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Abstract: As the convenient outlet to the Bo Sea and the major region of economic development in
the Yellow River Basin, Shandong Province in China has undergone large changes in land use/land
cover (LULC) in the past two decades with rapid urbanization and population growth. The analysis
of the LULC change patterns and its driving factors in the Shandong section of the Yellow River Basin
can provide a scientific basis for rational planning and ecological protection of land resources in the
Shandong section of the Yellow River Basin. In this manuscript, we analyzed the spatial pattern
of LULC and its spatial and temporal changes in the Shandong section of the Yellow River Basin
in 2000, 2010, and 2020 by using the random forest classification algorithm with the Google Earth
Engine platform and multi-temporal Landsat TM/OLI data. The driving factors of LULC changes
were also quantified by the factor detector and interaction detector in the geodetector. Results
show that in the past two decades, the LULC types in the study area are mainly farmland and
construction land, among which the proportion of farmland area has decreased and the proportion of
construction land area has increased from 19.4% to 29.7%. Based on the results of factor detector, it
can be concluded that elevation, slope, and soil type are the key factors affecting LULC change in the
study area. The interaction between elevation and slope, slope and soil type, and temperature and
precipitation has strong explanatory power for the spatial variation of LULC change in the study area.
The research results can provide data support for ecological environmental protection, sustainable,
and high-quality development of the Shandong section of the Yellow River Basin, and help local
governments take corresponding measures to achieve coordinated and sustainable socioeconomic
and environmental development.

Keywords: Google Earth Engine (GEE); land use/land cover; random forest (RF); geographical
detector; Yellow River Basin

1. Introduction

Land is not only the basis for human survival and development, but also an information
source to explain the interaction between human activities and ecological environment. Land
is the most basic natural resource and material basis for human survival and development [1],
and land use/land cover (LULC) change is a process to determine the change in surface
land use information according to multiple observation data in different periods [2]. Since
the 21st century, the research on LULC change has been gradually strengthened in the field
of global environmental change research. The international geosphere biosphere program
(IGBP) and the International Human Dimensions Program on Global Environmental Change
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(IHDP) have released a series of scientific research plans, and the research on LULC change
has become one of the hotspots of global environmental change research [3–5]. Particularly
with the development of global society and economy, LULC change will further intensify. This
will produce great pressure on the structure and function of the ecosystem and the provision
of ecosystem services [6]. Therefore, studying LULC change and analyzing its driving factors
is conducive to the rational planning and utilization of land resources, and can provide a
scientific basis for the coordinated and sustainable development of regional economy and
natural environment.

Remote sensing technology provides an efficient and fast technical means for LULC
information monitoring due to its advantages of wide observation range, fast renewal cycle,
and a large amount of information [7–9]. Researchers have paid attention to LULC change
monitoring based on remote sensing technology. IGBP and the United States Geological
Survey (USGS) have produced a global LULC data product with 1 km resolution by using
advanced very high resolution radiometer (AVHRR) data [10]; Stefanski et al. used Landsat
and ERS SAR data to classify the LULC in western Ukraine from 1986 to 2010 based on the
RF method, and explored the law of LULC change in this period [11]; Souza analyzed the
change in LULC information in Brazil from 1985 to 2017 based on Landsat [12]; Abdullah
analyzed the temporal and spatial pattern changes of LULC in coastal areas of Bangladesh
from 1990 to 2017 based on extreme gradient boosting (XGBoost) information feature
selection and random forest classification algorithm [13]. The above research confirms the
effectiveness of remote sensing technology in LULC information extraction, but traditional
remote sensing image processing methods to collect, store, process, and extract surface
information will consume a lot of time, and there are high requirements for hardware
equipment. This leads to the problems of massive remote sensing data download and
low processing efficiency in LULC information extraction using remote sensing data on a
large scale.

