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ABSTRACT: Land use/Land cover (LULC) is a fundamental concept of the Earth's system 23 

intimately connected to many phases of the human and physical environment. Earth Observation (EO) 24 

technology provides an informative source of data covering the entire globe in a spatial and spectral 25 

resolution appropriate to better and easier classify land cover than traditional or conventional 26 

methods. The use of high spatial and spectral resolution imagery from EO sensors has increased 27 

remarkably over the past decades, as more and more platforms are placed in orbit and new 28 

applications emerge in different disciplines.  29 

The aim of the present review work is to provide all-inclusive critical reflection on the state of 30 

the art in the use of EO technology in LULC mapping and change detection. The emphasis is placed 31 

on providing an overview of the different EO datasets, spatial-spectral-temporal characteristics of 32 

satellite data and classification approaches employed in land cover classification. The review 33 

concludes providing recommendations and remarks on what should be done in order to overcome 34 

hurdle faced using above-mentioned problems in LULC mapping. This also provides information on 35 

using classifier algorithms depending upon the data types and dependent on the regional ecosystems.  36 

One of the main messages of our review is that in future, there will be a need to assemble 37 

techniques specifically used in LULC with their merit and demerits that will enable more 38 

comprehensive understanding at regional or global scale and improve understanding between different 39 

land cover relationship and variability among them and these remains to be seen.  40 

 41 
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1 Introduction 45 

1.1 Introductory concepts 46 

Land Use/Land Cover (LULC) and its changes has been considered as one of the factor of global 47 

environmental change (Erdogan et al. 2015). Accurate identification and monitoring of LULC is 48 

important for land resource management, since LULC mapping constitutes an important part of the 49 

land management system (Chatziantoniou et al. 2017). Land cover demonstrates the terrain features 50 

on the Earth surface whereas land use reflects the utilization of available land by the human beings i.e. 51 

built environment/human use of terrains (Fisher et al. 2005; Hansen and Loveland 2012). Accurate 52 

knowledge of LULC provides critical information for planning and management activities (Elatawneh 53 

2015). This is attributed to the fact that land is one of the most important natural resource of the earth 54 

system contributing to life and various other development activities (Whyte et al. 2018). 55 

LULC information and its spatial distribution patterns are essential for a wide spectrum of research 56 

themes especially urban studies characterized by heterogeneous classes and for maintenance and 57 

developmental plans (Stefanov et al. 2001). LULC change has been perceived as a key driver of 58 

worldwide environmental change by affecting the land surface (Petropoulos et al. 2013). Being in 59 

steady change, urban perimeter, river basins, wetlands, agricultural areas are constantly subjected to 60 

LULC changes, particularly by decreasing forest cover to give a path for agricultural extension, 61 

urbanization, industrialization and so on (Stamou et al. 2016). Land cover in urban environments is 62 

changing rapidly and conversion from agricultural/fallow to concrete forest resulting in urban sprawl 63 

(Pandey et al. 2012), hence play a key role in environment changes (Vargo et al. 2013).  64 

The assessment of LULC and of its change is important for understanding several environmental 65 

issues related to urban as well as to surrounding landscapes. The primary impact on many other 66 

processes need to be assessed, such as utilisation of land cover, surface temperature variation due to 67 

concrete forest, (Rani et al. 2018), habitat fragmentation, biodiversity loss (Trisurat et al. 2010; 68 

Theobald et al. 2011), soil and land degradation (Zucca et al. 2010; Bajocco et al. 2012; Pandey et al. 69 

2013), decreased air quality, waste disposal problem (Pandey et al. 2012), decreased water seepage, 70 

increased runoff along with subsequent flooding/flash flood, water quality deterioration (Tu 2011; 71 

Uriarte et al. 2011), and decreased agricultural productivity. An improved understanding of historical 72 

LULC change patterns provides a better means to understand the present and project future trends of 73 

LULC change using different remote sensing (RS) datasets at multiple spatial, spectral and temporal 74 

resolutions (Pocewicz et al. 2008). One of the key concerns about LULC and its impact has emerged 75 

on a global stage due to the realisation that changes occurring on the land surface also influence 76 

climate (Mahmood et al. 2014), ecosystem and its services and in return reduces biotic diversity 77 

(Dezso et al. 2005). As a result, the requirements for mapping and monitoring LULC at multiple 78 

scales are well-suited with demands associated to the EU habitats Directive (Petropoulos et al. 2013; 79 

Singh Priyadarshini et al. 2017).  80 

Nowadays remote sensing is the primary sources used extensively for LULC analysis in the recent 81 

decades. Remote sensing often combined with Geographic Information System (GIS) has been used 82 

extensively in mapping LULC in the analysis of their dynamics (Zucca et al. 2010). Several research 83 

works were carried out by considering the importance of LULC changes at multiple scales, for spatio-84 

temporal change patterns and identification of composition and its rate among different study sites 85 

(Gessner et al. 2009; Chen G et al. 2012; Modica et al. 2012; Sharma et al. 2012; Grecchi et al. 2014). 86 

The purpose of this review is to present LULC classification using multi-sensors, multi-source, multi-87 

temporal datasets, input dimension and use of classifiers, and present the standard on improving the 88 
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change analysis, depending upon the user needs and requirements according to the landscape or data 89 

availability. Figure 1 represents the user inputs, input dimension and classifier algorithms for LULC 90 

mapping. The use of more than one data attributes helps in enhancing the results, such as high spatial 91 

resolution, high spectral resolution, providing high temporal resolution to study change patterns at a 92 

regular interval and may contribute a large coverage of the landscape.  93 

 94 

 95 

Figure 1 An illustration showing types of datasets, spatio-spectral-temporal dimension and classifiers 96 

algorithms for LULC and dynamic changes (author generated figure). 97 

 98 

Thus, the objective of this review is two-fold: first to highlight various aspects of LULC classification 99 

using multi-sensor, multi-source, multi-temporal datasets, input requirements and use of classifiers 100 

and second to present the standard on improving the change analysis, depending upon the user needs 101 

and requirements according to the landscape or data availability. In this background, the importance 102 

of input dimension, remotely sensed datasets, as well as algorithms is discussed which is certainly 103 

dependent upon how they are being utilised during LULC assessment.  104 

 105 

1.2 EO datasets: Multispectral, Hyperspectral, LiDAR, SAR 106 

Remote sensing has emerged as very powerful technology providing accurate spatial information and 107 

LULC distribution in the temporal period (Bora and Goswami 2016; Gidey et al. 2017; Rani et al. 108 

2018; Kabisch et al. 2019). The use of remotely sensed dataset depends upon the user's need, 109 
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requirement, and type of assessment of the landscape. While other factors such as regional coverage 110 

(either large or small-MODIS, MISR), spatial and spectral (AVIRIS, ASTER, AVHRR), high spatial-111 

spectral resolution (AISA -airborne hyperspectral images), temporal coverage (LANDSAT TM, MSS, 112 

ETM+) and Synthetic Aperture Radar (SAR) data (to counter cloud effects) play an important role in 113 

choosing the particular data for a specific type of study (See Figure 2).  114 

LULC change patterns and dynamic changes have been presented with conventional methods, 115 

individual remote sensing data, multi-sensor, multi-source, multi-sensor-temporal data are widely 116 

used for assessment and evaluation of LULC change and patterns of the landscape (Figure 2). More 117 

recently the synergy between different Earth Observation (EO) datasets in obtaining LULC mapping 118 

has been examined. The motivation behind the synergy of different datasets is to harness the different 119 

properties such as spatial, spectral, topographic, texture for improving the accuracy of land cover 120 

mapping and temporal for improving the change dynamics. Therefore, user needs and requirements 121 

play an important role in the selection of types of remotely sensed datasets, input dimension, and 122 

implementing classifiers. With the advancement of EO technology, the broad spectral resolution 123 

was replaced with high spectral resolution and filled the gap in limitation of multispectral imaging 124 

(Heiden et al. 2007). EO datasets classification along with a range of classification approach varies 125 

with the complexity of study site, the content and details of the classification scheme, spatial/spectral 126 

resolution of datasets, and thus remains a challenge in the remote sensing community. 127 

