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Abstract—Land-use mapping (LUM) using high spatial reso-
lution remote sensing images (HSR-RSIs) is a challenging and
crucial technology. However, due to the characteristics of HSR-
RSIs, such as different image acquisition conditions and massive,
detailed information, performing LUM faces unique scientific
challenges. With the emergence of new deep learning (DL)
algorithms in recent years, methods to LUM with DL have
achieved huge breakthroughs, which offers novel opportunities
for the development of LUM for HSR-RSIs. This paper aims
to provide a thorough review of recent achievements in this
field. Existing high spatial resolution datasets in the research
of semantic segmentation and single object segmentation are
presented firstly. Next, we introduce several basic DL approaches
that are frequently adopted for LUM. After reviewing DL-
based LUM methods comprehensively, which highlights the
contributions of researchers in the field of LUM for HSR-RSIs,
we summarize these DL-based approaches based on two LUM
criteria. Individually, the first one has supervised learning, semi-
supervised learning, or unsupervised learning, while another one
is pixel-based or object-based. We then briefly review the fun-
damentals and the developments of the development of semantic
segmentation and single object segmentation. At last, quantitative
results that experiment on the dataset of ISPRS Vaihingen and
ISPRS Potsdam are given for several representative models
such as FCN and U-Net, following up with a comparison and
discussion of the results.

Index Terms—HSR-RSIs, deep learning, land-use mapping,
semantic segmentation
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Fig. 1. Examples of remote sensing images (left) and corresponding land use
labels (right) from the ISPRS Vaihingen dataset.

IN recent years, HSR-RSIs, including satellite (e.g.,

IKONOS, Quickbird, SPOT, GaoFen) and airborne (e.g.,

unmanned aerial vehicle) remote sensing imagery [1], are

steadily becoming widespread and available [2]. This paper

mainly considering optical images. Accurate and timely LUM

for HSR-RSIs plays a significant part in a variety of fields,

such as precision agriculture, land use retrieval, and land

management [3]–[8]. The essence of LUM for HSR-RSIs

is semantic segmentation (or scene segmentation), which is

directed to correctly labeling each pixel of the entire image

with the corresponding semantic category of what is being

represented, as shown in Fig. 1. The land-cover maps are

critical products that present the forms of land use and

practical use, which have an indispensable referential value

for the aggregate plans of land-cover [9].

The complexity of HSR-RSIs increases swiftly as the ob-

servation scale turns finer [10] and the details of the objects

get richer. This leads to intra-class variability increased while

decreasing the inter-class disparity, bringing more challenges

to the LUM of HSR-RSIs [11]. On the one hand, diverse

imaging conditions usually reduce the separability among

different classes [12]. On the other hand, each land parcel

used for one purpose often includes multiple categories of

land-use with distinct characteristics [13]. Traditionally, on

the basis of the spatial unit of representation, artificially

designed feature extractor methods that are popular in the

past few decades have experienced three stages: pixel-level,

object-based, and per-field [14]–[17]. Nevertheless, traditional
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Fig. 2. The framework of this paper.

approaches that utilize hand-crafted features lack the ability

to precisely describe features of complex ground objects [4],

[18].

And the shallow classifiers lack discrimination because of

the small parameter scale [19]. DL is based on deep architec-

tures that are comprised of multiple nonlinear transformations

[4], [20]. It emphasizes automatic feature learning from a

huge dataset and tries to resolve the problems of feature

extraction and classifier design. Recently, deep architectures,

such as Convolutional Neural Network (CNN), which have

its superiorities in high-level semantic features representation,

have indicated tremendous potential in semantic segmentation

[21]. In the aspect of segmentation accuracy and even effi-

ciency, CNN greatly surpasses other approaches mentioned

previously.

Though new DL techniques have made great contributions

in LUM for HSR-RSIs in recent years, to the best of our

knowledge, there is still lacking a relatively general and

systematic survey that covers the existing methods of this field.

This paper, therefore, aims to summarize the development of

DL-based LUM methods for HSR-RSIs. Most recently, there

also have been a series of reviews related to DL [22]–[25]

in remote sensing. These papers and our review all present

basic DL models of current-state-of-the-art DL methods and

classifiers for remote sensing data. However, the aforemen-

tioned reviews [22]–[24] focus on reviewing remotely sensed

hyperspectral image classification. The review of [25] mainly

concentrates on providing a general framework of DL for RS

data analysis, including image processing, high-level semantic

feature extraction, scene understanding, and etc. Moreover, our

paper mainly focuses on considering optical HSR-RSIs and

providing an updated review about widely used DL models

for LUM. We further compare several semantic segmentation

models that are related to LUM based on two largely used

datasets. The main contributions of our paper are summarized

as follows:

1) A detailed and in-depth review of the DL-based LUM

methods is provided. We also summarize the DL-based meth-

ods that are mainly described in this paper from two LUM

criteria.

2) We provide an extensive survey of existing datasets,

which may be useful for the LUM of HSR-RSIs.
3) Performance evaluation of representative semantic seg-

mentation models is given. The overall performance of LUM

has gradually improved, and the U-Net performs best both on

the Vaihingen and Potsdam datasets.
This paper (as shown in Fig. 2) is organized as follows:

Section 2 introduces high spatial resolution datasets commonly

used in the literature for semantic segmentation. In section 3,

The related basic DL models for computer vision are given.