With the rapid development of cloud storage and cloud computing technology, the
emergence of remote sensing cloud platforms provides a new technical method for down-
loading and processing massive remote sensing data. Among them, GEE is a cloud com-
puting platform for cloud analysis using global scale Earth observation data [14,15]. It
integrates more than 200 remote sensing datasets such as Landsat, Sentinel, and MODIS,
and provides JavaScript and Python coding environments to facilitate users to process
data according to their own needs, realizing the high-performance operation of PB level
remote sensing data [16]. The GEE platform can query, visualize, preprocess and extract
remote sensing data, reduce the workload of data acquisition and processing, and provide
a great convenience for remote sensing workers. Relevant scholars have carried out de-
tailed research and analysis on LULC change [17–19], water resource monitoring [20,21],
eco-environmental quality evaluation [22–24], and agricultural resource monitoring [25,26]
based on the GEE platform.

Analyzing the driving factors of LULC change is a further supplement to the re-search
in LULC change, which is of great significance to optimize LULC mode and improve the
efficiency of LULC. At present, the analysis of influencing factors of LULC change is mainly
separated into qualitative and quantitative categories. The qualitative analysis method can
only analyze the impact of various influencing factors on LULC change, but cannot quanti-
tatively express the impact degree of various factors on LULC change [27,28]. Although the
quantitative method can clarify the influence degree of various influencing factors on land
use change, both methods ignore the relationship between influencing factors and land
use change in spatial location [29,30], so it is difficult to accurately analyze their internal
change potential mechanism. The geographic detector is a statistical method based on
the statistical principle to detect spatial differentiation and reveal driving factors [31,32].
Based on the spatial relationship between them, this method can quantitatively analyze
the influence degree of each driving factor on the independent variable and express the
interaction between two influencing factors [33,34]. In the field of LULC, relevant scholars
have utilized geographic detectors to conduct detailed research and analysis on the influ-
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encing factors of single LULC type changes such as expansion [33] and vegetation cover
change [35–37].

The Yellow River Basin, which spans nine provinces in China from west to east, is an
important area affecting national ecological protection and high-quality development [38].
As the only coastal province among the nine provinces along the Yellow River, Shandong
Province takes a critical responsibility in implementing the outline of ecological protection
and high-quality development of the Yellow River Basin. With the growth in population
and the rapid expansion of cities, great changes have taken place in the LULC of the
Yellow River Basin in Shandong, which seriously threatens the sustainable development
of the ecological environment of the Yellow River Basin [39]. However, there are few
studies on LULC in the Shandong section, and the long-term LULC change process and
its influencing factors are still unclear. Therefore, it is of great significance to analyze the
LULC change process and quantitatively analyze the driving factors in the Yellow River
Basin of Shandong Province.

In order to further analyze the land use/land cover change process in the Shandong
section of the Yellow River Basin and study its long-time series change pattern and driving
factors, this manuscript extracts the LULC type information of the Shandong section of
the Yellow River Basin from 2000 to 2020 and analyzes its change with the help of the
GEE cloud platform and random forest classification algorithm. By calculating the land
use intensity, the land use intensity is spatially expressed based on grid elements, and
its temporal and spatial variation law can be analyzed. Finally, the factor detector and
interactive detector in the geographic detector were introduced to analyze the driving effect
of natural and social factors on land use change, in order to provide a reasonable basis for
ecological environment planning and protection, and promote the comprehensive optimal
allocation of land resources and socioeconomic sustainable development in the study area.

2. Materials and Methods
2.1. Study Area

The Yellow River Basin is the second largest basin and is also an important ecologi-
cal barrier in China. It originates from Bayankala Mountain on the Qinghai Tibet Plateau
and flows into the Bohai Sea in Kenli County, Shandong Province, with a drainage area of
7.95 × 105 km2 [40]. The terrain is high in the west and low in the east. From west to east, it
crosses the geomorphic units of Qinghai Tibet Plateau, Inner Mongolia Plateau, Loess Plateau,
and Huang-Huai-Hai Plain, passing through the nine provinces (autonomous regions) of Qing-
hai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and Shandong [41].
Among them, Shandong Province is the province with the most developed economy and the
largest permanent population in the provinces of the Yellow River Basin. Since the 21st century,
the rapid economic development of the study area and the transformation of urban and rural
spatial structure have led to great changes in LULC. Therefore, it is of great significance to
analyze the LULC change and its driving forces in the Yellow River Basin of Shandong Province
from 2000 to 2020.

