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Abstract: The upper Yellow River basin over the Tibetan Plateau (TP) is an important ecological
barrier in northwestern China. Effective LULC products that enable the monitoring of changes in
regional ecosystem types are of great importance for their environmental protection and macro-
control. Here, we combined an 18-class LULC classification scheme based on ecosystem types with
Sentinel-2 imagery, the Google Earth Engine (GEE) platform, and the random forest method to present
new LULC products with a spatial resolution of 10 m in 2018 and 2020 for the upper Yellow River
Basin over the TP and conducted monitoring of changes in ecosystem types. The results indicated
that: (1) In 2018 and 2020, the overall accuracy (OA) of LULC maps ranged between 87.45% and
93.02%. (2) Grassland was the main LULC first-degree class in the research area, followed by wetland
and water bodies and barren land. For the LULC second-degree class, the main LULC was grassland,
followed by broadleaf shrub and marsh. (3) In the first-degree class of changes in ecosystem types,
the largest area of progressive succession (positive) was grassland–shrubland (451.13 km2), whereas
the largest area of retrogressive succession (negative) was grassland–barren (395.91 km2). In the
second-degree class, the largest areas of progressive succession (positive) were grassland–broadleaf
shrub (344.68 km2) and desert land–grassland (302.02 km2), whereas the largest areas of retrogressive
succession (negative) were broadleaf shrubland–grassland (309.08 km2) and grassland–bare rock
(193.89 km2). The northern and southwestern parts of the study area showed a trend towards positive
succession, whereas the south-central Huangnan, northeastern Gannan, and central Aba Prefectures
showed signs of retrogressive succession in their changes in ecosystem types. The purpose of this
study was to provide basis data for basin-scale ecosystem monitoring and analysis with more detailed
categories and reliable accuracy.

Keywords: Google Earth Engine; land use/land cover mapping; machine learning; upper Yellow
River basin; Sentinel-2; ecosystem types

1. Introduction

Land use/land cover (LULC) provides valid information for demonstrating the com-
plex and continuous interactions between global-to-local ecosystem change and human
behavior [1], and it can reveal the main drivers and consequences of global environmental
change [2–4]. It is worth noting that although different regions may have radically different
LULC expressions [5], their similar processes of change are constantly altering the energy
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and material cycles at the Earth’s surface [5], including the carbon [6], nitrogen [7], and
water cycles [8–10]. With the increases in human-led LULC behavior in different parts of
the world, such as agricultural expansion [11,12], urban expansion [13], and engineering
projects [14], the ecosystem’s structure and function [15], biodiversity [16–18], and ser-
vices [19] are further disturbed, either positively or negatively [20–22]. This creates great
uncertainty for regional ecosystems and ecological environments, and this will continue
to increase, especially with global climate change [23]. In this context, achieving accurate
LULC products at different spatial scales (local, national, and global) is essential for the
regular monitoring of existing ecosystems [20], planning and management of natural re-
sources [24], research and assessment of environmental quality [25], and promotion of
sustainable regional development [24].

Early LULC product mapping was mainly based on field surveys and manual visual
interpretation. This method is inefficient and costly, making it difficult to meet the need for
the regular and timely monitoring and mapping of LULC [26]. With the rapid development
of remote sensing (RS) technology, the development of LULC products at various temporal
and geographical scales has become possible [27]. In the process, satellite data have
improved dramatically in four directions: spatial [28,29] and temporal resolution [30],
radiation, and spectra [31].For instance, Sentinel-2 has provided unprecedented free images
with a spatial resolution of 10 m and a temporal resolution of 5 days to the world since 2015.
Meanwhile, with the development of classification methods, machine learning algorithms
(e.g., random forest (RF), gradient boosting decision tree (GBDT), and support vector
machine (SVM)) have been widely used in the field of LULC mapping [32–35]. These have
opened up new possibilities for more detailed LULC mapping [36]. However, they also pose
tremendous challenges for the efficiency of RS data collection and processing [37]. To meet
these challenges, Google Earth Engine (GEE), a big-data cloud-based network computing
resource platform, has emerged, and it has demonstrated strong competitiveness in recent
years. It provides massive geospatial datasets with unprecedented online computational
and visual analysis capabilities [38,39]. Researchers could use the GEE platform [39] to
pre-process or download multi-temporal image data that meet filtering requirements and
then use various machine learning algorithms to perform LULC classification and analysis
online. As a result, the GEE platform is increasingly being utilized to generate efficient and
large-scale LULC products as well as change-monitoring studies [40].

The upper Yellow River basin over the Tibetan Plateau (TP), with a rich variety of
ecosystem types, is an important ecological barrier [41] and corridor [42] in the northwest
of China and TP. On the one hand, it is important an water supply and connotation
area for the entire Yellow River basin and even the interior of northern China [43]. It
plays a significant role in soil and water conservation, carbon sequestration, and animal
husbandry, in addition to providing water for almost 20% of China’s cropland and around
190 million people in the basin [44]. On the other hand, it is one of the most sensitive
regions to global climate change [45], with an extremely fragile ecological environment [46].
During recent decades, its LULC and ecosystems have been dramatically altered by both
human activities and climate change [47], so there is an urgent need for more detailed and
regionally applicable LULC products to monitor and reveal the characteristics (positive
or negative) of these changes. Some relevant LULC products are now obtainable for this
region, such as FROM-GLC10, the world’s first LULC product with a spatial resolution of
10 m based on Sentinel-2 imagery [48], FROM-GLC30 [1], and GlobeLand30 [24], with a
spatial resolution of 30 m based on Landsat imagery. However, these existing products have
entirely different classification schemes, data sources, methods, and spatial and temporal
resolutions, and this has led to significant uncertainty in the classification details they
provide. Furthermore, compared to other regions, the study area has more prominent
high-altitude landscape heterogeneity, more complex landforms, and richer vegetation
communities and ecosystem types, and, as a result, existing products are unable to fully
distinguish and describe the LULC variations at the level of ecosystem types in the region.
Therefore, it is necessary to take more detailed ecosystem types into account, to develop a
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new classification scheme, and to produce high-resolution multi-category LULC products
for the region to facilitate monitoring at the level of regional ecosystem types.