We then exhaustively review the DL-based LUM methods for

HSR-RSIs. In section 4, we summarize these aforementioned

methods based on two criteria. The developments of semantic

segmentation and single object segmentation related to LUM

are described in Section 5. In section 6, the performances

of several current-state-of-the-art DL models are compared

and discussed on two widely used semantic segmentation

benchmarks. In section 7, we conclude this paper and the

emerging research trend.

II. DATASETS FOR DL-BASED LUM

The increasing number of HSR-RSIs enable building large-

scale segmentation datasets that play an indispensable part

in advance of semantic segmentation. In the past few years,

several publicly available HSR-RSIs benchmark datasets have

been proposed by different research groups for LUM of remote

sensing images [26]–[35].
As a matter of fact, in the following, we firstly illustrate

publicly available and the most popular semantic segmen-

tation datasets currently for LUM of HSR-RSIs. Then we

describe several single object segmentation datasets for road

and building detection. Single object segmentation, a branch of

semantic segmentation, extracts a certain kind of object from

HSR-RSIs. In order to review datasets comprehensively and

clearly, we list these kinds of datasets separately. All datasets

pointed here to provide proper pixel-based ground truths. Table

I lists 8 publicly available semantic segmentation datasets

for LUM of HSR-RSIs. Table II describes single object seg-

mentation datasets for road and building detection especially.

Some examples of semantic segmentation and single object

segmentation datasets can be found in Fig. 3.
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Fig. 3. Some examples of semantic segmentation and single object segmentation datasets.

Zurich Summer dataset [32] is taken from the Quickbird

images of Zurich city in 2002. It contains 20 multispectral

images at a high resolution of 0.62 meters and is classified

into eight classes. The size of the images is 1000 × 1150

approximate.

EvLab-SS dataset [31] contains 35 satellite images and

25 aerial images with a different resolution from 0.1 meters

to 2 meters. The average size of the images is 4500 × 4500

approximate. It is classified into 11 major classes.

DeepGlobe Land Cover Classification dataset [36] is a

public dataset that focuses on rural areas. It comprises a total

of 1146 satellite images, the size of 2448 × 2448. It is divided

into training/validation/test sets (803/171/172).

RIT-18 dataset [37] is taken by an unmanned aircraft

system (UAS) in Hamlin Beach State Park, New York. The

average size of the images is 10000 × 7000 approximately.

Each image (0.047 meters of resolution) comprises six bands:

near-infrared, red, green, blue, and two other infrared bands.

Gaofen Image Dataset (GID) [38] contains 150 Gaofen-2

images (4 meters) acquired from China. The size of the images

is 6800 × 7200 approximately.

2018 IEEE GRSS Data Fusion Contest dataset [36] is

obtained from the National Center for Airborne Laser Mapping

at a resolution of 0.05 meters. It is classified into 20 classes.

Massachusetts dataset [39], aiming to detect roads and

buildings, utilizes images released by the state of Mas-

sachusetts state. All images were 3-channel at a resolution

of 1 meter and 2250 Km2 of coverage. The input images and

the target maps generated from OpenStreetMap are publicly

available. The Massachusetts Building dataset is composed of

151 aerial images, and the roads datasets contain 1171 aerial

images.

Buffalo dataset [39] is composed of 30 aerial images of

Buffalo city at a resolution of 1 meter and all with a size of

609 × 914.

Inria Aerial Image Labeling dataset [40] covers 810

Km2. The ground truth is labeled into two semantic cate-

gories: buildings or not buildings. It contains 180 aerial images

(0.3 meters). The size of the images is 5000 × 5000 .

SpaceNet dataset [41] comes from five SpaceNet regions,

and the image size is 650 × 650. These five areas are Rio (0.5

meters), Las Vegas (0.3 meters), Paris (0.3 meters), Shanghai

(0.3 meters), and Khartoum (0.3 meters).

AIRS dataset [42] is taken from the city of Christchurch

with a very high ground resolution of 0.075 meters. It is

composed of 226342 labeled buildings. The ground truth is

labeled into two semantic classes: roof and not the roof.

WHU dataset [43] comprises an aerial dataset, satellite

dataset I, and satellite II, all with a size 512 × 512 at a

spatial resolution of 0.075 meters. It contains about 22000

independent buildings. The satellite dataset I contains 204

images with a different resolution from 0.3 meters to 2.5

meters. The satellite dataset II is cropped into 29085 buildings

with a 2.7 meters ground resolution.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3078631, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

4

TABLE I
8 PUBLICLY AVAILABLE SEMANTIC SEGMENTATION DATASETS FOR LUM OF HSR-RSIS.