In overall, remotely sensed data are sharing the stages for LULC change and pattern analysis 128 

according to need and availability. The implementation of different remotely sensed data is according 129 

to the users' needs and the requirement for large area coverage, high spatial resolution, spectral 130 

resolution, temporal resolution or combination of one or more together. 131 

 132 

 133 

Figure 2: Conceptual model to demonstrate the user needs and requirements revolve around the basic 134 

characteristics/properties of remotely sensed data and their combinations (author generated figure). 135 
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Table-1: Major space-borne multispectral sensors and their specifications:  Sources: (Piwowar 2011; BELSPO 2013; PASCO 2015; ESA 2018) 136 
 137 

 Sensors Platform   Spectral range/ 

resolution  

Spatial/ Spectral resolution 

(m) 

Channels Revisit time   Swath Width Organi

zation / 

Nation 

Launch year 

1 LANDSAT 

MSS 

 0.5-1.1 µm Optical – 60 m 4 Bands  

 

18 Days 185 km NASA LANDSAT 1 (1972) 

LANDSAT 2 (1975) 

LANDSAT 3 (1983) 

2 LANDSAT 

TM 

 0.45 – 12.50 µm Optical – 30 m, 

Thermal - 120 m 

7 Bands 16 days 185 km NASA LANDSAT 4 (1982) 

LANDSAT 5 (1984) 

3 LANDSAT 

ETM+ 
 0.45 – 12.50 µm Optical – 30 m 

Thermal – 60 m  

Pan – 15 m 

8 Bands 

 

16 Days 185 km NASA LANDSAT 7 ( 15 

April 1999) 

4 LANDSAT 

8 

EO - 1 0.43 – 12.51 µm Optical – 30 m,  

Cirrus – 30 m 

Pan – 15 m 

Thermal – 100 m 

11 Bands 16 Days 185 km NASA LANDSAT 8 (11 Feb 

2013) 

 

5 LISS- I 

 

IRS- 1A, 1B 0.45 – 0.86 µm 72 m 4 Bands 22 Days 148 km ISRO IRS 1A (17 March 

1988) 

IRS 1B (29 Aug 1991) 

6 LISS- II 

 

IRS- 1A, 1B 0.45 – 0.86 µm 36 m 4 Bands 22 Days 148 km ISRO IRS 1A (17 March 

1988) 

IRS 1B (29 Aug 1991) 

7 LISS- III IRS- 1C 

ResourceSat- 

1 

0.52 – 1.70 µm 

 

Green, Red, NIR – 23  

Mid-IR – 70 

4 Bands 24 Days 142 km (G,R,NIR) 

148 km (Mid-IR) 

140 km 

(ResourceSat-1) 

ISRO IRS 1C (28 Dec 1995) 

8 LISS-IV ResourceSat- 

1 

0.52 – 0.86 µm   5.8 m 3 Bands 5 – 24 Days 70 km ISRO 17 Oct 2003 

9 SPOT 5  Green: 0.5-0.59 µm 

Red:0.61-0.68 µm 

Near IR: 0.78-0.89 µm 

SWIR: 1.54.1.75 µm 

5 m PAN 

2.5- 3 m on ground  

B1-B2-B3= 10 M 

SWIR=20 M 

1 band (PAN) 

 

4 bands (MS) 

2-3 days 60 x 60 km or  

60 km x 120 

France May 3, 2002 

1

3 

WorldView- 

1 

 0.45 – 0. 90 µm   50 cm (Nadir) –  

55 cm (off-Nadir)  

1 Band (Pan) 1.7 Days (1 m or less) 

5.9 Days (50 cm 

resolution) 

17.6 km (Nadir) USA 18 Sept 2007 

1

4 

WorldView- 

2 

 450 – 800 nm Pan – 0.46 (Nadir) 

Multispectral – 1.84 Nadir) 

1 Band (Pan) 

8 Bands (MS) 

1.1 Days (1 m or less) 

3.7 Days (52 cm 

resolution) 

16.4 km USA 8 Oct 2009 

1

5 

WorldView   

- 3 

 400 – 2365 nm Pan – 0.31 

Multispectral  Nadir– 1.21 

SWIR Nadir= 3.7 m 

1 Band (Pan) 

8 Bands (MS) 

8 Bands (SWIR) 

4.5 Days 13.1 km USA 13 Aug 2014 
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CAVIS Nadir= 30m 12 Bands (CAVIS) 

1

6 

WorldView- 

4 

 450 – 920 nm PAN Nadir= 0.30 m 

Multispectral Nadir=1.24m 

1 Band (Pan) 

4 Bands (MS) 

4.5 Days 13.1 km USA 11 Nov 2016 

1

7 

Sentinel 1  4.0 – 8.0 cm Pan  – 5 1 Band (C-SAR) 6 Days 80 km ESA 3 April 2014 

1

8 

Sentinel 2  0.44 – 2.19 µm 10 – 60 13 Bands 5 Days (2 Satellite) 

10 Days (1 Satellite) 

290 km 

 

ESA 23 June 2015 

1

9 

QUICKBIR

D 

 450 – 900 nm Pan – 65 cm MS – 2.62 (Nadir) 

Pan – 73 cm MS – 2.90 (off 

Nadir) 

5 Bands 1–3.5 Days 16.8 km 

18 km (Early 2013) 

USA 18 Oct 2001 

2

0 

IKONOS  0.45 – 0.90 µm Pan – 0.82 MS – 3.28 (at Nadir) 

Pan – 1.0 MS – 4.0 (off Nadir) 

5 Bands Approx. 3 Days 11.3 km (Nadir) 

11.8 km (off-Nadir) 

USA 24 Sept 1999 

 138 
Table-2: Major space-borne Hyperspectral satellite and their specifications (launched or planned future missions) 139 
 140 

 Sensors Platform   Spectral range (resolution) Spatial /Spectral resolution Channels Revisit time   Organization 

/Nation  

Launch year 

01 Hyperion EO-1 400-2500 nm 30 m 220 200 days NASA Nov 2000 

02 CHRIS PROBA 400-1050 nm 18 m to 36 m 

- 63 spectral to provide 34 m  

150 2 (mid-latitudes)  ESA 22 Oct 2001  

03 EnMap  420-2450 nm 

~VNIR (420-1000 nm) 

~SWIR I (900-1390 nm) 

~SWIR II (1480- 1760 nm) 

~SWIR III (1950-2450 nm) 

30 m at Nadir 

 

Spectral Sampling 

VNIR: 5-10 nm (6.5 nm average) 

SWIR: 10 nm (average) 

232 23 days & 

4 days (across track 

±30°) 

DLR Germany 2015 

04 HyspIRI#  optical hyperspectral 

imaging ~ 400-2500 nm 

and  

 

Multispectral IR at 8-12 μm 

60 m at 150 km Swath 

(after 2013-30 m) 

 

 

 

217 VSWIR- 19 Days 

(after 2013- 16 days) 

 

 

TIR -5 days
@

 

NASA 2015 

05 HySIS  400- 1200 nm  30 m/ 10 nm 55 5 / 19 days  ISRO India  November 2018 

06 SHALOM MBT SPACE 400- 2500 nm 10 m  241 2 days Israel Space 

Agency 

16 June 2019* 

07 PRISMA VEGA Italian 

launcher. 