The study defined a two-level LULC classification scheme based on ecosystem types
for the study area and produced LULC maps at 10 m spatial resolution based on the GEE
platform, Sentinel-2 image data, and machine learning methods. The main objectives
are as follows: (1) to generate products and assess their accuracies and performances;
(2) to conduct monitoring of changes in ecosystem types based on LULC products. The
results are helpful for the further mapping of LULC products over the whole Yellow
River basin and provide new, effective data support for monitoring changes in basin-scale
ecosystem types and ecological quality assessment.

2. Materials and Methods
2.1. Study Area

The upper Yellow River basin over TP (32◦8′–38◦20′N, 95◦50′–104◦31′E) is located in
the westernmost part of the Yellow River basin in northwestern China. It lies on the western
edge of the Loess Plateau and the northeastern part of the TP, spanning the Qinghai, Gansu,
and Sichuan Provinces (Figure 1). The Yellow River originates here and flows through
nine provinces or autonomous regions (Qinghai, Gansu, Sichuan, Ningxia, Inner Mongolia,
Shaanxi, Shanxi, Henan, and Shandong) for 5464 km [49] (Figure 1b). The study area
is approximately 1.99 × 105 km2, accounting for about 26.5% of the entire Yellow River
basin. It has a complex and diverse landscape, with many high mountains, canyons, basins,
and hills sloping from the southwest to the northeast at altitudes of 1650–6254 m [42]. In
addition, the study area straddles the plateau’s temperate, semi-arid, and subfrigid semi-
humid and humid zones and has a typical plateau continental climate, with long sunshine
hours, strong solar radiation, long winters, and short summers. It also has an average
annual temperature of −4–6 ◦C, which gradually decreases with increasing altitude, and
an average annual precipitation of approximately 420–800 mm [41,43,50,51]. The complex
landscapes and climatic types have given rise to a rich variety of LULC types in the study
area [52], including mainly grassland, forest, agricultural land, barren land, and wetlands
and water bodies (Figure 1d–h), which also makes it an important area for safeguarding
ecosystem services in the Yellow River basin. The dynamics of its ecosystem types are
closely related to the sustainable development of local socioeconomic development and
environment protection.

2.2. Dataset
2.2.1. Satellite Data

In this study, Sentinel-2 multispectral imagery (MSI) from the vegetation growing
season (image time range of 1 June to 30 August in 2018 and 2020) was used for composition
and classification. Considering the shortage of 2018 Sentinel-2 SR images covering the
study area in GEE, the downloading and processing of Sentinel-2 data was divided into
two separate parts for 2018 and 2020.

At the ESA Copernicus Open Access Centre (https://scihub.copernicus.eu/dhus/, ac-
cessed on 21 March 2022), due to the unique geographical conditions and the phenomenon
of high cloud cover in the study area, the threshold for cloud volume was set at 35%. In
this context, 92 Sentinel-2A/B Level-1C (L1C) top-of-atmosphere (TOA) reflectance data
with <35% cloud cover from the 2018 vegetation growing season were acquired, then
batch processed to Level-2A (L2A) surface reflectance data using the radiative transfer
model-based Sen2cor tool [53]. All bands were resampled to 10 m by the bilinear method
and de-clouded by masking the clouds with a quality scene classification band provided
by the L2A images [54]. After median compositing, mosaicking, and cropping the images,
the cloud-free Sentinel-2 images from 2018 were finally uploaded to the GEE platform for
classification [55].

https://scihub.copernicus.eu/dhus/
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images and land use/land cover types for Sentinel-2 from June to August 2020 ((d): grassland, (e): 
forest, (f): agricultural land, (g): barren land, (h): wetland and water body). 
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Figure 1. Location of the study area. (a) Location of the Yellow River basin in China; (b) location
of the study area within the Yellow River basin and the Tibetan Plateau; (c) examples of true-color
images and land use/land cover types for Sentinel-2 from June to August 2020 ((d): grassland,
(e): forest, (f): agricultural land, (g): barren land, (h): wetland and water body).

Sentinel-2 data for 2020 were obtained online through the GEE platform (https:
//code.earthengine.google.com/, accessed on 6 April 2022). Sentinel-2 L2A images with
<35% cloud cover in the study area during the vegetation growing season were retrieved
(661 images in total), the cloud was masked through the quality assessment band (QA60)
provided by the L2A images, and the subsequent image pre-processing, including resam-
pling, median compositing, mosaicking, and cropping were completed through the GEE
platform. Finally, cloud-free Sentinel-2 images from 2020 were obtained [56].

2.2.2. Terrain Data

The Shuttle Radar Topography Mission (SRTM) digital elevation model is available
in the GEE platform database [57] with a spatial resolution of 30 m. In this study, the
elevation, aspect, hill shade, and slope of the SRTM data were extracted as features for
LULC classification using the GEE platform.

2.2.3. Land Use/Land Cover Dataset

The 10 m global-scale land use/land cover dataset FROM-GLC10 provided by Ts-
inghua University (http://data.ess.tsinghua.edu.cn/, accessed on 25 March 2022) [48],
which was generated from Sentinel-2 imagery (spatial resolution of 10 m) from 2017, was
used for comparison with the classification results of this study.

2.2.4. Sample Point Data

The field surveys and the collection of field sample points for various LULC types
in the study area were conducted between July and August in 2018 and 2020 (Figure 2).
Observations were made in areas that were accessible by vehicle, and the Trimble Juno
series handheld GPS (https://www.trimble.com, accessed on 10 August 2020) was used to
acquire and record information on the type and location of LULCs. Aerial photographs of
different land cover types by DJI Phantom 4 and Mavic Pro light unmanned aerial vehicles
(UAVs) [58] were used as accurate and reliable field interpretation signs. In 2018 and 2020,
we collected a total of 8231 field survey points covering all LULC types in the study area
(for 18 second-degree classes). The number of sample points in each class was adjusted
with reference to the proportion of land cover area and the actual situation, eliminating

https://code.earthengine.google.com/
https://code.earthengine.google.com/
http://data.ess.tsinghua.edu.cn/
https://www.trimble.com
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the impact of possible sample imbalance on the classification of a small number of rare
LULC types [59]. In this case, the effect of sample unevenness on LULC classification
was eliminated. In addition, for those remote areas that were difficult to reach by vehicle,
such as the western end of the study area (Figure 2), we visually interpreted and collected
15,709 sample points using high-resolution Google Earth Pro and Sentinel-2 RGB true-color
composite imagery. Finally, all sample points were checked individually against the high-
resolution imagery provided by Google Earth Pro to confirm that the LULC categories for
all sample points in 2018 and 2020 were consistent with the actual conditions [60]. In this
process, 470 sample points were corrected and added. Then, 80% of the sample points were
used as training samples for the classification, and 20% were used to verify the accuracy of
the classification through a stratified random sampling method [61]. The set of training
and validation points for the years 2018 and 2020 are shown in Table 1.
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Table 1. Training and validation sample points in this study.