Datasets Image size (pixel) Number of classes Resolution (m) Total image number

ISPRS Vaihingen [35] About 2500 × 2500 6 0.09 33

ISPRS Potsdam [35] 6000 × 6000 6 0.05 38

Zurich Summer [32] About 1000 × 1150 8 0.62 20

EvLab-SS [31] About 4500 × 4500 11 0.1-2 60

RIT-18 [34] About 10000 × 7000 18 0.047 3

GID [38] 6800 × 7200 5 0.8-10 150

DeepGlobe Land Cover Classification [36] 2448 × 2448 7 0.5 1146

2018 IEEE GRSS Data Fusion Contest [29] 11920 × 12020 20 0.05 14

TABLE II
SINGLE OBJECT SEGMENTATION DATASETS FOR ROAD AND BUILDING DETECTION.

- Datasets Image size (pixel) Resolution (m) Total image or titles number

Road detection

Massachusetts [39] 1500×1500 1.0 1171

Buffalo [39] 609×914 1.0 30

DeepGlobe 2018 [36] 1024×1024 0.5 8570

Building detection

Massachusetts [39] 1500×1500 1.0 151

Inria Aerial Image Labeling [40] 5000×5000 0.3 180

SpaceNet (Rio) [41] 650×650 0.5 -

SpaceNet (Las Vegas) 650×650 0.3 -

SpaceNet (Paris) 650×650 0.3 -

SpaceNet (Shanghai) 650×650 0.3 -

SpaceNet (Khartoum) 650×650 0.3 -

WHU Aerial imagery dataset [43] 512×512 0.075 8189

WHU Satellite dataset I (global cities) 512×512 0.3-2.5 204

WHU Satellite datasetII (East Asia) 512×512 2.7 17388

AIRS [42] 10000×10000 0.075 1047

III. REVIEW ON BASIC DL METHODS AND LUM METHODS

In this section, we firstly discuss three basic DL methods

(i.e., DBN, stacked autoencoder, and CNN) that have been

used for LUM. We next review DL-based LUM methods

comprehensively. As we all know, there are two criteria to

determine which type the LUM method belongs to. As a

result, we then compare and summarize the mentioned DL-

based LUM methods according to the two criteria.

A. Basic DL methods

For achieving better segmentation results of remote sensing,

it cannot lack the related leading approaches to provide solu-

tions. Recently, DL algorithms can offer basic tools for solving

this problem. DL has a wide application in varieties of com-

puting vision challenges now, such as semantic segmentation

[44], [45], image classification [46], [47], image retrieval [48],

[49], and object detection [50], [51]. To distinguish the land-

use category of each pixel of the HSR-RSIs (e.g., building,

road, and water), LUM is regarded as multi-level semantic

segmentation [52]. Three related DL approaches for computer

vision are listed below, namely Deep Belief Network (DBN)

[53], Stacked (Denoising) autoencoder [54], and CNN [55],

all of which have made major contributions to the LUM of

HSR-RSIs.

1) DBN: DBN [53] proposed by Hinton et al. has demon-

strated robust unsupervised characteristic learning capability in

the field of computer vision. Classic DBN structure contains

multi-layer restricted Boltzmann machines (RBMs) and a

back-propagation (BP) network. Fig. 4 presents the graph

architecture of an RBM. RBM is a two-layer neural network

that including visible layer and hidden layer. Vector V, H

represents the value of the neurons in the visible layer and

hidden layer separately. The visible layer and the hidden layer

are fully connected, which is similar to deep CNN. Fig. 5
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Fig. 4. The graph architecture of RBM.

Fig. 5. The graph architecture of classic DBN.

illustrates a classic DBN comprised of stacking multi-layer

RBMs and a BP network. W represents the RBM weight

matrix. The training process of DBN contains pre-training

and fine-tuning. Pre-training is carried out through unlabeled

samples in an unsupervised manner. The greedy algorithm is

used to optimize each layer during training. The parameters

of each layer of RBM are adjusted separately. After training

one layer, the output of this layer is regarded as the input

of the next layer to continue training the next RBM. After

pre-training, supervised learning is used to train the last layer

of the BP network. The error is propagated back layer by

layer. Finally, the weight of the entire DBN network is fine-

tuned through the back-propagation method. It overcomes two

problems of long training time and easily falls into local

optimal.

Fig. 6. The graph architecture of Autoencoder.

2) Stacked (Denoising) autoencoder: Stacked autoencoder,

the main idea is to train the input of every level of the encoder

to learn more powerful feature expression [56]. It contains

a multi-layer unsupervised autoencoder presented in Fig. 6,

similarly to the way that DBN utilizes a BP network and

RBMs. Autoencoder consists of two parts: an encoder and

a decoder. The encoder creates a hidden layer (i.e., h(xi))

containing a low-dimensional vector of the information of

the input data. The decoder reconstructs the input data from

the low-dimensional vector of the hidden layer. The theory

of training stacked autoencoder is equal to that previously

illustrated for DBN, except that autoencoders are used instead

of RBM as the main building block. Unlike RBM, one obvious

advantage of the autoencoder is to allow nearly any layers

to be parameterized [57]. Some variants of autoencoder in-

clude Sparse Autoencoder (SAE) [58], De-noising autoencoder

(DAE) [59], [60], and Contractive autoencoder (CAE) [61].

3) CNN: CNN that imitates the biological visual perception

mechanism is a kind of neural network model with a deep

architecture [20]. It has shown a strong feature learning ability

in the computing vision domain. After [62] proposed the

AlexNet that outperforms previously proposed models and

makes a breakthrough in the contest, there has emerged a series

of superior CNN models, such as VGGNet [63], GoogleNet

[64], ResNet [65], MoblieNet [66], DenseNet [67], SENet

[68], and SKNet [69].