The Shandong section of the Yellow River Basin is located between 34◦58′ N–38◦09′ N
and 114◦48′ E–119◦5′ E (Figure 1). It flows through the nine cities of Jinan, Zibo, Dongying,
Jining, Tai’an, Dezhou, Liaocheng, Binzhou, and Heze, with a drainage area of about
2.02 × 104 km2. It belongs to a temperate monsoon climate area with an annual average
rainfall of 500~900 mm and an annual average temperature of 12~15 ◦C. It flows from
west to east through the North China Plain, with a small river slope and gentle water flow.
In addition, the river channel is wide, shallow, and scattered, the sediment deposition is
serious, and the riverbed gradually rises. Both banks are almost protected by levees. The
beach surface of the river channel is generally about 2–5 m higher than the ground on
both banks, and some are as high as 10 m [42]. It is famous as the “suspended river” in
the world.
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Figure 1. Geographical location and topography of the study area.

2.2. Data Preparation

The data used in this manuscript mainly included Landsat TM/OLI remote sensing
image data, digital elevation model (DEM), basic geographic information data, meteo-
rological data, and socio-economic data. In data preprocessing, this manuscript filters,
clouds, mosaics, and cuts the surface reflection (SR) datasets of Landsat 5 TM and Landsat
8 OLI/TIRS in the Shandong section of the Yellow River Basin through the JavaScript
application programming interface on the GEE platform. Finally, the elevation, slope, and
aspect were extracted according to DEM.

In addition, population density (X1), gross domestic product (GDP) (X2), temperature
(X3), precipitation (X4), elevation (X5), slope (X6), aspect (X7), and soil type (X8) were
selected as the influencing factors to analyze the spatial differentiation characteristics of
LULC change in the study area (presented in Table 1). The data of population density,
GDP, temperature, precipitation, and soil type were collected from the resource and envi-
ronmental science and data center of the Chinese Academy of Sciences (Available online:
https://www.resdc.cn/, accessed on 25 August 2021).

Table 1. Factors influencing the LULC changes.

Factors Types Code Index

Social factors
X1 Population density
X2 Gross domestic product

Natural factors

X3 Temperature
X4 Precipitation
X5 Elevation
X6 Slope
X7 Aspect
X8 Soil type

2.2.1. Constructing Multidimensional Classification Feature Sets

Based on the GEE platform, this manuscript selected the apparent reflectance datasets
of Landsat TM/OLI in the study area in 2000, 2010, and 2020. However, due to the complex
climate conditions in the study area, the cloud-free image of the whole area could not be
generated by using only the image of a single year, which had a certain negative impact on
the study. Therefore, we used all the images from 1999–2001, 2009–2011, and 2019–2021
from April to October to synthesize the remote sensing image dataset of the target year
and to achieve the best classification effect. The normalized difference vegetation indices—
normalized difference vegetation index (NDVI) [43], normalized difference build and soil
index (NDBI) [44], enhanced vegetation index (EVI) [45], normalized difference water
index (NDWI) [46], modified normalized difference water index (MNDWI) [47]—and other

https://www.resdc.cn/
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indices were calculated, and factors such as elevation, slope, and aspect were obtained
by importing DEM data to improve the classification accuracy. Finally, a high-quality
multidimensional classification feature set for RF classification was obtained.

2.2.2. Training and Validation Sample Selection

The classification was determined based on the existing LULC in the study area and
regarding the relevant previous studies [48,49]. The LULC types in the study area were
classified into six categories: farmland, forest land, grassland, waterbody, construction
land, and unused land.

High-quality training samples and verification samples are required when using the
RF for feature classification. The samples in the three-time periods of the study area were
obtained through visual interpretation based on the high-resolution historical images from
Google Earth Pro. The number of sample points in 2000, 2010, and 2020 was 1370, 1351,
and 1301, respectively. Seventy percent of the sample points were used as training samples
for training classifiers and 30% as verification samples for accuracy verification [50].