400-2500 nm/ 20-30 m 237 29 days Italy Space 

agency 

23 March 2019* 

08 FLEX 

(Fluorescence 

Explorer) 

Earth Explorer  300 m   28 days  ESA 2022 * 

09 HySI  Chandrayaan-1 400- 950 nm 

(15 nm) 

 

30 m 64  ISRO India 2008 
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10 HJ-1A / 

 

 

CAST WVC-0.43-0.90 µm 30 m 4 

 

4 days  China September 2008 

HSI-0.45 - 0.95 µm 100 m 115 4-31 days(side looking 

±30º) 

 

HJ-1B 

WVC~ 0.43-0.90 µm 30 m 4  4 days 

IRMSS~0.75-1.10 µm 

              1.55-1.75 µm 

              3.50-3.90 µm 

              10.5-12.5 µm 

150 m 

150 m 

150 m 

300 m 

4 4 days 

11 Hero(CASI)  400-2500nm 30 m >200 3   

12 VENUS  415-910 nm 5.3 m 12 2 CNES/ Israel 2016 

13 SumbandilaSat/ 

MSI 

 440—2350 nm 15m /  200 - South Africa 17 Sep 2009 

* Wide View CCD Cameras (WVC)  141 
Hyperspectral Imager (HSI) 142 
Infrared Multispectral Scanner (IRMSS) 143 
 144 
#- https://hyspiri.jpl.nasa.gov/downloads/reports_whitepapers/HyspIRI_FINAL_Report_1October2018_20181005a.pdf 145 
@- TIR measures both day and night data with 1 daytime image and 1 night-time image every 5 days 146 
 147 

https://hyspiri.jpl.nasa.gov/downloads/reports_whitepapers/HyspIRI_FINAL_Report_1October2018_20181005a.pdf
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1.3 LULC mapping approaches and products 148 

1.3.1 LULC mapping from conventional to remote sensing methods 149 

The conventional methods like ground truthing, surveying, etc., that employ field surveys and on site 150 

human-made observations, are generally reliable methods of mapping, however, they are considered 151 

as time consuming and expensive methods (Koutsias et al. 1999; Bai et al. (2017); Lamine et al. 2019) 152 

During the pre-remote sensing era, LULC mapping, forest inventory and LULC changes were based 153 

upon these traditional methods. The use of conventional sources has been replaced with remotely 154 

sensed data for more accuracy, cost effective, time efficient and more coverage of the area for 155 

mapping and change analysis. Moreover, remotely sensed data can be stored in a digital format that 156 

can be transferred easily, taken to another place, or by a person for analysis as compared to 157 

conventional paper survey records. Therefore, remotely sensed datasets were in use and proved more 158 

fruitful, economic, easier, convenient, and storage capability for a longer time utilised all around for 159 

LULC mapping and assessment. 160 

Data integration of remote sensing and GIS was in use for LULC classification. GIS data including 161 

census data, topography, GPS points were combined with remote sensing images for LULC 162 

classification. Manual digitization within a GIS environment was a way of LULC classification and 163 

mapping based on image interpretation using elements of image interpretation like size, shape, 164 

shadow, tone, pattern, texture, association, colour etc. (Lillesand et al. 2014). Thus, LULC 165 

classification required interpretation of the different features which was needed to be recognized with 166 

remotely sensed images.  167 

 168 

1.3.2 LULC Operational Products  169 

Several land cover classification systems and maps have been developed by national and international 170 

agencies. Examples of those include the Global Land Cover Characteristics Database (USGS), 171 

CORINE by EEA (European Environmental Agency), GLC2000 (European Commission's Joint 172 

Research Centres), and the GeoBase (Canadian Council on Geomatics and Natural Resources) 173 

(Johnson and Singh 2003). Most of these land cover maps were hierarchical in nature and reviewed by 174 

reputed international agencies such as USGS (Anderson 1976), Food and Agriculture Organisation 175 

(Di Gregorio 2005) and EEA. These maps are unsupervised classification GLC2000 generated at 1 176 

km spatial resolution (Bartholomé and Belward 2005), GlobCover at 300 m spatial resolution (Arino 177 

et al. 2008), supervised MODIS land cover types at 500m spatial resolution (Friedl et al. 2002; Friedl 178 

et al. 2010) and Coordination of Information on the Environment Land Cover (CORINE) represented 179 

as a cartographic product, at a scale of 1:100 000 (ESA 2017). Additionally, these regional maps were 180 

generated with the help of remotely sensed data including AVHRR (Loveland et al. 2000), MODIS 181 

(Friedl et al. 2002), Landsat (Tucker et al. 2004), SAR data (Balzter et al. 2015; Cole et al. 2018) and 182 

SPOT (Bartholomé and Belward 2005). Evidently, to obtain more out of these maps, there is a need 183 

for regular update of such land cover maps, which can easily provide changes for some period, easy 184 

for management and planners to take appropriate actions.  185 

 186 

2 Characteristics of the satellite data 187 

2.1 Optical 188 

2.1.1 Spatial dimension 189 
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Optical remote sensing has served as pioneer remote sensing data set along with traditional field 190 

surveys. Researchers and scientists started working with Landsat MSS data having an original spatial 191 

resolution of 80 m (thermal band 6-120 m and later on TM has 60 m) to classify land use and land 192 

cover, which continuously increased to 30 m TM/ ETM+ and 15 m (for the panchromatic band). It is, 193 

therefore, the major data source for LULC mapping from small to large scale at the global level. With 194 

the recent advancement in the space-borne missions, advanced remote sensing imageries with higher 195 

spatial resolution are used that achieve higher accuracies nowadays. Several researchers have worked 196 

with Landsat-TM, ETM+ for LULC mapping and demonstrated good accuracy results, which was 197 

further enhanced with the incorporation of sensors followed by SPOT, LISS III, LISS IV, WORLD 198 

VIEW- 1, WorldView-2. Once, initiated with low spatial resolution around 80 m, the move has 199 

achieved the spatial resolution of 1m or 0.6m for better results (Salehi et al. 2013).  200 

The high spatial resolution of the satellite images allows spatial enhancement techniques to be applied 201 

in the satellite data that result in better accuracy while the use of textural properties can increase the 202 

accuracy of LULC mapping since new information by considering spatial patterns in the data is taken 203 

into account in the classification process (Mallinis and Koutsias 2008; Koutsias 2010). Additionally, 204 

the high spatial resolution enhanced the idea of applying segmentation techniques to extract textural 205 

properties being added into classification process that significantly improve the results. Thus, object-206 

based techniques become popular and perform better that pixel-based when classifying LULC 207 

especially when high spatial resolution data are used (Blaschke 2010). 208 

Additional advanced methods were employed for mapping and analysis using classifiers with high 209 

spatial resolution images (Salehi et al. 2013), as for instance advanced wavelet-based techniques of 210 

pixel- and object-based approaches for three different very high spatial resolution images, such as 211 

images from sensors like WorldView-2, QuickBird, and Ikonos. The main purpose of using this 212 

technique is that it preserves the nature of the original spectral and spatial signatures. Results of those 213 

studies were often significantly increased as compared to the use of only the original bands of the 214 

images, demonstrated that enhanced results were contributed mainly from spectral features of objects 215 

as compared to spatial features (Kavzoglu Taskin et al. 2015; Chatziantoniou et al. 2017).  216 

On the other, usually very high spatial resolution satellite data lack high spectral resolution. In such 217 

cases there are techniques that have been applied for data merging or data fusion, therefore the final 218 

data is a combination of high spatial and high spectral resolution and combine both data 219 

characteristics. Such cases include various types of datasets like- optical with optical for a different 220 

resolution, optical with hyperspectral, optical with LiDAR, optical with Radar, hyperspectral with 221 

radar, hyperspectral with LiDAR, a fusion of remote sensing data with GIS etc. All these enhance the 222 

information that was utilized for land cover mapping with ease and accuracy than individual data. 223 

Table 3 illustrate the several combinations of remote sensing datasets used for the LULC and change 224 

analysis, including traditional aerial colour photos, multi-sensor, multi-temporal, multi-resolution 225 

datasets.  226 
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Table-3: Different Remotely sensing data sources integration for LULC. 227 

Sl  Data types Categories  References  (but not limited to) 

1 Remote sensing + GIS data RS data with ancillary datasets- such as topography, 

census, GPS, field data, cartographic integration 

(Rogan et al. 2003; Na et al. 2010) 

2 High Spatial/spectral 

resolution imagery- individual 

data  -multispectral, 

hyperspectral, SAR 

Multispectral (Kanellopoulos et al. 1992; Lee and Lathrop 2006; Tan KC et al. 2010; 

Salehi et al. 2013; Singh S et al. 2018)  

Hyperspectral (Thenkabail et al. 2004; Pal 2006; Tan Q and Wang 2007; Liu and Li 

2013; Hegde et al. 2014; Vijayan et al. 2014; Pandey et al. 2018) 

SAR (Henderson F 1975; Henderson FM and Xia 1997; Saatchi et al. 2000; 

Simard et al. 2000; da Costa Freitas et al. 2008; Werner et al. 2014; 

Clerici et al. 2017; Hagensieker et al. 2017; Spies et al. 2017) 