A CNN model usually contains various layers of different

functions (see Fig. 7), where conv, pool, and F denote con-

volutional, pooling, and fully-connected layer. Convolutional

layers play a significant role in feature extraction from HSR-

RSIs. The operation of the pooling layer can down-sampling

the feature map spatially. The fully connected layer aims to

perform global features extraction and classification.

In recent years, inspired by the successful breakthrough

of DL and the development of computer vision, deep CNN,

among the related computer vision methods, has gradually

become the leading model in semantic segmentation field [70]

and has a significant impact on HSR-RSIs for LUM. As a

result, we mainly focus on reviewing CNN-based approaches

of LUM for HSR-RSIs in the following content of this paper.
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Fig. 7. The graph architecture of a conventional CNN, which contains two convolutional layers (conv1, conv2) followed respectively by a Rectified Linear
Units (ReLU) to process the output, two pooling layers (pool1, pool2), two fully connected layers, and a SoftMax layer.

B. DL-based LUM methods

Recently, many researchers have made significant contri-

butions to LUM for HSR-RSIs, driven by its wide range

of applications. From DBN to stacked autoencoder and then

to CNN, DL models constantly update LUM records. These

deep architectures that extract image information in terms of

computer vision can greatly improve the accuracy of LUM

for HSR-RSIs with a large amount of unknown information,

thereby have achieved outstanding performance [4]. Compared

with the previously mentioned LUM methods, CNN has the

superiority of end-to-end feature learning and the potentiality

of learning relevant contextual features automatically. Just

being given the input data and output, the end-to-end network

can automatically learn “hand-crafted” features that traditional

methods have to get from the input data. Meanwhile, CNN

explores the complex and high-level visual features hidden in

the image, which cannot be extracted by hand-craft features

based approaches. After successfully applying CNN with a

strong generalization and transferability to large-scale com-

puter vision classification tasks, by 2015, the use of CNN

finally stands out in the remote sensing data analysis domain

[71], [72]. A great number of CNNs that are considered the

most successful DL models have produced the best LUM

performance.

Currently, most of the CNN-based LUM approaches can

generally be assigned to two main categories: 1) extracting

high-level image features through deep CNN; 2) semantic

segmentation through the deep end-to-end model. The second

method uses the category probability output by the deep model

to predict the category of land cover. Specifically, this section

is devoted to reviewing LUM approaches for HSR-RSIs based

on five kinds of architectures, including DBN or stacked

autoencoder, combining CNN and shallow classifier such as

Support Vector Machine (SVM) and Logistic Regression (LR),

category probability generated by CNN, FCN, also including

recently popular transfer learning. Table III gives a summary

of LUM methods based on DL.

1) LUM based on DBN or stacked autoencoder: Due to

their own limitations, DBN and stacked autoencoder are not

widely applied to LUM for HSR-RSIs, and the architectures

of these two models are similar, so we review them together.

In practical applications, the depth of the DBN network has a

significant impact on the classification effect. Higher network

depth can discover more abstract feature representations and

improve classification performance [73]. However, too many

layers may increase training time, reduce network general-

ization performance and training efficiency. The appropriate

network depth is often related to specific applications and

datasets. There also is a phenomenon of overfitting [74].

We can also find some works proposed to tempt to tackle

these problems. Mnih et al. [75] used DBN detecting roads in

high-resolution aerial images, which initially applies the DL

model to remote sensing. A method in [76] based on DBN

that combines the advantage of supervised learning and un-

supervised learning achieved better homogenous mapping re-

sults than SVM, neural networks, and stochastic Expectation-

Maximization (SEM) in polarimetric synthetic aperture radar

data. However, this based on the DBN method cannot directly

extract high-dimensional image features, and the learning

process is slow [77]. The original stacked autoencoder [78]

focused on extracting one-dimensional spectral features that

are widely used in hyperspectral images and not enough to

support HSR-RSIs classification. Chen et al. applied a stacked

autoencoder to hyperspectral remote sensing image LUM [79].

Applied stacked autoencoder to African LUM and got the

conclusion that stacked autoencoder has obvious superiority in

classification accuracy, predicted time, and LUM performance

was done by [80].

2) LUM based on combining CNN and shallow classifier:

This kind of approach uses CNN as an image feature exactor

to extract high-level semantic information of HSR-RSIs and

combines a shallow structure classifier, such as RF and Mul-

tilayer Perceptron (MLP) for feature classification [81]–[86].

Razavian et al. [87] showed that training linear SVM classifier

on CNN deep feature representation performs better than

highly tuned most advanced algorithms in all classification

tasks of computer vision on all kinds of datasets. Zhao et al.