2.2.3. Anthropogenic and Natural Data

To analyze the driving factors of LULC change, we used geographic detectors to
analyze the impact of various influencing factors on LULC change in the study area.
Among them, the influencing factors such as population density, GDP, elevation, aspect,
temperature, and precipitation were divided into six grades by using the natural breakpoint
method. The soil types included semi-luvisols, pedocal, arid soil, desert soil, first-breeding
soil, and semi-hydromorphic soil. The spatial distribution map of all influencing factors is
presented in Figure 2.
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2.3. Methods

This manuscript analyzed the extraction of LULC types and drivers of LULC change
in the study area based on the multi-temporal Landsat series remote sensing image data
on the GEE platform, and the flowchart is displayed in Figure 3. First, we preprocessed
Landsat TM/OLI data into data filtering, cloud masking, mosaicking, and clipping on
the GEE platform, and calculated the corresponding feature parameters to obtain the
multidimensional classification feature dataset. The RF machine learning algorithm was
then implemented to the LULC classification, and the results were validated using a
confusion matrix. We obtained three LULC classification products for the study area in
2000, 2010, and 2020 and used the transfer matrix to analyze the changes in each LULC
type. Finally, we analyzed the LULC change in the study area from two perspectives of
natural and social factors through geographic probes for driving force analysis.
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2.3.1. Random Forest

The random forest algorithm was implemented to the LULC classification, which is a
combinatorial classification method based on categorical regression trees proposed by Leo
Breiman in 2001 [51]. The basic principle of this algorithm is to construct a collection of
decision tree classifiers, each decision tree would give a classification choice by using the
mechanism of multiple decision tree voting to improve the problem of easy overfitting of
decision trees as well as the use of majority voting mechanism strategy to obtain the final
output [52,53]. Compared with other machine learning methods, RF classification algorithm
has better robustness and can run effectively on large datasets [54–56]. Some scholars have
carried out relevant research on LULC classification by using the RF algorithm on the GEE
platform and achieved excellent research results [57–59].

The LULC type was performed by directly calling the ee.smileRandomForest function
in the GEE API, which only needs to identify two parameters: the number of classification
trees and the number of feature variables entered at the time of node splitting [60]. It was
found experimentally that the classification results were more accurate when the number
of trees was 500, so 500 trees were finally selected for RF classification, and the number of
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feature variables had the square root of the number of features involved in the classification
calculated [61].

2.3.2. Evaluation

In this manuscript, we used a confusion matrix to verify the accuracy of the classifica-
tion results of the features in the study area and describe the accuracy of the classification
results by calculating the overall accuracy, Kappa coefficient, producer’s accuracy, and
user’s accuracy.

1. Overall accuracy: The overall accuracy reflects the overall effectiveness of the
algorithm and is measured by the proportion of the number of correctly classified samples
to the total number of validation samples.

POA =
1
N

n

∑
i=1

pii (1)

where POA denotes the overall accuracy; N denotes the total number of samples used for
accuracy evaluation; n denotes the total number of categories; and pii denotes the number
of correct classifications of the ith sample in the confusion matrix.

2. Kappa coefficient: Kappa coefficient indicates the degree of agreement between the
ground truth data and predicted values.

K =

N
n
∑

k=1
pkk −

n
∑

k=1

(
n
∑

i=1
pki

n
∑

j=1
pkj

)

N2 −
n
∑

k=1

(
n
∑

i=1
pki

n
∑

j=1
pkj

) (2)

where K denotes the kappa coefficient; n denotes the total number of categories; pkk denotes
the number of correct classifications of the kth sample in the confusion matrix; and ∑n

i=1 pki
and ∑n

j=1 pkj denote the sample size on the i-th and j-th columns, respectively. N denotes
the total number of samples used for accuracy evaluation.

3. Producer’s accuracy: The mapping accuracy indicates the probability that the
ground truth reference data (validation sample) of the category is correctly classified.

PPA =
pkk

n
∑

j=1
pkj

(3)

where PPA denotes the mapping accuracy; n denotes the total number of categories; pkk
denotes the number of correct classifications of the kth sample in the confusion matrix; and
∑n

j=1 pkj denotes the sample size on the jth column.
4. User’s accuracy: The user accuracy represents the ratio of the number of correctly

classified pixels in a category to the total number of pixels in that category in the subcategory.

PUA =
pkk

n
∑

i=1
pki

(4)

where PUA denotes user accuracy; n denotes the total number of categories; pkk denotes the
number of correct classifications of the kth sample in the confusion matrix; and ∑n

i=1 pki
with denotes the sample size on the ith row.