3 Multi-Temporal datasets Different time-period data (Roberts et al. 2002; Engdahl and Hyyppa 2003; Rogan et al. 2003; 

Budreski et al. 2007; Pandey et al. 2012; Pandey et al. 2013; Sexton et 

al. 2013; Campbell et al. 2015; Feng et al. 2015; Bai et al. 2017) 

4 Multi-Resolution fusion Low resolution multispectral+ high resolution PAN (Pandey et al. 2012; Sharma et al. 2012) 

5 Multi-Source  Similar data from different sensors (Solberg et al. 1996; Engdahl and Hyyppa 2003; Thenkabail et al. 

2004; Budreski et al. 2007; Evans et al. 2010; Noor et al. 2011) 

6 Multi-Sensor and fusion 1. Optical + Ancillary data or Optical (Serpico and Roli 1995; Rogan et al. 2003; Platt and Goetz 2004; 

Karathanassi et al. 2007) 

2. Optical + Radar (Solberg et al. 1996; Simard et al. 2000; Amarsaikhan et al. 2007; 

Amarsaikhan et al. 2010; Zhu et al. 2012; Brown et al. 2018; Cass et 

al. 2019) 

3. Optical + Hyperspectral (Noor et al. 2011; Vijayan et al. 2014; Lamine et al. 2019) 

4. Multispectral/Hyperspectral/Spectroscopy 

+ LiDAR  

(Haack et al. 2000; Koetz et al. 2008; Cook et al. 2009; Gong et al. 

2011; Yan et al. 2015) 

5. RADAR + Multispectral/RADAR/digital 

data (SRTM) 

(Evans et al. 2010; Balzter et al. 2015; Chatziantoniou et al. 2017; 

Clerici et al. 2017; Gibril et al. 2017; Brown et al. 2018; Colson et al. 

2018; Kaplan and Avdan 2018) 

7 Different data borne fusion Aerial photographs + RS data like aerial colour 

photographs 

(Park et al. 2001) 
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2.1.2  Spectral dimension 229 

Optical multispectral remote sensing has been used for LULC classification, mapping, and assessing 230 

their changes on local to regional scales due to high spatial resolution (high up to 0.61 m refer table 231 

1). However, their use has low visual interpretation and the classification scheme employs few land 232 

cover types due to difficulty in interpreting a large number of features because of the limited spectral 233 

information. Their low/medium spatial resolution is an additional obstacle since such data lack the 234 

ability to provide detailed spatial information that many times is needed at sub-pixel level. Although 235 

optical multispectral images have high spatial resolution but they are unable to identify different 236 

feature in the similar group (Kumar et al. 2015). Therefore, they does not provide detailed LULC 237 

mapping and classification across any classification algorithm due to low spectral resolution that 238 

hurdle accurate species identification. However, to differentiate different feature such as soil and plant 239 

species, incorporation of hyperspectral remote sensing approach were introduced in LULC domain 240 

(Thenkabail and Lyon 2016) to accurately identify different features using unique spectral 241 

information (St‐Louis et al. 2009; Kumar et al. 2015), attributed to their unique signature due to 242 

chemical and physical properties (Gould 2000; Gillespie et al. 2008; Palmer et al. 2008). For example, 243 

in plants, they differ due to pigments, structure and water content (Kalacska et al. 2007; White et al. 244 

2010; Kumar et al. 2015; Thenkabail and Lyon 2016; Pandey et al. 2019) and soil have different 245 

spectral signature due to variation in iron oxides, organic matter, clays, calcite, hygroscopic water 246 

(Ben-Dor Eyal and Banin 1995; Ben-Dor E et al. 1999; Ben-Dor E 2002; Stevens et al. 2008; Nocita 247 

et al. 2015). Thus, advancement in the spectral resolution has enabled researchers to discriminate and 248 

identify different land cover features using spectral resolution with enhanced accuracy as compared to 249 

multispectral data (St‐Louis et al. 2009). 250 

Borak et al. (2000) presented the importance of temporal metrics for LULC analysis. They performed 251 

several temporal change metrics to analyse the land cover changes while utilised a combination of 252 

remotely sensed data with spatial metrics for similar analysis. Therefore, an appropriate set of 253 

variables for measuring and characterizing LULC is needed in terms of spatial, spectral or temporal 254 

dimension that play an important role providing milestones in the analysis of land cover. Adar et al. 255 

(2014) utilised multispectral and hyperspectral images (HyMap) acquired at two or more different 256 

times to detect spatial, spectral and temporal changes. Adar et al. (2014) also demonstrated that the 257 

incorporation of spatial-spectral domains threshold has better change detection capabilities and reduce 258 

false alarm than the use of spectral domains only which has high detection capabilities with moderate 259 

alarm. To overcome the low spectral and spatial resolution, hyperspectral imaging systems have been 260 

developed that can detect subtle changes in the spectral ranges, and thus discriminate between 261 

vegetation types, crops and other features during LULC classification (Pandey et al. 2018). 262 

 263 

2.1.3 Spatial versus spectral dimension 264 

Spatial and spectral resolution are significant factors in the assessment of overall mapping accuracy 265 

while the temporal resolution is significant in evaluating change mapping. The spatial dimension 266 

provides the features extent while the spectral dimension provides subtle changes in the features and 267 

thus it is contributing as an important part of LULC mapping and classification. Since spectral 268 

characteristics provide more information about the features, hyperspectral imagery has more power to 269 

map LULC as compared to multispectral imagery. Thenkabail et al. (2004) illustrated the power and 270 

better mapping accuracy of hyperspectral data (Hyperion) over multispectral data (Landsat ETM+, 271 

IKONOS, ALI). 272 
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Though spectral information forms the basis of hyperspectral remote sensing image classification and 273 

interpretation (Liu and Li 2013), the spectral information alone is not useful for the classification and 274 

mapping as demonstrated by Bai et al. (2017). To enhance and provide better outcome results, other 275 

parameters were incorporated along with the spectral information. Therefore, Liu and Li (2013) came 276 

out an idea to employ the textural feature with spectral information in order to achieve more accuracy. 277 

Textural properties were constructed using wavelet transformation techniques creating coefficient 278 

matrices. They employed Artificial Neural Network (ANN) algorithms to the textural applied images 279 

for the mapping purposes and they illustrated the better classification results.  280 

Although Landsat images are capable of land cover mapping and assessing change dynamics, high 281 

spatial resolution images such as QuickBird, Cartosat, IKONOS provide detailed feature analysis and 282 

more accurate overall results as compared to Landsat series (TM, MSS, ETM+). Further, this is also a 283 

matter of mapping spatial scale and of the features of the land cover/use to be mapped. While, the  use 284 

of hyperspectral images has overcome the inability of multispectral images to differentiate the 285 

different types within same features (crop types, plant types), and therefore, hyperspectral images 286 

have been in use for mapping and change analysis though it is expensive in case of airborne images. 287 

Availability of temporal datasets of space-borne hyperspectral Hyperion data is possible as compared 288 

to airborne hyperspectral images, which allow significant research to enable LULC mapping and 289 

monitoring of specific regions easily. The move from spatial and spectral to other datasets, basically 290 

move around the structural properties, elevation information and other properties (such as intensity, 291 

texture, interferometry). These properties are added benefit when combined with basic dimensions 292 

during image analysis.  293 

 294 

2.2 Active sensing systems 295 

2.2.1 Synthetic Aperture Radar (SAR) 296 

SAR applications for landscape change and pattern analysis has received less attention as compared to 297 

optical remote sensing, due to the high variability of the landscape, complexities in the interaction 298 

between radar signals and human built-up environment (Henderson FM and Xia 1997). The usability 299 

of optical satellite data in LULC classification is severely limited by cloud cover in many parts of the 300 

world (Cass et al. 2019). The ability of SAR systems to image throughout day and night whilst 301 

remaining immune to the issue of cloud cover can fill such information gaps during overcast periods, 302 

and therefore allow for reliable mapping. SAR can penetrate cloud cover, but the potential of C-band 303 

single polarization intensity images is limited. The advantage of SAR data over optical or 304 

hyperspectral data is its sensitivity to structural features of the terrain, making LULC simpler and 305 

easier to interpret the different classes. Interferometric SAR (InSAR) can provide complementary 306 

information to the backscattered intensity in the form of interferometric coherence (Colson et al. 307 