[81] utilized multi-scale CNN (MCNN) to train LR classifier

for initial LUM. MCNN can learn spatial-related deep features

combined with spectral features. The ability to learn new

spatial features performs better than existing methods such

as a multi-index learning approach [88]. Paisitkriangkrai et
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al. [84] introduced an effecting semantic pixel labeling ap-

proach. They used multi-resolution CNN deep features, hand-

crafted features extracted by RF classifier, and a pixel-level

Conditional Random Fields (CRFs) that is applied to the label

probabilities for pixel classification in HRS-RSIs. However,

these methods are suitable for the situation where the number

of samples is limited. Because they do not need to adjust the

parameters of the model, they only need to train the shallow

classifier that cannot discriminate complex information well.

3) LUM based on category probability generated by CNN:

The CNN-based methods use pixels or grids as the unit to

assign category labels of HSR-RSIs and combine segmentation

or CRF to extract accurate feature edge information. They

can make up for the inaccuracy of traditional classifiers in

classifying complex HSR-RSIs [89]–[93]. Maggiori et al.

[89] used input images to produce classification maps. They

train CNN directly and conclude that CNN can be utilized

end-to-end to process a great number of satellite images. A

multi-layer DL architecture for multi-source multitemporal

image classification presented by [90] is based on a pixel

level. Volpi et al. [91] introduced a CNN-based approach

labeling each pixel on the initial resolution of HSR-RSIs.

The novel architecture proposed by [93] follows an hourglass-

shaped network (HSN) designed for the per-pixel semantic

segmentation of HRS-RSIs. HSN uses down-sampling and up-

sampling separately, predicting LUM results. Maggiori et al.

[92] designed a novel semantic labeling network architecture

called MLP (after multi-layer perceptron). Their experiment

shows that such appropriate architecture leads to a win-win

situation. An attentive spatial temporal graph convolutional

neural network (GCNN) proposed by [94] utilizes spatio-

temporal information. It is the first spatial temporal GCNN

strategy specifically designed to deal with specific features

characterizing HSR-RSIs. However, these CNN-based ap-

proaches lack in extracting boundary features accurately [89],

[92].

4) LUM based on FCN: As an alternative to the above

method, end-to-end CNN models [92], [95] such as FCN

[89], [96] do not need to use other classifiers to label the

land use of HSR-RSIs. FCN that consists of an encoder-

decoder architecture and removes a fully connected layer

can predict the correct label maps of the entire input image

directly. It also can restrain the fine structure of spatial

information without segmentation post-processing. Thus, such

a model is more suitable for the LUM of submeter-level ultra-

high remote sensing images [97], [98]. Recently, there have

emerged a variety of FCN-based LUM methods by exploiting

different strategies of FCN. Fu et al. [99] introduced an HSR-

RSIs LUM approach based on an improved FCN model. In

order to reduce the noise generated by pixel-based LUM,

the region boundaries were refined utilizing fully connected

CRFs according to the approaches of [100], [101] and so

on. Guo et al. [102] coupled a supervised LUM method that

relied on an ASPP network with post-processing. This method

outperforms the basic FCN and FCN-8s methods of [103], the

MLP approach presented in [104], and the ASPP approach

introduced by [105] that all performed HRS-RSIs land-use

classification and image segmentation successfully. Persello et

al. [98] delved into a deep FCN that outperforms state-of-the-

art CNNs. They use dilated convolutions of increasing spatial

support to detect informal settlements in HRS-RSIs. Sherrah

et al. [97] used FCN with no down-sampling to predict aerial

imagery labels. To make better use of imagery features, they

experiment with fine-tuning a pre-trained CNN. In [106], a

non-overlapping grid-based method is proposed to train FCN-

8s, which develops a novel framework for better boundary

segmentation. A time and memory efficient LUM approach

named FastFCN was designed by [107], which also has not

a great loss of accuracy than other existing methods when

experiments on GID.
However, FCN techniques usually depend on deep multi-

scale CNN frameworks, which need numerous trainable pa-

rameters [27] and cause a loss of fine resolution details. There

also exists lots of redundancy that often lead to vanish gradi-

ents in BP and diminish features reutilize in forwarding propa-

gation [108]. In addition, FCN-based LUM approaches do not

consider the relationship among pixels and spatial regularity

[109]. To resolve these problems, an effective approach is to

retain the structure of detailed spatial information [98], [110]

obtained through a complementary classification framework

instead of the down-sampling process. A hybrid classification

method that uses a rule-based fusion scheme, which combines

CNN and MLP, was devised by [111]. The integrated classifier

MLP-CNN respectively compensates for the restrictions of

CNN and MLP. To improve the segmentation accuracy, an

object-based CNN (OCNN) combined with small and large

windows that mapping on very fine spatial resolution images

was introduced by [112]. In practical LUM applications, the

number of parameters in the deep CNN (DCNN) increases

with layers, which causes ground-truth samples insufficient to

train high-quality classifiers.
5) LUM based on transfer learning: Since per-pixel labeled

HSR-RSIs are not publicly accessible, they are difficult to get.

To decrease the number of images need for training, transfer

learning is recognized as a potential method [113]. It can make

trained models resolve specific tasks and adapt them to new but

related tasks. Therefore, a method based on the semi-shifted

DCNN (STDCNN) was devised for multispectral image clas-

sification [4]. An unsupervised restricted deconvolution neural

network (URDNN) framework that uses an FCN and few

labeled pixels was designed by [114]. This model learns pixel-

to-pixel LUM for HSR-RSIs. However, there are still some

problems in applying deep models to multi-source HSR-RSIs,

such as the lack of transferability of the model. To solve

this problem, Tong et al. [115] introduced the approach of

pseudo-labeling and sample selection. They formulate a hybrid

mapping scheme by combining hierarchical segmentation and

patch-based mapping.