2.3.3. Land Use Degree Index

In this manuscript, we evaluated the land use degree index in the study area using
the composite land use index, which is a reflection of the actual degree of human use of
land and is essentially explained by the level of land use and development in the region. A
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higher value indicates a stronger degree of land use and the more complex the social and
economic activities in the area [62]. The degree of land use in the study area is calculated as
follows:

la = 100×
n

∑
i=1

Ai × Ci (5)

where La is the land use degree index value; Ai is the land use degree grading index; and
Ci is the percentage of the graded area of the i-th type of land use degree. According
to relevant studies [63], the types were divided into four classes and assigned different
grading indices, as shown in Table 2.

Table 2. Land resource use types and grades.

Type of Land Uncultivated
Land Ecological Land Agricultural

Land
Construction

Land

LULC types
Unused land

(sand and bare
land)

Forest land,
grassland,

wetland, and
water body

Farmland

Urban,
residential area,
traffic land, and
industrial land

Index of
Classification 1 2 3 4

2.3.4. Geographical Detector

The geographical detector method was proposed by combining geographic informa-
tion system (GIS), spatial superposition, and set theory techniques based on the theory
of spatial differentiation [64,65]. The geographical detector is a new method to reveal
its driving factors by detecting spatial differentiation, which overcomes the disadvan-
tages of traditional mathematical-statistical models with many assumptions and large
data requirements [66]. The geographic detector includes four detectors: factor detector,
interaction detector, risk detector, and ecological detector. According to the research aims,
this manuscript adopted the factor detector and interaction detector in the geographic
detector to reveal the driving factors of LULC change in the study area, and analyzed the
interaction between the factors on LULC change, and conducted driving force analysis and
quantitative attribution of LULC change in the study area from multiple perspectives.

The factor detector is mainly used to detect the spatial heterogeneity of the depen-
dent variable and the explanatory power of the independent variable on the dependent
variable, the explanatory power of the influence factor Xi on the spatially heterogeneous
characteristics of LULC change [67], q can be expressed as:

q = 1−

L
∑

h=1
Nhσ2

h

Nσ2 (6)

where L is the number of layers of the independent variable; N and Nh are the number of
samples within the layer and within the region; and σ2 is the overall variance of the sample.

The interaction detector is used to identify the interaction between different risk factors
to assess whether the factors together increase or decrease the explanatory power on the
dependent variable, or whether the effects of these factors on the dependent variable are
independent of each other [68,69]. Assuming that q(x1) and q(x2) are the explanatory power
of the influence factors x1 and x2, respectively, on the spatially divergent characteristics of
LULC change, q(x1 ∩ x2) is the explanatory power of the two factors when interacted with
each other, and five patterns of influence exist (Table 3).
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Table 3. The patterns of interaction detector.

Judgment Criteria Interaction

q(x1 ∩ x2) < Min(q(x1), q(x2)) Weaken, nonlinear
Min(q(x1),q(x2)) < q(x1 ∩ x2) < Max(q(x1), q(x2)) Weaken, univariate

q(x1 ∩ x2) > Max(q(x1), q(x2)) Enhance, bivariate
q(x1 ∩ x2) = q(x1) + q(x2) Independent
q(x1 ∩ x2) > q(x1) + q(x2) Enhance, nonlinear

3. Results
3.1. Accuracy Assessment

The accuracy of the classification results is the fundamental part of LULC change
analysis. This manuscript calculated the confusion matrix between the training samples
and classification results each year based on the GEE platform. The results are displayed
in Table 4. The overall accuracy of the three classification results in 2000, 2010, and 2020
were 87.54%, 88.06%, and 89.85%, respectively, and the kappa coefficient was 0.86, 0.88,
and 0.89, respectively. The overall accuracy and kappa coefficient of classification in the
three-periods were above 80% and different LULC types had high cartographic accuracy in
the classification results of each period. It can be concluded that the overall accuracy of
classification reached an acceptable threshold, indicating that the classification results were
accurate and reliable.

Table 4. The patterns of interaction detector.