First-Degree Class Second-Degree Class
2018 2020

Training Samples Validation
Samples Training Samples Validation

Samples

Forest
Broadleaf Forest 332 83 320 80

Needleleaf Forest 164 41 196 49
Mixed Forest 408 102 384 96

Shrubland Broadleaf Shrub 260 65 196 49
Needleleaf Shrub 112 28 104 26

Grassland Grassland 2908 727 2724 681
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Table 1. Cont.

First-Degree Class Second-Degree Class
2018 2020

Training Samples Validation
Samples Training Samples Validation

Samples

Wetland and Water body
Marsh 412 103 448 112
Lake 380 95 216 54
River 1304 326 1432 358

Agricultural Land Cropland 1268 317 1388 347
Orchard Land 412 103 180 45

Construction Land

Urban 756 189 656 164
Urban Green Space 92 23 120 30

Industrial and
Transportation Land 272 68 352 88

Barren
Desert Land 244 61 232 58

Bare Soil 76 19 72 18
Bare Rock 284 71 248 62

Snow and ice Snow and ice 384 96 192 48

Total 10068 2517 9460 2365

2.3. Research Methods

The flow chart in Figure 3 shows the mapping and analysis methods applied in
this study. Sentinel-2 image pre-processing, feature construction, sample selection, LULC
classification, accuracy assessment, and the monitoring of changes in ecosystem types based
on LULC are the main steps involved. The following sections describe the classification
scheme and several relevant steps in this study in detail.
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2.3.1. Classification Scheme

Based on ecosystem types [62], taking into account the regional characteristics of the
study area and the capability of the satellite data used and referring to the International
Geosphere-Biosphere Programme (IGBP) classification system, existing land cover classifi-
cation products covering it, and LULC classification research from other regions [42,62–65],
a new two-level LULC classification scheme was defined (Table 2).
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Table 2. The LULC classification scheme of this study.

First-Degree Class Second-Degree Class Description

Forest

Broadleaf Forest
(BLF)

Dominated by broadleaf trees with a percent cover > 60% and
height > 2 m.

Needleleaf Forest
(NLF)

Dominated by needleleaf trees with a percent cover > 60%
and height > 2 m.

Mixed Forest
(MF)

Dominated by trees with cover > 60% and height > 2 m.
Consists of tree communities with interspersed mixtures or
mosaics of the other two forest types. Neither of the forest
types exceeded 60%.

Shrubland

Broadleaf Shrub
(BLS)

Dominated by broadleaf shrub with a percent cover > 60%
and height < 2 m.

Needleleaf Shrub
(NLS)

Dominated by needleleaf shrub with a percent cover > 60%
and height < 2 m.

Grassland Grassland
(Grass)

Dominated by herbaceous plants (<2 m) with a
percent cover > 60% and height < 2 m.

Wetland and Water body

Marsh
(Marsh)

Permanently inundated lands with wet-growing herbaceous
or woody plants on the surface.

Lake
(Lake)

Natural, artificially constructed, relatively stationary water
surface, including reservoirs, pits, fish ponds, salt ponds.

River
(River)

Naturally flowing linear water surface. Includes
canals/channels: artificially constructed, flowing, linear water
surfaces > 30 m wide.

Agricultural Land

Cropland
(Crop)

Dominated by herbaceous annuals (temporary crops) (<2 m).
At least 60% of area is cultivated cropland. Includes
post-harvest bare soil period.

Orchard Land
(OL)

Lands with mainly a mosaic of commercial artificial forests or
shrublands for cash crops.

Construction Land

Urban
(Urban)

At least 60% of area is covered by residential building
materials, such as cities, towns, and villages.

Urban Green Space
(UGS)

Artificially cultivated grassland in residential areas, including
artificially cultivated recreational and sports grounds in
the countryside.

Industrial and Transportation Land
(IAT)

At least 60% of the area is covered by industrial lands,
transportation lands, and mining sites.

Barren

Desert Land
(DL)

Lands with the ground completely covered by loose sand
particles; never has > 10% vegetated cover during any time of
the year.

Bare Soil
(BS)

Lands with the surface covered by exposed soil with loose
structure; never has > 10% vegetated cover during any time of
the year.

Bare Rock
(BR)

Lands with the surface covered by hard rock; gravel-covered
surface; never has > 10% vegetated cover during any time of
the year.

Snow and ice Snow and ice
(Snow)

At least 80% of the area is covered by snow/ice throughout
the year.

Specifically, the ecosystem types of the study area are complex and diverse. On
the premise that we were familiar with the basic characteristics of the different types
of ecosystems, as well as the meaning of their attributes and their interpretative signs,
we divided the LULC into eight primary classes (forest, shrub, grassland, wetland and
water body, agricultural land, construction land, barren land, and snow and ice) based
on the ecosystem types. On this basis, in order to be able to distinguish and monitor
more details within the ecosystem types, the LULC classification scheme was increased to
18 second-degree classes.
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For the purpose of LULC classification, we used the same training points for the
first- (combining the training points of the second-degree classes into first-degree class
for classification) and second-degree classes, then evaluated their accuracy with the same
validation points. It is worth noting that to ensure the comparability of LULC area statistics
and changes, we only used second-degree class training points to generate all LULC
products for the study area (whereby primary first-degree classes were generated by
second-degree class products) [60]. In addition, the spatial distribution of sample points
for 18 secondary classes and sample selection examples for the Sentinel-2 RGB true color
images are shown in Figure 4.
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River 
(River) 

Naturally flowing linear water surface. Includes ca-
nals/channels: artificially constructed, flowing, linear wa-
ter surfaces > 30 m wide. 