2018; Whyte et al. 2018).   308 

During the past decades, several radar sensors, e.g. SIR-A, SIR-B, SIR-C/X, ERS-1/2, JERS-1, and 309 

RADARSAT, have been used for different applications and for LULC mapping due to their ability to 310 

provide unique information about the characteristics of landscapes (Chatziantoniou et al. 2017). The 311 

higher resolution Radarsat-2 instrument (also C-band) has been used alone in grassland studies and 312 

has been shown to provide a good separation of crops and improved grasslands through use of quad-313 

pol (HH, HV, VV, VH) data (Buckley and Smith 2010). Several studies were carried out using SAR 314 

images, including recent studies focusing on Sentinel-1 use, to map land covers (Brown et al. 2018). 315 

For example, Zhu et al. (2012) assessed urban land cover using Landsat and SAR data for its 316 
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effectiveness to map 17 different cover types considering spectral, temporal and spatial dimensions. 317 

The authors used multi-seasonal Landsat data with single season Advanced Land Observing Satellite -318 

Phased Array Type L-band Synthetic Aperture Radar (ALOS-PALSAR) data combination for above 319 

purpose. The results were demonstrated with the contribution of different dimensions such as textural 320 

variables derived from Landsat/PALSAR and multi-seasonal Landsat data and integrated datasets of 321 

both input sensors against the individual data results. PALSAR data generated accuracy of 31 % 322 

approx. while the accuracy was improved with the addition of a textural variable derived from 323 

PALSAR data to about ~73%. Landsat data produced mapping accuracy of ~78% while the addition 324 

of multi-seasonal images results in enhanced accuracy up to ~87% and the inclusion of textural 325 

variables derived from Landsat images resulted in an even higher accuracy of ~92.69%.  326 

(Ling et al. 2012, 2013)was able to produce a forest and non-forest classification with accuracy in 327 

excess of 80% using multi-temporal alternating polarization (HH, HV) data. Another study using the 328 

same data (Thiel et al., 2009) further demonstrated the high accuracy that can be achieved with ASAR 329 

data in the production of a basic land cover classification. Additionally, the higher resolution 330 

Radarsat-2 instrument (also C-band) has been used alone in grassland studies and has been shown to 331 

provide a good separation of crops and improved grasslands through use of quad-pol (HH, HV, VV, 332 

VH) data. 333 

New EO satellites, especially optical and RADAR, such as the instruments included in the Sentinel 334 

platforms, offer greater resolutions, both spectrally and spatially, than previously available open-335 

access information. For example, recently Whyte et al (2018) examined the synergistic use of 336 

Sentinel-1 and 2 combined with the SAGA Wetness Index for wetland LCLU mapping. In the same 337 

study, authors developed a new object-based image analysis technique for mapping LULC with 338 

emphasis specifically in their study on wetlands. They compared results from their method against 339 

two powerful machine learning techniques, namely Support Vector Machines (SVMs) and Random 340 

Forests (RFs) for a region in South Africa. Their results showed that a combination with Sentinel-1 341 

and 2 synergies can successfully produce a LULC classification. 342 

A combination of EO data provided essential information of different dimensions for mapping thus 343 

resulting in accurate results derived from spectral, spatial, temporal dimensions. Spatial dimension 344 

changes are analysed moving from lower to higher spatial dimensions, and spectral dimension 345 

changes from high spectral resolution keeping the spatial regions as change and no change pixels 346 

similar at significantly less time (Adar et al. 2014). The multi-temporal analysis is assessed using 347 

spatial/spectral combination over duration of the time-period for the particular regions. Thus, using 348 

biophysical parameters, geophysical parameter, terrain, backscatter, textural and structural 349 

measurements in combination with the use of ancillary data such as elevation, a climate were 350 

incorporated for mapping with SAR in different research. These parameters were used successfully, 351 

while physical parameter and interferometry use for LULC mapping were given by Deng et al. (2015) 352 

who used RADARSAT-2 polarimetric SAR (PolSAR) data to develop four component algorithms for 353 

LULC classification. Four components namely; polarimetric decomposition (selected physical 354 

scattering parameters), PolSAR interferometry (interferometric information), object-oriented image 355 

analysis (extracting textural and spatial features from image objects), and decision tree algorithms 356 

(select features and implementation) are employed to generate LULC classification. The authors 357 

illustrated an improvement in LULC classification results over existing the Wishart supervised 358 

classification scheme, increase in overall accuracy from 70% to 87% and kappa values from 0.65 to 359 

0.84 respectively.  360 

Therefore, mapping methods have generally exploited the properties of optical-multispectral (for 361 

example spatial), hyperspectral (spectral) as well as radar (for example texture) remote sensing for 362 
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land use analysis and classification using different algorithms (Miettinen and Liew 2011; Hansen et 363 

al. 2013; Jin et al. 2014; Gómez et al. 2016). Each remote sensing data deliver complementary and 364 

additional information in term of spatial, spectral or textural, hence LULC classification and mapping 365 

can exploit the combination of the two or more information types to deliver the enhanced precision 366 

mapping results, using fusion techniques. (Bagan et al. 2012). For example, Erasmi and Twele (2009) 367 

have illustrated the improvement in the classification and mapping when incorporated the SAR based 368 

texture information (derived from Envisat ASAR data) with Visible-NIR multispectral information 369 

from Landsat ETM+ data. Similarly, Qin et al. (2016) exemplified the fusion robustness with ALOS 370 

PALSAR (reducing the limitations of frequent cloud coverage and improved feature separation) and 371 

phenological information from the MODIS sensor to map forest employing decision tree algorithm. 372 

Gessner et al. (2015) combined three remotely sensed data sets, namely optical MODIS, Envisat 373 

ASAR and TandemX/TerraSAR-X radar data for mapping using random forest algorithm. In order to 374 

exploit the properties of individual data such as texture, backscattering amplitudes, Breiman (2001) 375 

employed an unsupervised classification algorithm for mapping purposes.  376 

 377 

 378 

2.2.2 Light Detection And Ranging (LiDAR) 379 

LiDAR can have many advantages over other datasets; mainly it can overcome the cloud obstacle and 380 

can provide more information as compared to the multi-hyperspectral datasets. LiDAR data can 381 

provide information about the elevation of the landscape, thus help in contributing towards better 382 

mapping using elevation and height derived products. Previous studies illustrate that LiDAR data has 383 

been implemented for LULC mapping successfully (Antonarakis et al. 2008). Charaniya et al. (2004) 384 

attempted LiDAR based classifications using LiDAR point cloud elevation and intensity data to 385 

classify roofs, grass, trees and roads. Bartels and Wei (2006) performed LiDAR based maximum 386 

likelihood classifications fused with co-registered spectral bands achieving accurate results. Brennan 387 

and Webster (2006) classified LiDAR derived products such as DSM, DEM, and intensity with 94 to 388 

98 % for seven classes, demonstrating the accurate generation of LULC. The techniques used in 389 

above study include image object segmentation and rule based techniques which harness the spectral 390 

and spatial attributes of the LiDAR datasets. Whereas Antonarakis et al. (2008) used intensity and 391 

elevation only for classification of land use land cover and demonstrated overall classification 392 

accuracies of 95% and 94% for the methods including and excluding the ground influence 393 

respectively. These results show that LiDAR can provide better overall results as compared to other 394 

remotely sensed images.  395 

In order to test the capabilities and robustness of integration, several remotely sensed datasets were 396 

integrated with LiDAR data using different approaches for LULC mapping studies. Some of them are 397 

listed, for example, LiDAR integration with high spatial resolution images such as QuickBird (Chen 398 

Y et al. 2009) and World-View (Minh and Hien 2011; Kim and Kim 2014) and even with low spatial 399 

resolution images Landsat TM (Singh Prafull et al. 2011). Further, multi-sensors and multi-source 400 

remotely sensed images require downscaling process to match the spatial resolution between the all 401 

employed images. (Singh KK et al. 2012)assessed the best resolution (1 m, 5 m, 10m and 30m) for 402 