LULC Types
2000 2010 2020

PUA (%) PPA (%) PUA (%) PPA (%) PUA (%) PPA (%)

Farmland 90.23 89.56 92.56 90.48 91.17 90.29
Forestland 78.23 82.33 80.65 83.95 84.23 84.33
Grassland 82.64 86.66 82.34 83.56 83.45 84.45

Water body 90.53 89.63 92.13 88.34 92.45 90.36
Construction land 89.56 88.63 89.63 92.34 89.56 88.63

Unused land 76.33 77.35 77.92 81.23 82.65 85.34

POA (%) 87.45 88.06 89.85
Kappa coefficient 0.86 0.88 0.89

To further verify the accuracy of the classification results, several parts of the classifica-
tion results in the study area were randomly selected and the results were then compared
with the Google Earth Pro and China multi-period LULC remote sensing monitoring dataset
(CNLUCC) [70]. As presented in Figure 4, the classification results of this manuscript could
better classify water bodies, construction land, grassland, and some arable land. This had a
high correspondence with the features in the Google Earth Pro images. Overall, the results
of the LULC type in this manuscript proved the accuracy and reliability.

3.2. LULC Structure Change

The spatial distribution of three phases of LULC in the Shandong section of the Yellow
River Basin from 2000 to 2020 is displayed in Figures 5 and 6. It can be seen from the figure
that farmland is the main LULC type in the study area, accounting for more than 47%,
which is mainly distributed along the Yellow River and in the plain area in the south of
Mount Tai. The proportion of construction land area has gradually increased from 19.42% in
2000 to 29.77% in 2020 and is mainly distributed on the plain in the form of rural settlement
patches, while a large area of construction land patches is mainly distributed in the main
urban area of Tai’an City and Laiwu District. The proportion of forest land area is about
7%, mainly concentrated in Mount Tai and surrounding mountainous areas. The overall
change of water area was relatively small, which is mainly distributed in the Yellow River,
Dongping Lake, and other small reservoirs.
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3.3. Spatial-Temporal LULC Changes

To intuitively reflect the quantitative structural characteristics of LULC types and the
transfer relation between different LULC types, we calculated the LULC transfer matrix
to quantitatively describe the mutual transformation between different LULC types in the
study area. The transfer maps of LULC types in the study area from 2000 to 2010 and from
2010 to 2020 were calculated and are presented in Figure 7, respectively. In general, the
area of construction land and farmland in the study area increased significantly, the area of
grassland decreased, while the area of other LULC types remained basically unchanged.
From the perspective of the main LULC type transfer, the expansion of construction
land mainly came from farmland, and the reduced grassland mainly flowed to farmland
and forest land. From 2010 to 2020, the construction land increased. In contrast, the
farmland area showed a downward trend. The reduced farmland was mainly transformed
into construction land, while a small amount of construction land was transformed into
farmland, and part of the grassland was transformed into forest land. Comparing the LULC
change in the study area from 2000 to 2010 and from 2010 to 2020, it can be concluded that
the farmland area in the study area increased first and then decreased, and the total area of
the farmland has increased gradually during the past twenty years. In conclusion, from
2000 to 2020, the total area of construction land in the study area gradually increased, the
area of forest land and water body almost changed, and the area of farmland and grassland
decreased.

3.4. Land Use Degree Change

The degree of land use can effectively reflect the breadth and depth of land use
and development. Based on the LULC data in the study area, this manuscript evaluated
different land types, and comprehensively calculated the land use degree index to measure
the comprehensive level of land use from 2000 to 2020. The spatial distribution map of land
use degree is expressed in Figure 8 as the format of the grid in 1.5 km * 1.5 km. Results
show that land-use intensity has obvious spatial differentiation. The land use intensity
in plain areas is generally higher than that in hilly areas. The areas with high land use
degree were mainly distributed in plain areas, which is due to the high degree of human
interference, high level of land development and utilization, and the types of land use/land
cover are mostly cultivated land and construction land, which is also the main reason for
the improvement of land use degree in this area. The areas with low land use intensity were
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mainly distributed in hilly areas (shown in the blue circle in Figure 8). In hilly areas, limited
by terrain, there were less human interference activities, and the land types were mainly
forest land and grassland, so the land use degree in this area was low. In addition, the land
use intensity in the study area gradually increased from 2000 to 2020, showing an obvious
upward trend year by year, especially in the estuary area of the Yellow River, where the
land use degree increased significantly under the influence of human development (shown
in the red circle in Figure 8).
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3.5. Analysis of Influencing Factors of LULC Change
3.5.1. Analysis of Single Factor Detection Results