IV. SUMMARY OF DL-BASED LUM METHODS

In what follows, an in-depth summary of the above-

mentioned LUM approaches, according to two criteria, is car-

ried out. The first criterion is whether the mentioned method

belongs to supervised learning, semi-supervised learning, or

unsupervised learning. The other one is whether the method

is pixel-based or object-based.
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TABLE III
SUMMARY OF LUM METHODS BASED ON DL

Method Reference Architecture Contribution(s)

DBN or stacked autoencoder
[116] RBMs Layer-wise greedy learning strategy

[56] Autoencoder and BP neural network SAE-based

Combine CNN and shallow classifier

[117] Multi-scale CNN and LR classifier Extend traditional CNN to the MCNN

[83] CNN and MLP Combine deep architecture and shallow structure

Category probability generated by CNN

[91] downsampling-then-upsampling Learn CNN directly for segmentation

[93] Hourglass-Shaped CNN A weighted belief-propagation post-processing module

FCN

[118] FCN FCN-based classification, fully connected CRFs

[96] ASPP network Supervised and pixel-wise classification

[14] CNN Two CNNs with different architectures and windows

Transfer learning

[4] AlexNet Transferred DCNN and Small DCNN

[18] CNN + ResNet Patch-wise classification and hierarchical segmentation

A. Supervised Learning, Semi-Supervised Learning, or Unsu-

pervised Learning

There are three related primary types of LUM algorithms

applied to HSR-RSIs. A supervised DL model [10], [92],

[98], [119] generally requires a massive number of labeled

images input for training. Although the CNN model [83],

[118] that relied on supervised learning has greatly improved

the LUM performance of HSR-RSI. An unsupervised learning

approach [120]–[122] that utilizes small amounts of images

with no labels is still aroused attention continuously as labeled

training samples are not largely available until now. It is used

for pre-training that can initialize the parameters to the local

minimum. In the domain of remote sensing, the supervised

learning approaches used for semantic segmentation are costly

in labeling images, while a small amount of labels leads to

a decline in the performance of the trained network. Semi-

supervised learning techniques [123]–[125], the combination

of supervised learning and unsupervised learning, can solve

this problem.

1) Supervised learning: In [56], Ding et al. proposed

a stacked encoder-based LUM approach. Their experiments

show that stacked encoder outperforms artificial neural net-

works, SVM, decision trees, and a series of nonparametric

classifiers [126], [127] verified by the image of GF-1. Paisitkri-

angkrai et al. [84] used massively available training data to

train CNN for learning features. However, pixel-wise labeled

HSR-RSIs are not publicly accessible. They are cost-intensive

and time-consuming. To overcome these problems, some aug-

mentation techniques such as transfer learning [128], [129]

and active learning [130], [131] have been developed. Two

main transfer learning methods have been studied: supervised

learning and semi-supervised learning methods. In the former

method, the training dataset can be used both in the source

and target domains is presumed.

In comparison, if only use unlabeled data in the target do-

main, these methods are defined as semi-supervised. However,

semi-supervised approaches do not need strict and standard

matching between the domains of source and target [132],

[133] but largely rely on the ability of the classifier to learn

the structural information of the target domain. Moreover, a

lot of complex models contain a huge number of parameters,

which easily lead to overfitting and bring greater challenges

to train a high-performance classifier.

2) Unsupervised learning: Some unsupervised learning ap-

proaches, such as DBN and stacked autoencoder, have been

successfully applied to LUM. However, the characteristics of

unsupervised learning, training samples with no label bring

lots of challenges and limits for the LUM of HSR-RSIs.

Fortunately, domain adaptation [134]–[137], a particularly

representative approach of transfer learning that tries to har-

ness information from the dataset of other areas where have

available labels, aims to compensate for the mismatch between

the training images and testing image distributions [138].

Its purpose is to use informative source and fully labeled

domain samples to improve performance on an unlabeled

target domain [139].

Domain adaption approaches have been applied to unsuper-

vised classification problems [140]. In [141], a domain adap-

tation algorithm was designed for the LUM of remote sensing

images. This framework is based on class centroid and covari-

ance alignment (CCCA) that incorporates spatial knowledge of

images. Liu et al. [142] proposed a novel domain adaptation
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for unsupervised transfer learning, named multikernel jointly

domain matching (MKJDM). They perform their experiments

on HSR-RSIs and multimodal remote sensing datasets, which

shows the performance of LUM is improved than other state-

of-the-art domain results. In addition, more recently explored

methods [143]–[145] have adopted the adversarial training

framework, where the feature network generates domain-

invariant features to fool the discriminator that works on

image-level. Another method of semantic segmentation based

on unsupervised domain adaptation is pseudo-label retraining

[146], which finetunes the trained model on the source images

by taking high-confident predictions as pseudo ground truth

for the unlabeled images. Other approaches for working in an

unsupervised manner, such as the framework based on robust

manifold matrix factorization and its out-of-sample extension,

which achieves competitive clustering accuracy and running

time for hyperspectral image classification [147].