LiDAR-Landsat TM fused data, after downscaling Landsat TM for LULC mapping integrated with 403 

airborne LiDAR data. To show the capabilities of LiDAR integration with other datasets, the authors 404 

compared the accuracy rate of three different classified maps with Landsat TM at 30 m, LiDAR data 405 

and LiDAR-Landsat TM fused data using supervised MLC and classification tree methods. Resultant 406 

output conferred the robustness of data integration for enhanced results for fused LiDAR-Landsat TM 407 
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data using all surface models (structural and intensity) which increased accuracy by 32% as compared 408 

to 1m LiDAR and by 8% over TM individually (Singh KK et al. 2012). While this study shows the 409 

advantages of LiDAR data for mapping, it also shows that 1 m LiDAR data is not capable of accuracy 410 

in results, as its accuracy is less than Landsat TM.  411 

LIDAR and SAR can provide structural, textural, physical, biophysical, backscatter information, 412 

interferometry for mapping where sometimes these parameters play an important role in mapping for 413 

better accuracy. When LiDAR data is combined with high spatial resolution images other than 414 

Landsat images such as IKONOS, World-View, Quick Bird, the accuracy results increases and has 415 

better mapping accuracy than low spatial resolution combined datasets (Cook et al. 2009; Gong et al. 416 

2011). (Gong et al. 2011)using high spatial resolution QuickBird and LiDAR derived products (only 417 

height information) together at one site while HyMap hyperspectral imagery at another site, with a 418 

decision tree and ANN, were employed to compare with newly developed OPTINC model (optimized 419 

immune network-based classification model).  420 

 421 

2.3 LULC using multi-sensors, source datasets- a combination of spatial, spectral 422 

dimension and other parameters 423 

Data fusion techniques, including many possible combinations of data integration as illustrated in 424 

Table 3, have added advantages of utilizing characteristics of individual datasets together. Data fusion 425 

enhances the information and the composite images are visually more interpretable and better for 426 

being used for LULC mapping and achieve higher accuracy than individual data. Fusion of data set 427 

includes remote sensing data with GIS, multi-sensor data (different remote sensing data like optical, 428 

hyperspectral, LiDAR, SAR) or multi-temporal data (different time-period) (see Table 3). Data 429 

integration can be carried out at four different levels; namely signal level, pixel level, feature level 430 

and decision level. The level of integration depends upon the data acquisition and the purpose of the 431 

study.  432 

Unlike single source data, multi-source, multi-sensor data integration offers advanced and better 433 

potential for interpretation and discrimination between different features of land cover types easily 434 

and effectively (Chatziantoniou et al. 2017; Chen B et al. 2017). There are several studies based on 435 

data integration and its potential to discriminate features with good results as compared to individual 436 

data (Pohl and Van Genderen 1998; Amarsaikhan et al. 2007; Kaplan and Avdan 2018). Data 437 

integration generates new composite image which delivers better-enhanced spatial and spectral 438 

information (Shen 1990; Pohl and Van Genderen 1998; Karathanassi et al. 2007; Dong et al. 2009), 439 

hence provide more information and achieves improved results for decision making (Hall and 440 

McMullen 2004). Additionally, data integration provides numerous benefits according to user needs 441 

and requirements, such as image sharpening, helps in geometric corrections, adding information, 442 

provide detailed feature information, add missing information, provide stereo-viewing capabilities, 443 

discriminate the feature with enhancement easily which is not visible in either of the image 444 

individually (Pohl and Van Genderen 1998). Thus, most common uses of fusion techniques are to 445 

enhance the image quality and to sharpen visualisation of the image. Therefore, image fusion 446 

improves the capabilities and performance of data and enhances the image interpretation and 447 

evaluation capability better than individual data alone (Pohl and Van Genderen 1998; Karathanassi et 448 

al. 2007). Furthermore, data integration detects small changes using multi-temporal data as compared 449 

to individual data alone (Shen 1990; Pohl and Van Genderen 1998; Park et al. 2001; Karathanassi et 450 

al. 2007; Pandey et al. 2014). (See Pohl and Van Genderen (1998) for a comprehensive review on 451 



17 

 

multi-sensor image fusion for remote sensing applications and Karathanassi et al. (2007) for 452 

comparative study on remote sensing fusion methods)  453 

Multispectral-hyperspectral data and LiDAR data have been fused together for combining their 454 

spatial-spectral and geometric characteristic together in LULC mapping. For example, Amarsaikhan 455 

et al. (2010) used multi-source and multi-temporal data to enhance the urban land cover features using 456 

different data integration techniques and demonstrated the better accuracy with the combined images 457 

of QuickBird image (2006) and a TerraSAR-X image (2008). In another study, Yan et al. (2015) used 458 

LiDAR derived height, intensity, waveform and the combination of multi-sensors remotely sensed 459 

data to assess LULC mapping and change dynamic and presented the usefulness of data integration. 460 

While integration of multi-hyperspectral was common, some authors combined LiDAR, SAR with 461 

hyperspectral for LULC mapping to extract the textural, intensity and structural features together for 462 

the mapping. For instance, Haack et al. (2000) combined hyperspectral and LiDAR data for analysing 463 

LULC classification. They utilized multi-sensor data in their study for LULC mapping with the help 464 

of ground control points. Spectral information from the hyperspectral sensor was used for signature 465 

classification of LULC with statistical decision rule for feature classification. Even 466 

hyperspectral/multispectral have been combined with SAR data for mapping, by merging the spectral 467 

information from multi-hyperspectral data and textural, intensity information from SAR data 468 

(Amarsaikhan et al. 2007; Amarsaikhan et al. 2010; Zhu et al. 2012). Different manipulations of radar 469 

data have been applied for obtaining results which include texture, spatial filtering and despeckling. 470 

Hence, from above discussion it can be concluded that multi-source, multi-sensors, multi-temporal 471 

information can significantly enhance the visual interpretation and provide improved results over the 472 

individual dataset.  473 

3 Selection of appropriate classifiers 474 

Several studies reveal that classification capability of remotely sensed data depends upon the types of 475 

input data used in the study along with landscape complexity. For example, Mallinis and Koutsias 476 

(2012) observed that the variance in the accuracy results imposed by the different methods applied 477 

was less than that imposed by factors differentiated locally in the three test sites they used. This 478 

section of the present review focuses on the importance of selection of appropriate classifiers for 479 

LULC mapping. This section elaborates different classifier techniques and presents their advantages 480 

and disadvantages for LULC mapping along with robustness of one over the other technique.  481 

Many research works have been carried out to explore the robustness and achievements of classifiers 482 

for different remotely sensed datasets and their accuracy results. Yet, to define the most appropriate 483 

classifier for mapping is still in question. The most popular classifier algorithms include supervised 484 

classifiers [Maximum Likelihood Classifier (MLC), Spectral Angle Mapper (SAM), Support vector 485 

Machine (SVM), Random Forest (RF), Decision Tree (DT), Minimum Distance (MD) etc.] and 486 

unsupervised classifiers (k-means and ISODATA), further, these can be categorised into pixel-based 487 

(MLC, SVM) and object-based methods. Though pixel-based methods mainly focus on the 488 

independence of pixels in the classification, they have certain limits for mixed feature classification, 489 

while object-based methods employ the incorporation of neighbourhood pixels for spectral as well as 490 

spatial characteristics. MLC is one of the widely used classifier techniques for multispectral images, 491 

whereas SAM is used mainly for hyperspectral images using the spectral signature of the target 492 

features for classification outcome. Therefore, SAM often results in low accuracy due to the 493 

incorporation of only the spectral information available during classification analysis resulting in 494 

unclassified pixels in the test sites. Therefore, there is a requirement to employ the spatial information 495 

together with spectral information and exploit as much as possible information for accurate 496 
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classification results. Thus, employment of spatial-spectral information has resulted to more accurate 497 

and reliable classification results as compared to their individual use. This has been demonstrated by 498 

several researchers (Rajadell et al. 2009; Tarabalka et al. 2010; Huang X and Zhang 2011; Fauvel et 499 

al. 2012; Paneque-Gálvez et al. 2013), thereby, illustrated the utilisation of integrated spectral-spatial 500 

information in hyperspectral imagery improves the classification results compared with the individual 501 

characteristics implementation. While the spatial-spectral information was being employed, the 502 

neighbouring pixels were extracted employing the morphological (Fauvel et al. 2008) or fixed-size 503 

window techniques (Camps-Valls and Bruzzone 2005). Petropoulos et al. (2012) concluded that 504 