Agricultural Land Cropland 
(Crop) 

Dominated by herbaceous annuals (temporary crops) (<2 
m). At least 60% of area is cultivated cropland. Includes 
post-harvest bare soil period. 

Figure 4. Spatial distribution of LULC second-degree class sample points. (ai–h) Sentinel-2 RGB
true-color composite image of LULC second-degree class sample points.

2.3.2. Feature Construction

It is important to construct effective feature datasets to participate in LULC classifica-
tion [66]. For the spectral features, first, based on previous studies and several tests [66–68],
the Sentinel-2 L2A multispectral image bands that adequately conveyed the ecosystem
types and LULC status of the study area were selected, including B2, B3, B4, B5, B7, B8, and
B11. In addition, numerous studies have shown that different vegetation indices (VIs) as in-
put features for classification will effectively improve the accuracy of LULC [26,69–71]. We
used the GEE platform to calculate the NDVI (Normalized Difference Vegetation Index [72]),
which characterizes the physiological, biochemical, and structural characteristics of the veg-
etation canopy; the NDWI (Normalized Difference Water Index [73]), which characterizes
water bodies; the NDBI (Normalized Difference Building Index [74]), which characterizes
manmade land surface features; the SAVI (Soil Adjusted Vegetation Index [75]), which high-
lights soil characteristics; and the EVI (Enhanced Vegetation Index [76]), which enhances
the physiological, biochemical, and structural characteristics of the vegetation canopy. The
formulas we used were as follows:

NDVI =
NIR− Red
NIR + Red

(1)

NDWI =
Green−NIR
Green + NIR

(2)
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NDBI =
SWIR−NIR
SWIR + NIR

(3)

SAVI = 1.6× NIR− Red
NIR + Red + 0.6

(4)

EVI = 2.5× NIR− Red
NIR + 6× Red− 7.5× Blue + 1

(5)

where NIR, SWIR, Red, Green, and Blue are the reflectance values from the near-infrared
(842 nm), short-wave infrared (1610 nm), red (665 nm), green (560 nm), and blue (490 nm)
bands of Sentinel-2, respectively.

Texture features are the patterns that result from a specific transformation of a gray-
scale image in space. It has been shown that combining texture features with spectral
information can improve the accuracy of LULC classification in specific scenarios [77,78].
For example, a recent study has combined GLCM texture features with spectral bands to
classify forest tree species and achieved the highest OA (92%) [79], indicating that texture
features are important for accurately distinguishing between LULC classes such as forest
and shrubland. Currently, Grey-Level Co-occurrence Matrix (GLCM) computation has
been widely used in the statistics and analysis of texture features [68,80,81]. As in previous
studies [82], here, with the fast computation of the GLCM-based texture feature function
glcmTexture provided by the GEE platform, and using a gray-level 8-bit image as input,
the computation and construction of 18 texture features were completed. In this study, the
Sentinel-2 images were first converted to gray-scale as input to the GLCM according to
Equation (6), which involves operations between the red, green, and near-infrared bands
of Sentinel-2:

Gray = (0.3×NIR) + (0.59× RED) + (0.11×GREEN) (6)

where NIR, Red, and Green are the reflectance values from the near-infrared (842 nm),
red (665 nm), and green (560 nm) bands of Sentinel-2, respectively.

Based on previous studies, we tested the neighborhood of 1, 2, 3, 5, 7, 10, 15, and 30 pixels,
respectively, and finally set the GLCM’s moving window to 5× 5 pixels. Compared to other
field settings, 5 × 5 pixels provides better recognition of the pixel-level texture in our study
area [83]. Then, seven GLCM features including the angular second moment, contrast,
correlation, entropy, variance, inverse difference moment, and sum average were calculated.

Topographic features greatly influence the accuracy of LULC classification of forest,
shrubland, and agricultural land [50], so we extracted SRTMGL1_003 data provided by the
GEE platform [39], including the elevation, slope, slope direction, and mountain shading.
These were involved in the construction of the classification features along with texture
and spectral features (Table 3).

Table 3. The set of features in this study.

Feature Type Feature Name

Spectral B2, B3, B4, B5, B7, B8, B11, NDVI, NDBI, NDWI, SAVI, EVI

Texture Gray_asm, Gray_contrast, Gray_corr, Gray_ent, Gray_var, Gray_idm, Gray_savg

Terrain Elevation, Slope, Aspect, Hill shade

2.3.3. GEE-Based Random Forest Classification

The random forest (RF) classifier is a non-parametric integrated learning algorithm
based on the composition of multiple independent individual decision trees [84]. During
the classification process, the voting process of all trees will determine the final classifi-
cation result. RF can handle high-dimensional and multicollinear data accurately and
robustly [85] and is much less sensitive to overfitting and training data quality [86,87]. At
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the same time, RF eliminates the need for tree pruning and is computationally fast and less
burdensome [88].

These advantages make RF competent for complex remote sensing image classification,
and RF is therefore widely used in large-scale, multi-category, and multi-feature LULC
mapping [89–91]. This study used a large study area (approximately 200,000 km2) and
large numbers of LULC classes (18 classes in total) and sample points (24,410 samples in
total). Following the previous work in [22], the RF classifier set to 500 trees (ntree = 500)
was able to be used for LULC classification work after several GEE user computation
quota limit tests [86,89]; therefore, this study adopted RF as the classifier for LULC clas-
sification. In addition, the importance ranking function based on out-of-bag data error
(OOBe) embedded in the RF classifier measures the contribution of individual features to
the classification [84,86,92]. During the classification process, the importance scores of all
the feature variables involved in the classification using the GEE platform were obtained
and plotted [93].

2.3.4. Accuracy Assessment

A random sample of 20% of the sample point data for each of the years 2018 and 2020
was used for the LULC accuracy assessment. This validation set was completely independent
of the training dataset and ensured a random distribution of validation points within the
study area, with validation points available in each of the 18 second-degree classes.