3) Semi-supervised learning: These techniques based on

semi-supervised learning require few labeled data and plenty

of unlabeled data to train the classifier. The core idea of

semi-supervised is to try to find a more precise classification

criterion than utilizing merely labeled samples [148]–[150].

Laine et al. [151] presented a simple CNN-based approach

for training CNN in a semi-supervised way that effectively

reduces the classification error. Self-training and co-training

are widely used semi-supervised learning techniques [152]. In

general, semi-supervised based learning approaches are well-

suited for LUM as a great number of unlabeled HSR-RSIs

exist.

At present, the research on unsupervised LUM of HSR-RSIs

based on DL is still in the development stage. In addition to

the difficulty of the problem, its research progress is not as

good as other computer vision directions. At the same time,

experiments are only performed on some simple datasets and

have not been applied to actual scenes on a large scale. Table

IV summarizes the training process and classification process

of several typical approaches for LUM of HSR-RSIs.

B. Pixel-based or object-based

The pixel-based LUM approaches act on a single pixel. In

contrast, the object-based LUM approaches split an HSR-RSI

into segmented objects or separated regions as its functional

units. As for HSR-RSIs that contain complex details and small

objects, it is using the pixel-based LUM approaches may cause

poorer interpretation effects owing to the “salt and pepper

effect” and lack of semantic meaning of the objects. As a

result, pixel-based semantic classification unable to meet the

increasing demand for HSR-RSIs. It makes more sense to

identify ground objects to efficiently classify HSR-RSIs rather

than pixels.

1) Pixel-based: Recently, CNN has been adjusted to per-

form pixel-based LUM (i.e., semantic segmentation) of HSR-

RSIs. In practical applications, there are two methods that use

CNN for HSR-RSIs segmentation, as shown in Fig. 8. The first

one is a patch-based approach [84], [154], [155] that trains

CNN to infer the central pixel of patches segmented from the

original input image by looking over the surrounding area.

Fig. 8. Comparing patch-based LUM and pixel-to-pixel semantic labeling.

This usually trains small HSR-RSIs patches and then to

classify every pixel by utilizing a sliding window way. So ob-

viously, this kind of approach does not apply the whole image

as input, which leads to redundant processing and decrease

efficiency when predicting labels of large scale HSR-RSIs.

The second segmentation method is based on pixel-to-pixel

and end-to-end [33], [98], [118], [156]. It can directly infer

pixel-based labels of the whole patch or image. Deconvolution,

the inverse process of convolution, realizes directly generates

the results of per-pixel classification [89], [103], [157]. It takes

advantage of the idea of FCN and converts the feature map

from a convolutional layer to the original size [114]. Table

V illustrates the comparison of patch-based and pixel-to-pixel

based LUM for HSR-RSIs.

2) Object-based: Compared with patch-based LUM meth-

ods, the object-based approaches can use the segmented image

with precise boundaries to classify image objects efficiently.

Segmented images have more useful information (e.g., ob-

jects’ shape and topologies) than pixels and patches of image

[10]. An object-based LUM method [4], [10], [14], [84],

[96], [158]–[161] consists of two steps [162]: (i) HSR-RSIs

segmentation to generate a segmented image (i.e., objects)

and (ii) semantic segmentation of the segmented image. The

results of semantic segmentation are therefore influenced by

the performance of the HSR-RSIs segmentation process. Table

VI presents two steps of the object-based classification of

several representative papers.

V. SEMANTIC SEGMENTATION RELATED TO DL-BASED

LUM

Semantic segmentation (or scene segmentation), the essence

of LUM for HSR-RSIs, is dedicated to split an input scene

or image into its various object components associated with

semantic categories that including discrete objects (e.g., car,

tree) and stuff (e.g., forest, grass, water, and so on) in computer

vision research [164], [165]. The performance of semantic seg-

mentation in natural datasets has been continuously improving,

and research outcomes have gradually been applied to the field

of remote sensing, especially LUM for HSR-RSIs. It is one of

the long-standing and challenging problems. Recently, it has

been dramatically improved over the past years thanks to huge

breakthroughs of DL models [166]–[169].

The most advanced end-to-end semantic segmentation mod-

els have been encouraged mainly by FCN [170], in which

the convolutional layer replaces the fully connected layer in

standard CNN. They have achieved perfect results on lots of

natural datasets, for example, Cityscapes [171]. To mitigate the
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TABLE IV
THE TRAINING AND CLASSIFICATION PROCESS OF SEVERAL TYPICAL APPROACHES FOR LUM OF HSR-RSIS.

Sub-class Reference Training process Classification process

Supervised learning

[84]

Train RF classifier on hand-crafted features to
complement the features learned by three CNNs with

different input image spatial resolutions (i.e.,
multiresolution CNN).

Vectorizing extracted features and then applying
logistic regression weights for classifying objects

to different categories.

[118]
Use images and ground truth to train FCN, and the
parameters of FCN are updated based on the error

between predict labels and corresponding ground truth.

Perform the trained FCN on test images to
roughly predict categories, then use CRF to refine

labeling results.