The factor detector is used to analyze the explanatory power of various influencing
factors on the spatial differentiation characteristics of land-use intensity in the study area.
The results are shown in Table 5. The P values of all detection factors were 0, which indicates
that the selected detection factors had a significant impact on the spatial differentiation
characteristics of land-use intensity. It can further be used as an influencing factor to analyze
its differentiation. The q value in Table 5 demonstrates that the greater the explanatory
power of each influence factor on the spatial differentiation of land use intensity, the greater
its value, indicating the stronger explanatory power of this influence factor on the spatial
differentiation of land use intensity.

Table 5. The patterns of interaction detector.

Year X1 X2 X3 X4 X5 X6 X7 X8

2000
q 0.148 0.040 0.351 0.113 0.287 0.262 0.016 0.310
p 0 0 0 0 0 0 0 0

Sequence 5 7 1 6 3 4 8 2

2010
q 0.104 0.039 0.267 0.131 0.434 0.437 0.011 0.197
p 0 0 0 0 0 0 0 0

Sequence 6 7 3 5 2 1 8 4

2020
q 0.058 0.086 0.181 0.063 0.413 0.402 0.017 0.185
p 0 0 0 0 0 0 0 0

Sequence 7 5 4 6 1 2 8 3

As presented in Table 5, the q values of population, temperature, and soil type grad-
ually decreased from 2000 to 2020, indicating that the driving effect of these influencing
factors decreased; the q value of elevation and slope increased greatly while the change
range of other factors was relatively small. In general, the q values of elevation, slope, and
soil type were large, showing that elevation, slope, and soil type have strong explanatory
power on LULC change, which are the main factors affecting LULC change in the study
area. In contrast, the q values of GDP and aspect were always lower than 0.1, showing that
GDP and aspect have little impact on LULC change in the study area.

3.5.2. Analysis of Interaction between Factors

The single factor detector can analyze the influence degree of each influencing factor
on the land use degree, while the interaction detector is used to identify the interaction
of different influencing factors on the spatial differentiation of land use degree, and can
analyze whether it will increase or weaken the explanatory power of the spatial differentia-
tion of land use degree. As per the results presented in Figure 9, the interaction among the
influencing factors had stronger explanatory power on the spatial differentiation of land
use degree than that of a single factor. The types of interaction were mainly double synergy
and nonlinear synergy. This shows that the spatial differentiation characteristics of land
use degree are not controlled by a single factor or a single category of factors, but are jointly
affected by factors such as elevation, slope, population density, temperature, precipitation,
and so on. Among them, the interaction between elevation and slope, slope and soil type,
altitude and soil type, and temperature and precipitation had the strongest explanatory
power. Through the above analysis, it can be concluded that the spatial differentiation
characteristics of LULC change are mainly affected by the interaction between elevation,
slope, soil type, temperature, and precipitation. The explanatory power of precipitation
in the detection of a single factor is relatively weak, but had strong explanatory power in
the interaction with the temperature factor. This shows that the influence of precipitation
on the spatial differentiation characteristics of LULC change can be effectively displayed
under the joint action of the temperature factor.
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4. Discussion

Based on the GEE cloud platform, this study used RF classification algorithm to
classify the surface land use type information of the Shandong section of the Yellow River
Basin from 2000 to 2020. According to the USGS survey and related literature, the overall
accuracy and kappa coefficient threshold of 85% was sufficient [71], while the overall
accuracy and kappa coefficient of LULC types exceeded 86% in this manuscript, indicating
that the classification results were reasonable and reliable. The process and trend of land
use changes over 20 years were analyzed using a three-period LULC dataset, and the LULC
status changed significantly over the 20 years in the study area; in particular, with rapid
urban expansion, the area of built-up land has increased rapidly from 19.42% to 29.77%.
The pattern of the LULC change has a significant impact on the study area, leading to a
continuous increase in the degree of land use.