The confusion matrix is a popular LULC accuracy evaluation method [94,95]. In this
study, confusion matrices were constructed in GEE to evaluate LULC classification accu-
racy, and they then calculated the quantitative metrics’ overall accuracy (OA), producer’s
accuracy (PA), user’s accuracy (UA), and Kappa coefficient [96–98]. These indicators reflect
the agreement between the LULC classification results and the actual LULC at the sites
from different perspectives [99]. Four identical areas were selected for visual evaluation
with existing LULC products to compare the differences in the spatial distribution of the
classification results [91,100].

2.3.5. The Monitoring of Changes in Ecosystem Types

In this study, the monitoring of changes in ecosystem types was based on the LULC
transition matrix and ecological succession theory.

An ecosystem is a comprehensive biological system consisting of all the organisms
found and interacting with each other in a particular physical environment [101,102]. It
includes multiple types such as the forest ecosystem, shrubland ecosystem, grassland
ecosystem, freshwater ecosystem, and wetland ecosystem, among others. Ecosystems
are not exactly equivalent to LULC, but the LULC can provide spatially continuous data
for monitoring ecosystem change [103], whereby LULC transitions can reflect the change
in ecosystem types [104]. Ecological succession is defined as the orderly process of re-
assembling vegetation communities or ecosystems following natural or anthropogenic
disturbance [105,106]. It can also reflect changes in ecosystem types, including the pro-
gressive succession of ecosystem types, for example, the natural growth of grass from
abandoned mines or bare soil [107], the artificial restoration of forests [108], and the retro-
gressive succession of ecosystem types [109], e.g., deforestation by humans or grassland
desertification. In addition, some previous studies have shown that LULC transitions
can reflect the occurrence of ecological succession [110–112], so it is reasonable to monitor
changes in ecosystem types based on ecological succession theory combined with the LULC
transition matrix.

For this study, ecological succession relationships between barren land, grassland,
freshwater (river and lake), wetland (marsh), shrubland, and forest ecosystem types (includ-
ing their second-degree classes) were considered. When change in ecosystem types was in
the direction of progressive succession (positive), the transfer form was barren/freshwater–
grassland/wetland–shrubland–forest, and, conversely, when the change in ecosystem
types was in the direction of retrogressive succession (negative), the transfer form was
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forest–shrubland–grassland/wetland–barren/freshwater. These change relationships are
illustrated in Figure 5 and Table S1.
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3. Results
3.1. Feature Importance

Based on the feature importance ranking function, the average importance scores of
the 23 feature variables involved in the LULC classification in 2018 and 2020 were plotted
(Figure 6). The importance of the spectral features was typically high in all cases; the textural
features were low, and, among the topographic features, the elevation (average 2095.82)
and slope (average 2100.91) were high, whereas hill shade and aspect were low. Specifically,
the B11, B2, B3, and B5 bands of Sentinel-2 were generally high in importance over the
two-year period (mean > 1900), with B11 being the most important (average 2228.14). NDBI
received the highest importance score (average 2059.84) of the five VIs, and NDWI was
also ranked highly (average 1907.12). Of the texture features, Gray_savg had the highest
importance (average 1858.31), and several others had the lowest importance (all < 1600). It
is noteworthy that although only one of the texture features performed better, we found that
the accuracy of LULC decreased when texture features were not included for classification
(Table S2); this has been reported in a previous work [60]. Overall, B11, elevation, slope, B2,
and NDBI were the most important features, whereas Gray_ent, Gray_asm, hill shade, and
aspect contributed less to the LULC classification.

3.2. LULC Accuracy Assessment

The confusion matrix (Tables 4, 5, and S3–S6) showed good classification results for
the LULC products generated in both 2018 and 2020. The OA of the first-degree class
reached 90.58% and 93.02%, with Kappa coefficients of 0.88 and 0.91, respectively, and
the OA of the second-degree class reached 87.45% and 92.14%, with Kappa coefficients of
0.85 and 0.91, respectively. Figure 6 shows that in terms of PA and UA, good accuracies
(75.00% to 97.88%) were achieved for most of the LULC first-degree class, such as wetland
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and water body, barren land, grassland, agricultural land, and forest. For both the 2018
and 2020 class I categories, water performed best in both PA (95.99% and 97.67%) and
UA (97.33% and 97.88%), probably due to the better applicability of NDWI for identifying
wetland and the more pronounced spectral response of water bodies compared to other
LULC types [100]; the accuracies for shrubland were generally lower, and there were
some misclassifications with forests and grasslands (Figure 7a,c and Tables S3 and S4).
The addition of more subclasses led to an overall decreasing trend in the classification
performance of the LULC second-degree classes, especially for the orchard and urban green
space (Tables S5 and S6); these two showed more mixed and misclassified scores, with both
PA and UA fluctuating around 80%. There were some misclassifications between urban
land, cropland, and orchard, as all of these are classes that are relatively heavily influenced
by human activities [42] (Table S5). Further, there was a small amount of misclassification
between cropland, urban land, and grassland (Tables S5 and S6) due to the similar spectral
characteristics between degraded grassland and post-harvest cropland and urban land. In
contrast, broadleaf, needleleaf, and mixed forest showed good classification performance,
with PA and UA generally above 80%. Of all the second-degree classes, the river, lake,
marsh, farmland, grassland, bare rock, and snow were the best classified, with both PA
and UA above 83% (Figure 7b,d and Tables S5 and S6). Considering the large number of
LULC types involved in this work, it achieved more satisfactory results for all indicators of
accuracy assessment.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 28 
 

 

 
Figure 6. Average importance of features. (a) 2018; (b) 2020. 