SVMs algorithm (OA- 89.26 and Kappa- 0.88) outperform ANN (OA- 85.95 and Kappa- 0.842) in 505 

terms of overall accuracy and individual users accuracy as shown in Figure 3. While in the 506 

Mediterranean setting, a comparison with Object based classifier with SVMs classifier, object-based 507 

algorithm (OA- 81.33 and kappa- 0.779) has outperformed pixel-based classifier such as SVMs (OA- 508 

76.23 and kappa- 0.719). But this is true in case when good segmentation results have been obtained 509 

(Conchedda et al. 2008). In early studies on these methods, spectral information from the 510 

neighbourhoods was extracted by either a fixed-size window (Camps-Valls and Bruzzone 2005) or 511 

morphological profiles (Fauvel et al. 2008) and was used for classifying and labelling image pixels. 512 

(See Srivastava et al. (2012) for a comprehensive knowledge on classification algorithm selection for 513 

LULC mapping)  514 

 515 

  516 

Figure 3. The Hyperion pixel-based classification using the SVMs RBF classifier (top image) 517 

and the ANNs (bottom image), (Adapted from Petropoulos et al., 2015) 518 

 519 

In previous research several techniques such as MLC, SAM, SVM, ANN, decision tree (Dixon and 520 

Candade 2008; Srivastava et al., 2012) have been employed on Landsat TM, MSS, MODIS data to 521 

assess and evaluate the LULC cover. Based on findings, researchers suggest that both ANN and SVM 522 

outperform MLC on ETM+, SVM perform well with TM data (Dixon and Candade 2008) while ANN 523 
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perform well against SVM, MLC with TM/ETM+ (Huang C et al. 2002). Table 4 provides a summary 524 

of examples where different classifiers incorporated by several researchers for LULC mapping. 525 

Amarsaikhan et al. (2010) employed wavelet-based fusion, Brovey transforms, Elhers fusion and 526 

principal component analysis for multi-source and multi-temporal data and concluded that the 527 

classification accuracy was better with the integrated images as compared to the individual data. Klein 528 

et al. (2012) used time-series MODIS derived seasonal metrics for regional LULC change analysis 529 

using decision tree classifier based on a C5 algorithm and demonstrated the usefulness of decision tree 530 

for classification ability due to the incorporation of seasonal metrics.  531 

Recently, Clark and Kilham (2016) explored the RF algorithm utilising three independent variables, 532 

(reflectance, MNF, matrices and temporal-seasonal variables), for simulated HyspIRI image 533 

classification for land cover. They employed RF and multi-temporal matrices to achieve the 534 

international Land Cover Classification System (LCCS) in two level of classification for simulated 535 

HyspIRI images, concluding RF as superior to others for regional and global scales used in the study. 536 

Following this, Guidici and Clark (2017) demonstrated the implementation and robustness of ANN 537 

(overall classification accuracy 89.9%) and SVM (overall classification accuracy 89.5%) over RF 538 

with improved land cover mapping results. The above case studies illustrated appropriate classifier 539 

algorithm utilised with the types of datasets have different perspective results depending on the user 540 

needs. Authors gave insight to the classification algorithm implementation for achieving improved 541 

accuracy results for datasets utilised in the study, thus resulting in distinctive target feature 542 

identification, an an interpretation with in spatial-spectral-temporal domain for assessment of land 543 

cover.  544 

Table 4 Different classification techniques used for classification of LULC and its changes  545 

 546 

Classifier algorithms   Abbreviation References (but not limited to) 

Maximum Likelihood 

Classifier 

MLC (Kanellopoulos et al. 1992; Roberts et al. 2002; Srivastava et 

al. 2012; Pandey et al. 2014; Gibril et al. 2017) 

Decision 

Tree/Classification 

Tree 

DT/CT 

 

(Simard et al. 2000; Roberts et al. 2002; Rogan et al. 2003; 

Gong et al. 2011)  

Artificial Neural 

Network/  

Analytic Hierarchy 

Process 

 

Object based 

Classification 

ANN 

 

AHP 

 

 

OBC 

(Kanellopoulos et al. 1992; Serpico and Roli 1995; Roberts 

et al. 2002; Lee and Lathrop 2006; Gong et al. 2011) 

(Brennan and Webster 2006; Lizarazo and Barros 2010; 

Huang B et al. 2018) 

 

(Antonarakis et al. 2008; Conchedda et al. 2008; Chen Y et 

al. 2009; Chen G et al. 2012; Kindu et al. 2013; Gašparović 
and Jogun 2018) 

Support Vector 

Machine 

SVM (Huang C et al. 2002; Pal 2006; Dixon and Candade 2008; 

Koetz et al. 2008; Petropoulos et al. 2012; Srivastava et al. 

2012; Bai et al. 2017; Gibril et al. 2017) 

Random Forest  RF  & (Na et al. 2010; Balzter et al. 2015; Kavzoglu Taskin et al. 
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& 

Markov Random Field 

 

MRF 

2015) 

 

(Solberg et al. 1996; Zhu et al. 2012; Hamad et al. 2018) 

Spectral Angle 

Mapper 

SAM (Pandey et al. 2014; Gibril et al. 2017; Krishna et al. 2018) 

Iterative Self-

Organizing Data 

Analysis 

ISODATA & 

Kmeans 

(Engdahl and Hyyppa 2003; Herold et al. 2005; Thenkabail 

et al. 2005; Chavula et al. 2011; Kassawmar et al. 2018) 

(Werner et al. 2014; Kavzoglu T and Tonbul 2018) 

 547 

Traditional classification methods in complex urban regions using hard segmentation approaches 548 

result in low accuracy and furthermore they do not generate a meaningful crisp thematic image for 549 

analysis (Lizarazo and Barros 2010). Therefore, the use of advanced fuzzy approach helps to generate 550 

meaningful crisp image objects using segmentation techniques (Kindu et al. 2013). The problem of 551 

hard segmentation was ruled out during fuzzy methods, while Markov model can predict better and 552 

easier future changes. The use of multi-temporal than single-date classification approaches for LULC 553 

mapping increases accuracy with improved tools and techniques (MacLean and Congalton 2013). 554 

Multiple Landsat images have been used within the time-period 1986-2010 using object-based image 555 

analysis approaches in combination with Classification And Regression Tree (CART). Two images 556 

for each year were generated using the above two techniques to perform the changes analysis and 557 

reported the enhanced accuracy. Also, Budreski et al. (2007) used paired techniques, CART, and 558 

kNN, on multi-temporal datasets of Landsat TM/ETM+ images resulting in an improved accuracy 559 

ranging from 77% to 91%. Other techniques such as Principal Component Analysis (PCA), Spectral 560 

Mixture Analysis (SMA), Minimum Noise Fraction transformation (MNF), Linear Spectral Unmixing 561 

(LSU) Matched filtering techniques (Braswell et al., 2003), have been also applied to reduce the data 562 

dimensionality especially of big datasets (either space-borne or air-borne hyperspectral images) for 563 

LULC mapping. Some studies demonstrated the use of standardized and unstandardized PC bands 564 

with Landsat TM imageries for LULC classification (Batistella 1999, 2000; Alexandris, Gupta, et al. 565 

2017; Alexandris, Koutsias, et al. 2017). 566 

 567 

4 LULC changes dynamics- An approach towards temporal dimension 568 

To successfully manage the Earth’s natural resources, it is important to provide accurate maps of 569 

LULC and its changes (Campbell et al. 2015). Changes in the properties and attribute of the spatial 570 

feature cause changes in land cover from one unit to another. LULC changes are resulting from 571 

conversion or modification from one class to another (complete change in the spatial units from one 572 

class to other class such as deforestation, or change in the urban expansion, which is irreversible). The 573 

amount and magnitude of LULC changes, their dynamics and patterns may differ with different 574 

factors, such as landscape location (Rindfuss et al. 2004), slope and elevation (Nelson and Geoghegan 575 

2002; Tegene 2002; Poyatos et al. 2003), time period being considered for the study (Weng 2002). 576 