LULC change is the result of multiple factors, and this manuscript quantitatively
analyzed the driving forces of social and natural factors on LULC change based on geo-
graphic probes and found that topography-related factors such as elevation and slope are
the main driving factors affecting LULC change in the study area. The topography-related
factors contributed the most to LULC change, which may be because the area belongs to the
farming area and the plains have mostly been cultivated historically, while the hilly areas
are mostly forested and grassland, so the topography factors have significant influencing
factors on the LULC classification results. Some research results have likewise shown that
topography was also found to have a significant effect on LULC classification [60,72]. This
manuscript not only illustrated the intensity of each factor’s influence on LULC change
from the single factor aspect, but also further explored the mechanism of LULC change from
the perspective of factor interaction, which makes up for the shortcomings of conventional
methods that cannot explain the influence mechanism of interaction, and eliminates the in-
fluence of covariance among factors, which is of practical significance for a comprehensive
understanding of the process of LULC change.

In this manuscript, the GEE cloud platform could quickly and accurately realize the
land use classification in the study area and effectively solve the problems of a large amount
of data processing and complex workflow in the process of land use classification in a
large area. The pixel oriented RF classification method used in this manuscript realizes
LULC classification in the study area. The overall accuracy and kappa coefficient of the
classification results meet the requirements, but there is no object-oriented thinking in this
method, which will produce some salt and pepper noise [73]. Therefore, this method still
has some room for improvement in the land use classification method in the study area.
The focus of future research should be on the fusion of image segmentation and feature
matching.
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In addition, based on the factor detection and interactive detection in the geographic
detector, the driving factors of LULC change were quantitatively attributed. By analyzing
the results of factor detection and interactive detection, it was found that natural factors
such as altitude and slope have a huge impact on land use change. LULC change is closely
related to the local natural environment and policy documents. In this manuscript, the
richness and diversity of selected index factors need to be improved. In future research, it
is also necessary to further consult relevant policy documents and relevant materials to
enrich the impact factors of the index system to analyze the causes of LULC change more
finely and comprehensively.

5. Conclusions

Based on the GEE cloud platform, this manuscript used the RF method to classify the
land use in the Shandong section of the Yellow River Basin, obtained the multi temporal
land use type distribution map of the study area, then calculated the transfer matrix to
analyze the land use change, before finally introducing the geological detector to analyze
the potential driving mechanism of land use change of land use intensity in the study
area. The results show that from 2000 to 2020, the land type in the study area was mainly
cultivated land, followed by construction land, forest land, and grassland. There was
a phenomenon of the degradation of cultivated land and grassland, while the area of
construction land and forest land increased, and the proportion of water body and unused
land basically remained unchanged. From the perspective of land type transfer, it was
found that cultivated land was mainly converted to construction land and grassland was
mostly converted to forest land. From the analysis of land use intensity, the areas with
high land use intensity in the study area were mainly distributed in plain areas, and the
main land types were cultivated land and construction land, while the areas with low
land use intensity were mainly distributed in hilly areas, and the land types were mainly
grassland and forest land. In addition, this manuscript analyzed the influencing factors of
land use change through two methods: factor detector and interactive detector. The results
showed that altitude, slope, and soil type were the main influencing factors of land use
change. By analyzing the land use change and driving factors in the Shandong section of
the Yellow River Basin, this manuscript further revealed the law of land use change and
the internal mechanism of the region, provides data support for ecological environment
governance, and helps the local government to take corresponding measures to realize
regional rational planning as well as coordinated and sustainable development of social
economy and environment.

In this manuscript, the computing power of the GEE cloud platform was fully utilized
to realize the LULC classification in the study area, which provides a working paradigm
for large-scale, complex, and diverse feature classification research. However, only using
optical remote sensing satellites to carry out LULC classification research still has some
shortcomings such as an imperfect classification system and insufficient ground sample
points. In future research, we will combine multi-source remote sensing data to give full
play to the combination advantages of different data sources. Moreover, more diverse
and sufficient ground sample points would be established to improve the remote sensing
monitoring accuracy of regional LULC change.
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