3.2. LULC Accuracy Assessment 
The confusion matrix (Tables 4, 5, and S3–S6) showed good classification results for 

the LULC products generated in both 2018 and 2020. The OA of the first-degree class 
reached 90.58% and 93.02%, with Kappa coefficients of 0.88 and 0.91, respectively, and the 
OA of the second-degree class reached 87.45% and 92.14%, with Kappa coefficients of 0.85 
and 0.91, respectively. Figure 6 shows that in terms of PA and UA, good accuracies 
(75.00% to 97.88%) were achieved for most of the LULC first-degree class, such as wetland 
and water body, barren land, grassland, agricultural land, and forest. For both the 2018 
and 2020 class I categories, water performed best in both PA (95.99% and 97.67%) and UA 
(97.33% and 97.88%), probably due to the better applicability of NDWI for identifying 
wetland and the more pronounced spectral response of water bodies compared to other 
LULC types [100]; the accuracies for shrubland were generally lower, and there were some 
misclassifications with forests and grasslands (Figure 7a,c and Tables S3 and S4). The ad-
dition of more subclasses led to an overall decreasing trend in the classification perfor-
mance of the LULC second-degree classes, especially for the orchard and urban green 
space (Tables S5 and S6); these two showed more mixed and misclassified scores, with 
both PA and UA fluctuating around 80%. There were some misclassifications between 
urban land, cropland, and orchard, as all of these are classes that are relatively heavily 
influenced by human activities [42] (Table S5). Further, there was a small amount of mis-
classification between cropland, urban land, and grassland (Tables S5 and S6) due to the 
similar spectral characteristics between degraded grassland and post-harvest cropland 
and urban land. In contrast, broadleaf, needleleaf, and mixed forest showed good classi-
fication performance, with PA and UA generally above 80%. Of all the second-degree 
classes, the river, lake, marsh, farmland, grassland, bare rock, and snow were the best 
classified, with both PA and UA above 83% (Figure 7b,d and Tables S5 and S6). Consid-
ering the large number of LULC types involved in this work, it achieved more satisfactory 
results for all indicators of accuracy assessment. 

  

Figure 6. Average importance of features. (a) 2018; (b) 2020.

3.3. LULC Visual Assessment

For a more comprehensive assessment of LULC results, Figure 8 shows the high-
resolution image provided by Google Earth Pro, the Sentinel-2 true-color image, the FROM-
GLC10 product, and our LULC map, respectively. Four areas covering multiple LULC
types for comparison were selected. It was found that our LULC results had a high fit with
the field conditions of the high-resolution and Sentinel-2 true-color images, and there were
some differences to the FROM-GLC10 product. For example, the extraction of town, road,
and river information in our LULC results was more complete compared to FROM-GLC10
(Figure 8a). In the identification of desert (Figure 8b) and marsh (Figure 8c), our spatial
distribution was similar to FROM-GLC10, but we had relatively less noise and provided
more LULC detail, especially in the more accurate spatial distribution of marsh that we
produced. However, although we did better in extracting the types of marsh, urban land,
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cropland, and roads, there was still some localized mixing and misclassification of forest,
shrubland, and grassland (Figure 8d).

Table 4. The confusion matrix of LULC first-degree class accuracy (PA: producer’s accuracy;
UA: user’s accuracy; OA: overall accuracy).

LULC First-Degree Class
2018 2020

PA (%) UA (%) PA (%) UA (%)

Forest 91.59 87.34 95.56 92.67
Shrubland 75.27 81.39 85.33 86.49
Grassland 92.02 90.53 92.66 92.66

Wetland and Water body 95.99 97.67 97.33 97.88
Agricultural Land 90.00 88.94 93.11 91.94
Construction Land 81.79 86.09 86.88 90.74

Barren 88.74 88.16 97.10 88.74
Snow and ice 93.75 92.78 75.00 92.31

OA (%) 90.58 93.02
Kappa Coefficient 0.88 0.91

Table 5. The confusion matrix of LULC second-degree class accuracy (PA: producer’s accuracy;
UA: user’s accuracy; OA: overall accuracy).

LULC Second-Degree Class
2018 2020

PA (%) UA (%) PA (%) UA (%)

Broadleaf Forest 89.16 80.43 90.00 83.72
Needleleaf Forest 80.49 80.49 89.80 91.67

Mixed Forest 79.41 81.00 87.50 91.30

Broadleaf Shrub 80.00 83.87 81.63 80.00
Needleleaf Shrub 89.29 89.29 80.77 87.50

Grassland 90.10 91.61 94.57 93.33

Marsh 90.29 94.90 90.18 87.07
Lake 86.32 94.25 94.44 94.44
River 93.25 87.61 97.49 98.59

Cropland 87.38 83.94 94.52 94.80
Orchard Land 72.82 75.00 82.22 80.43

Urban 80.95 88.44 88.41 90.63
Urban Green Space 82.61 86.36 76.67 76.67

Industrial and Transportation Land 85.29 81.69 85.23 87.21

Desert Land 96.72 81.94 91.38 94.64
Bare Soil 84.21 88.89 94.44 85.00

Bare Rock 87.32 96.88 87.10 87.10

Snow and ice 86.46 85.57 85.42 91.11

OA (%) 87.45 92.14
Kappa Coefficient 0.85 0.91

Furthermore, when comparing the proportion of the study area occupied by the
different LULC types in our product with FROM-GLC10 (Figure S1), it was found that the
proportions of grassland, construction land, agricultural land, snow, and ice were not much
different from FROM-GLC10. However, there were obvious differences in the proportions
of the forest, shrubland, wetland, and waterbody areas. Further visual assessment using
the 2018 validation points of marsh, shrub, and forest and the UAV aerial photographs was
conducted (Figure S2). In these areas, we found that our products performed relatively
better for marsh (wetland), shrubland, and forest compared to FROM-GLC10 (Figure S2),
which may be due to differences in the definitions of LULC types in different classification
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systems and classification methods. Overall, the LULC products for the upper Yellow River
basin over TP were reasonably consistent with the FROM-GLC10 products and have high
accuracy, and they can be used in subsequent analysis.
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3.4. LULC Classification Results

The results of the LULC classification and area statistics for the study area are shown in
Figure 9 and Figure S3. In both 2018 and 2020, the most dominant LULC first-degree class in
the study area was grassland (75.43% in 2018 and 75.44% in 2020), mainly in the western part
of the Haibei, Hainan, Huangnan, Gannan, Guoluo, and Yushu Prefectures (Figure 8a,b).
This was followed by the wetland and water body (6.09% in 2018, 5.89% in 2020), which
was mainly concentrated in the western Guoluo, northern Hainan, southern Huangnan,
southwestern Gannan and Aba Prefectures. Barren land (3.99% in 2018, 3.98% in 2020)
was widely distributed at higher altitudes in the Yushu, Guoluo, central Hainan, and
northern Haibei Prefectures. Shrubland (3.31% in 2018 and 3.22% in 2020) and agricultural
land (3.13% in 2018 and 3.10% in 2020) were concentrated in areas with lower elevations,
more abundant water resources, and suitable temperatures, such as Xining, Haidong,
and the western Haibei and eastern Gannan Prefectures. In addition to grassland, the
main LULC second-degree classes in the study area were broadleaf shrub (2.42% in 2018
and 2.31% in 2020), marsh (3.22% in 2018 and 3.07% in 2020), cropland (3.02% in 2018
and 2.99% in 2020), bare rock (2.78% in 2018 and 2020), and urban land (2018 1.51% and