These factors can lead to heterogeneity in the direction, pattern, type, and magnitude of changes and 577 

depend upon the need of the region and available resources. The typical examples of LULC changes 578 

involve conversion (urban built up and urban sprawl, deforestation) and modification (fallow land to 579 

agricultural land, water logging, flooding) which can be studied and identified by the change detection 580 

methods and analysis of two LULC output of different time-periods.  581 
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There is evidence that population moves to occupy the vacant, fallow, and agricultural, or destroy 582 

forestland for their own requirements such as food, shelters, and economic development. Sometimes it 583 

leads to conversion of agricultural land to urban settlements, forest to deforested regions, or gradual 584 

transformation of rural area to urban area (Stamou et al. 2016; Xystrakis et al. 2017). The migration of 585 

population to a new area leads to urban sprawl resulting in a change in the land use pattern. For future 586 

trend in response to moving urban outskirts, Markov model can predict quantitatively the trends of 587 

future LULC of that region as move take place due to increasing demand of land consumption in 588 

parallel to the exponential growth of population (Sharma et al 2012). The built-up environment 589 

configuration influences the management processes for development and other municipality works. 590 

Four aspects of change detection that are important when monitoring natural resources are (i) 591 

detecting the changes have been occurred, (ii) identifying the nature of the changes, (iii) measuring 592 

the areal extent of the changes, and (iv) assessing the spatial pattern of the changes (MacLean and 593 

Congalton 2013). 594 

Various methods are available for assessing the change dynamics such as image differencing, image 595 

rationing, Change Vector Analysis (CVA), and image regression to assess their effectiveness for 596 

detecting land use/cover change, but no single approach can solve the problem of land use change 597 

detection (Civco et al. 2002; Berberoglu and Akin 2009). As different change detection algorithms 598 

have their own merits and advantages and demerits over other approach and no single approach is 599 

optimal and applicable to all study cases. However, the selection of an appropriate change detection 600 

technique is important for accurate outcome and enhanced change dynamic mapping (Berberoglu and 601 

Akin 2009; Sharma et al. 2012). Different studies show that image differencing (Sharma et al. 2012; 602 

Leichtle et al. 2017; Zaidi et al. 2017), principal component analysis (Koutsias et al. 2009), and post-603 

classification comparison (Lark et al. 2017; Wu et al. 2017) are the most common methods used for 604 

change detection (Gu et al. 2017). In practice, different techniques are often compared to find the 605 

most useful change detection results for a specific application (Lu et al. 2002). There are several 606 

review studies on change detection techniques and algorithms using different datasets. (See Zhu 607 

(2017) for a comprehensive review on change detection and algorithms using Landsat time series data 608 

and Lu et al. (2004) and Jianya et al. (2008) for comparative study on change detection methods)  609 

 610 

Recently,  concluded in their study that utilisation of additional features is needed such as spectral 611 

indices, spectral transformation, textural and topographic features along with spectral features from 612 

Landsat datasets to improve the overall accuracy and avoid the misclassification between different 613 

classes. Demonstration of LULC change dynamics were linked to human activities as well as to 614 

temperature and precipitation which marked a significant contribution towards conversion from one 615 

class to another (Bai et al. 2017). Also, spectral indices in combination with spectral features were 616 

used by Pandey et al. (2013) to demonstrate the change dynamics of sandy regions and conversion of 617 

agricultural lands into sandy degraded regions using temporal Landsat dataset in the Jhunjhunu region 618 

India.  619 

Bai et al. (2017) used multi-temporal Landsat data (1976, 1984, 1995, 2006, and 2014) to quantify the 620 

intensive LULC exploring the change patterns and identification of wetland trajectories for the time 621 

period 1976-2014. Feng et al. (2015) demonstrated that temporal datasets can be used to illustrate the 622 

regional coverage in terms of within the city and outside the city for grassland, urban population, and 623 

fallow land. The spatial-temporal analysis by Feng et al. (2015) indicated an increase in the cropland 624 

area to about 8.65% per year over the Yellow River Delta region using multi-temporal datasets (1986, 625 

1995, 2005 and 2015) through random forest classifier. Further, Zhang et al. (2017) demonstrated the 626 

use of temporal data for transition studies and suggested an improvement in the landscape due to 627 
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human activities. Similarly, Zhang et al. (2017) demonstrated the wetland change trajectory such as 628 

degradation or artificialization (Cohen et al. 2010; Kennedy et al. 2010) and LULC dynamics based 629 

on enhanced transition matrix for the period 1976–2014 nearby Yellow River Delta regions using 630 

temporal Landsat datasets (1976, 1984, 1995, 2004, and 2014). 631 

There are some examples of studies revealing the robustness of temporal SAR data for LULC 632 

mapping and change analysis. For instance, Zhu et al. (2012) experimented with multi-season Landsat 633 

ETM+ and Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic 634 

Aperture Radar (PALSAR) SAR data. The highest map accuracy was achieved with Landsat and 635 

PALSAR data used together where the lowest accuracy was generated with textural variables from 636 

PALSAR data. Individual PALSAR images resulted to an accuracy of 31%, Landsat of 78%, multi-637 

seasonal Landsat of 87%, Landsat derived textural feature of 92.69%, while Landsat and PALSAR 638 

together have surprisingly highest result of about 93.82%, demonstrating therefore the importance of 639 

multi-seasonal, multi-source, multi-sensor in combination with other variables, which can definitely 640 

generate significant results as compared to individual data.  641 

 642 

5 Conclusions 643 

As it is clearly evidenced from our review, EO provides an informative source of data covering entire 644 

globe in a spatial and spectral resolution appropriate to better and easier classify land cover than 645 

traditional or conventional methods. The use of high spatial and spectral resolution imagery from EO 646 

sensors has increased remarkably over the past decides, as more and more platforms are placed in 647 

orbit and new applications emerge in different disciplines. As the spatial dimension increases, the 648 

mapping accuracy increases irrespective of the other dimensions, whereas, the increase in spectral 649 

resolution lead to data dimensionality, and other factors also play an important role such as the 650 

classification techniques. While the spectral resolution leads to the differentiation of features types, it 651 

also adds to data dimensionality making huge voluminous data. Therefore, the probability of 652 

increasing accuracy results depends upon the spectral resolution as well as other factors such as 653 

spatial resolution simultaneously. For example, for the selection of the most appropriate satellite 654 

sensor either multispectral or hyperspectral in LULC mapping, the properties of the area under 655 

investigation (e.g. land cover fragmentation, parcels size, cultivation procedures) should also be 656 

considered. For example, in certain occasions where Sentinel2 might be a better choice than Landsat 657 

and vice-versa or Hyperspectral data might be better choice in case of agricultural parcels as 658 

compared to homogenous land parcels. 659 

The temporal resolution plays an important role in detection of changes and their dynamics with time 660 

period, frequent temporal resolution such as seasonal temporal dimensions are required to monitor the 661 

crop types, growth, and production, annual temporal analysis is required for the urban, forest cover 662 

etc. the increased temporal resolution provides the detailed study about the features in concern. All the 663 

three input dimensions (spatial, spectral and temporal) have an impact on the mapping accuracy, 664 

either individually or altogether, an increase in one of the dimension increases the mapping accuracy. 665 

To achieve high classification accuracy each dimension plays an important role, and contributes 666 

significantly to the output. From spatial to spectral, spectral to temporal dimension, are required to 667 

assess the mapping and change dynamics consistently and accurately.  668 

Because of the varying nature of the landscape and several types of sensors, classification techniques 669 

also play an important role in the mapping accuracy, parametric or non-parametric, for multispectral 670 

to hyperspectral data. Indeed, over the recent years, a number of classifier algorithms have been 671 

utilised and employed in LULC mapping such as supervised or unsupervised, soft or hard classifiers, 672 
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parametric or non-parametric. Considering the necessity of implementing appropriate classifiers for 673 

LULC mapping, several other factors must be studied to overcome pixel size and mixed features 674 

issues to outperform one technique over other. Therefore, one should know about the input 675 

dimensions, types of remotely sensed data and appropriate classifiers implementation in the LULC 676 

mapping for their advantages and drawbacks using a different combination of the all approaches used 677 

in the study.  678 
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