seriously disturb economic development due to social

unrest.

4.3. Driving force from other factors

Further forces associated with those mentioned above drove the sprawl of Beijing City.

The first was the need to improve the living and working environment, and the second

was the need to improve traffic conditions. The network of expressways and highways in

2009 showed a marked increase over that in 1999 (Table 8). These two factors pressured

the government to formulate better plans for expansion of the city.

5. Conclusions

LULC change during the process of urban expansion of Beijing City had typical influences

on local climate spatial patterns, as evidenced by the UHI phenomenon. To assess LULC

change and its impact on LST in the city, remote sensing images from Landsat satellites

were utilized to obtain maps of land-cover classification and LST. Several conclusions can

be drawn from this research. First, a significant change in LULC took place in this area

over the 10 years of the study. This change is seen in the increase in impervious surface

areas such as built-up areas, marble surfaces, and rooftop areas, and the decrease in areas

of vegetation. Second, it is apparent that LULC change is the predominant factor in LST

variation found to be closely associated with the physical characteristics of construction

materials used. Bare soil, rooftops, and marble surfaces have been demonstrated to have

a higher surface temperature compared with that of other forms of land-cover, such as

water and vegetation. Temperature variation can be identified when one type of land-cover

is converted to another. Third, the autocorrelation of LST calculated from local Moran’s I

revealed that a stronger heterogeneous nature of surface composition leads to smaller values

of local Moran’s I. Hence, during the process of the design of residential areas, ideally the

use of materials emitting lower surface temperatures is advisable to mitigate the influence

of UHI.

Research studies, using remote sensing images for UHI and LULC changes, indi-

cated that remotely sensed images have the ability to demonstrate changes in land-use and

variation in surface temperature. Compared with methods using data from ground-based

meteorological stations, remote sensing provides higher spatial resolution information

about land-cover change and temperature variation. However, the remote-sensing method

is limited by (1) the effect of cloud cover, which negatively affects imaging quality, and

(2) the restricted revisiting cycle of the satellite for the individual location. To alleviate

Table 8. Length of highways in Beijing City, 1999 and 2009 (km).

Expressway
Highway

class I
Highway
class II

Highway
below class IV

Total length of
highways

1999 190 247 1083 460 12,498
2009 884 914 3106 204 20,755
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these limitations, future work should focus on the integrated application of multi-sensor

satellite data and meteorological data from ground-based stations to provide more accurate

land-cover change information.
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