Remote Sens. 2022, 14, 5361 15 of 25

1.66% in 2020); the urban areas were mainly located in the northern and central parts of the
study area.
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3.5. Monitoring Changes in of Ecosystem Types Based on LULC Products

Based on the LULC transition matrices (Figure 10a,b) and ecological succession the-
ory (Figure 5, Table S1), the changes in ecosystem types (Figure 10c,d) and their spatial
distribution (Figure 10e) were obtained.
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In the first-degree class of changes in ecosystem types (Figure 10c), the largest ar-
eas of progressive succession (positive) were grassland–shrubland, barren–grassland,
and grassland–forest, with areas of 451.13 km2, 425.93 km2 and 405.95 km2, respec-
tively, whereas the smallest areas of progressive succession (positive) were freshwater–
wetland, barren–wetland and freshwater–grassland, with areas of 34.75 km2, 28.66 km2,
and 20.51 km2, respectively. The largest areas of retrogressive succession (negative) were
grassland–barren, shrubland–grassland, and shrubland–barren, with areas of 395.91 km2,
326.84 km2, and 240.38 km2, respectively, whereas the smallest areas of retrogressive succes-
sion (negative) were wetland–barren, shrubland–wetland, and wetland–freshwater, with
areas of 107.63 km2, 68.13 km2 and 39.94 km2, respectively.

In the second-degree class of changes in ecosystem types (Figure 10d), the largest
areas of progressive succession (positive) were grassland–broadleaf shrub, desert land–
grassland, grassland–broadleaf forest, and desert land–broadleaf shrub, with areas of
344.68 km2, 302.02 km2, 267.91 km2, and 144.75 km2, respectively, whereas the smallest
areas of progressive succession (positive) were river–grassland, desert land–mixed for-
est, desert land–marsh, and needleleaf shrub–broadleaf forest, with areas of 7.71 km2,
9.11 km2, 9.32 km2, and 10.03 km2, respectively. The largest areas of retrogressive succes-
sion (negative) were broadleaf shrub–grassland, grassland–bare rock, grassland–desert
land, and broadleaf shrub–desert land, with areas of 309.08 km2, 193.89 km2, 191.16 km2,
and 77.04 km2, respectively, whereas the smallest areas of retrogressive succession (nega-
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tive) were needleleaf forest–bare soil, mixed forest–desert land, needleleaf forest–desert
land, and broadleaf forest–needleleaf shrub, with areas of 3.55 km2, 5.27 km2, 6.30 km2,
and 10.57 km2, respectively.
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The distribution of changes in ecosystem types based on LULC types for the source and
the upper Yellow River basin from 2018 to 2020 was quantified and produced (Figure 10e).
As can be seen from the figure, the changes in ecosystem types showed a trend towards
positive succession (positive) in the northern and southwestern parts of the study area,
whereas in the south-central Huangnan, northeastern Gannan, and central Aba Prefectures,
it showed signs of retrogressive succession (negative) in ecosystem change.

4. Discussion
4.1. Comparison of Classification Methods

To further verify and assess the performance of the RF method for high-resolution
LULC mapping in the study area, a comparison of the classification accuracy with three
machine learning methods widely used in GEE were obtained, including classification
and regression trees (CART), the gradient boosting decision tree (GBDT), and the support
vector machine (SVM) (Table 6). The results showed that RF performed best among all
the classifiers (87.45–92.14%), followed by GBDT [113] (86.65–90.60%) and CART [114]
(78.76–86.99%), whereas the SVM [115] (74.64–84.30%) classifier had the lowest perfor-
mance. The difference in effectiveness between the two integrated learning algorithms,
GBDT and RF, was not significant, with RF slightly more effective than GBDT in this
study; however, GBDT has shown better classification performance in some studies [116].
It is worth noting that although SVM performed far worse than RF and GBDT here, it
has achieved good results in some classification studies [117–119], particularly those with
relatively small training samples and LULC types [120], in which it can outperform RF.
Although some studies have shown little difference in classification performance between
SVM and RF [121,122], the classification performance of SVM is clearly limited when work-
ing with large-scale LULC mapping with a large number of training samples as in this
study; RF and GBDT perform better in this respect.

Table 6. Comparison of the accuracy of several machine learning methods.

Machine Learning Methods
2018 2020

OA (%) Kappa
Coefficient OA (%) Kappa

Coefficient

Random Forest 87.45 0.85 92.14 0.91
CART 78.76 0.75 86.99 0.85

Gradient Boosting Decision Tree 86.65 0.84 90.60 0.89
Support Vector Machine 74.64 0.70 84.30 0.81

4.2. Comparison of LULC Products Accuracy

In a visual comparison with the FROM-GLC10 product, our product provided more
detail and had better performance in the extraction of cropland, urban land, rivers, and
desert, but forest, shrubland, and grasslands showed some misclassification. In the first-
degree class (Table 4), satisfactory accuracy (PA and UA > 80%) was achieved in almost all
LULC types, except for shrubland (PA = 75.27%) and snow and ice. This result is similar
to the GEE-based classification of the Qilian Mountains by Yang et al. [50]; the PA of the
shrubland only reached 66.67% in their work. There was some visual similarity between
both shrubland and degraded grassland and sparse forest, and that led to significant
misclassification in transitional areas. The misclassification of snow and ice was mainly
attributed to the persistence of clouds in the southern part of the study area that were hard
to remove.

In the second-degree class, a large proportion of the LULC classes (15 out of 18)
showed good accuracy (PA and UA > 80%), with reduced misclassification of shrubland
and lower accuracy for the orchard (PA = 72.82%), urban green space, and mixed forest
(Table 5). This result is similar to the LULC of the Yellow River basin by Ji et al. [42]; the
PA of the orchard and terrace reached 0.74 in their work. The fact that orchard and urban
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green spaces have relatively similar vegetation types in composition makes them extremely
easy to confuse both spectrally and texturally [120]. Similarly, the only difference between
mixed, needleleaf, and broadleaf forest classes is the ratio of needleleaf/broadleaf forest.
The same problem affects the classification of second-degree classes such as construction
land, shrubland, and barren land; in other words, even if we could accurately identify these
secondary categories from field-collected UAV data or Google Earth Pro high-resolution
imagery, there would still be a high degree of uncertainty in the classification, and it would
still be challenging to capture these LULC types accurately [68]. Although we achieved
a high degree of accuracy in our study, there are still some confusion problems in these
secondary classes.

4.3. Changes in Ecosystem Types Based on Ecological Succession and LULC

Human activities and natural environmental changes, through their impact on LULC,
largely influence the process of ecological succession and ultimately lead to the occurrence
of changes in ecosystem types [112]. Traditionally, change in ecosystem types is relatively
slow [123], especially for areas with low anthropogenic disturbance such as the upper
Yellow River basin over TP; however, our study shows that approximately 3955 km2

of the study area underwent changes in ecosystem types between 2018 and 2020. This
implies that changes in ecosystem types are accelerating under the predominant role of
anthropogenic disturbance.

The monitoring of changes in ecosystem types revealed both positive and negative
effects of anthropogenic disturbances on ecosystem changes during this process. For the
retrogressive succession, artificial disturbances often play a negative role: the change
in ecosystem types of the grassland–desert land (191.16 km2) may be associated with
desertification of grasslands due to overgrazing; the change in ecosystem types of the
broadleaf forest–grassland (70.49 km2) is possibly associated with deforestation.

However, for the progressive succession, anthropogenic disturbances often play a
positive role: the changes in ecosystem types of the grassland–broadleaf shrub (344.68 km2)
and desert land–broadleaf shrub (144.75 km2) may be related to the local ecological bar-
rier project in recent years; the change in ecosystem types of the desert land–grassland
(302.02 km2) confirms the overall increase in ecosystem services in the Sanjiangyuan area
of the TP, as noted in recent reports [124], and that the ongoing efforts to combat desertifi-
cation and related ecological restoration have been effective [47]. The change in ecosystem
types of the grassland–broadleaf forest (267.91 km2) may be related to a combination of
ecological restoration projects such as reforestation and afforestation [22,47,125]. These
findings illustrate the important role of LULC products that can be used for monitoring
of regional ecosystem types and further confirm the reliability of our LULC products for
monitoring of changes in ecosystem types.

4.4. Limitations and Prospects

Relying on the free GEE platform, we were able to carry out large-scale high-resolution
LULC mapping work [36,38,126]. Unfortunately, Sentinel-2 cannot currently be used to
monitor LULC changes over long time series. In addition, our research area is located at
the eastern edge of the TP, where high altitudes and frequent variable weather rendered it
permanently covered by clouds. Although multi-temporal compositing and cloud masking
with GEE can compensate for this to some extent, monitoring still suffered in some areas,
especially in the densely cloudy upper Yellow River basin [22,127]. Moreover, for the study
area, GEE has not yet provided Sentinel-2 L2A(SR) data for 2018 and earlier; only L1C
(TOA) data are available. Even though the relevant studies concluded that the effect of
TOA data on classification is minimal [128], we still chose to use SR data for classification
to better map the complex LULC distribution. This meant we spent more time on image
pre-processing and reduced the efficiency of mapping LULC.

Despite these limitations, based on the processing framework and the new classifi-
cation scheme of this study, one or more (2022, 2024, and so on) LULC maps that can be
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used for monitoring of changes in ecosystem types will be easily obtained. At the same
time, with the enrichment of classification algorithms’ multi-source RS data and cloud
computing platform, larger scale, higher resolution, and higher accuracy products can be
provided when monitoring at the level of ecosystem types. In future research, we will
generate more detailed high-resolution LULC products to promote regional ecological
surveys and conservation.

5. Conclusions

The study combined an 18-class LULC classification scheme based on ecosystem
types with Sentinel-2 multi-temporal data, the GEE platform, and the RF machine learning
method to present new high-resolution LULC products with a spatial resolution of 10 m
for the upper Yellow River basin over the TP and conducted monitoring of changes in
ecosystem types. The main findings were as follows: (1) Combining Sentinel-2 imagery and
RF classification methods, the products of the upper Yellow River basin over TP that were
obtained based on the GEE platform have high classification accuracies and are suitable
for monitoring changes in ecosystem types in the study area. (2) The LULC products
based on a two-level classification system show that in the LULC first-degree class, the
grassland, wetland and water body, barren land, shrubland, and agricultural land are the
main LULC types. In the LULC second-degree class, grassland, broadleaf shrub, marsh,
cropland, bare rock, and urban land are the main LULC types. (3) In 2018–2020, in the
first-degree class of changes in ecosystem types, the largest areas of progressive succession
(positive) were grassland–shrubland and barren–grassland, whereas the smallest areas
were freshwater–wetland and barren–wetland. The largest areas of retrogressive succession
(negative) were grassland–barren and shrubland–grassland, whereas the smallest areas
were wetland–barren and shrubland–wetland. In the second-degree class of changes in
ecosystem types, the largest areas of progressive succession (positive) were grassland–
broadleaf and shrubland desert land–grassland, whereas the smallest areas of progressive
succession were river–grass and desert land–mixed forest. The largest areas of retrogressive
succession (negative) were broadleaf shrub–grassland and grassland–bare rock, whereas the
smallest areas were needleleaf forest–bare soil and mixed forest–desert land. The northern
and southwestern parts of the study area showed a trend towards positive succession,
whereas the south-central Huangnan, northeastern Gannan, and central Aba Prefectures
showed signs of retrogressive succession in changes in ecosystem types. This study can
provide effective data support for the monitoring of regional scale ecosystem types, quality
assessments and protection, natural resource management, and sustainable development
of the upper Yellow River basin over the TP.
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