[14]
Train a large input window CNN and a series of small

window CNN models.

Characterize images into functional units, and
combine two CNN models and rule-based

decision fusion to perform LUM.

[4]
Use natural images and HSR multispectral images

training transferred DCNN and small DCNN,
respectively.

Use trained STDCNN classifying processing
units.

[96]
Use the original images and augmented patches to train

the ASPP network.

Put test images into trained ASPP network for
pixel-wise LUM, then use CRF to refine labeling

results.

Unsupervised
learning

[153]
Use an unlabeled dataset to train UDCNN (for local

structure extraction) and UDFNN (for global semantic
feature abstraction).

UDCNN and UDFNN are used to recognize the
sliding window.

Semi-supervised
learning

[149]
Utilize labeled and unlabeled input images to train

ResNet, and a discriminator is also used as an auxiliary
network for training.

The residual blocks are utilized to segment
images.

TABLE V
THE COMPARISON OF PATCH-BASED AND PIXEL-TO-PIXEL BASED SEMANTIC LABELING FOR HSR-RSIS.

Sub-class Characteristics Advantages Disadvantages

Patch-based (1) The network ends up with
added fully connected layers.
(2) Infer the central of patches
by looking over the surrounding
pixel and then utilize a sliding
window to classify every pixel.

- (1) Do not apply the whole image as
input.
(2) Cause distortion on the boundary
of the classification patch.
(3) Not suitable for large scale HSR-
RSIs.

Pixel-to-pixel based (1) The convolutional network
removes fully connected layers.
(2)End-to-end and pixel-to-pixel
classifying whole patch or im-
age directly.

(1) Improve the segmentation performance due
to lacking fully-connected layers.
(2) Models applied to LUM with different sizes.
(3) Avoid the problem of repeated operations of
pixels.

-

TABLE VI
TWO STEPS OF OBJECT-BASED CLASSIFICATION.

Reference Year (i) HSR-RSIs segmentation (ii) Semantic segmentation rules

[160] 2014 A street blocks. Using the very fast multi-threshold segmentation within
eCognition.

[10] 2017 Take image segments as building blocks. For each image object, the optimal statistical method is
applied to determine the land cover classes.

[161] 2017 Use graph-based minimal-spanning-tree approach to seg-
ment images into objects.

Use trained stacked autoencoders and stacked denoising

autoencoders network to classify objects.

[4] 2018 A skeleton-based decomposition method splits every street
block into processing units with regular shapes.

Utilize trained STDCNN classifying processing units into
different land-cover categories.

[14] 2018 Characterize the landscape into linear shape objects and
other general objects.

Combine rule-based decision fusion and two CNNs for
LUM.

[96] 2018 Use Graph-based segmentation segmenting samples into
small patches.

Use FCN to perform pixel-based LUM.

[163] 2018 Employ multiresolution segmentation method generating
highly irregular objects.

Utilizing CNN to classify objects.
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issue of spatial information loss caused by FCN, Ronneberger

et al. [172] presented U-Net that adopts skip connections

between each encoder and decoder module. There also are

some model variants introduced to enhance contextual aggre-

gation. Noh et al. [44] introduced a deconvolution network

to predict segmentation masks. Chen et al. [173] exploited

Atrous Spatial Pyramid Pooling (ASPP) that captures object

and image context to segment object at multiscale. Based

on DeepLabv3 [174], another recent DeepLabv3+ [175] was

added a functional decoder module to optimize the segmenta-

tion performance. Jegou et al. [176] extended DenseNet [177],

namely Fully Convolutional DenseNet, to handle the problem

of semantic segmentation issues, which do not need any

pre-training and further post-processing module. To decrease

the number of training parameters and computational time,

Badrinarayanan et al. [178] designed a deep FCN architec-

ture termed SegNet. The SegNet provides better performance

in inference memory-wise than the well-known FCN [170],

DeepLab-LargeFOV [179], and DeconvNet [44]. The pyramid

scene parsing network (PSPNet) provided by [180] achieves

the most advanced results on the scene parsing task. To address

the problem of lacking pixel-level annotated data, Souly et al.

[181] introduced a semi-supervised architecture that contained

a generator network to give additional training images. This

architecture relies on Generative Adversarial Network (GAN).

To increase feature similarity of the same object, [182] ex-

plored to spread information in the entire image under the

control of the object boundary and proposed unidirectional

acyclic graphs (UAGs). Du et al. [183] firstly incorporated

DeepLabv3+ and object-based image analysis (OBIA) strategy

to label HSR-RSIs, which achieves completive accuracy. Table

VII shows the extending CNN architectures for semantic

segmentation applied to remote sensing data.

TABLE VII
THE EXTENDING CNN ARCHITECTURES FOR SEMANTIC SEGMENTATION

APPLIED TO REMOTE SENSING DATA.

Architecture Method

FCN [40], [99], [156], [157], [184], [185]∗

SegNet [186], [187]

U-Net [188], [189]

DeepLab [190]

* The idea of DenseNet is used.

Single object segmentation is a branch of semantic segmen-

tation. It extracts a certain kind of object (e.g., building, road,

vehicle, and car) from HSR-RSIs based on the given specific

features and rules. Building segmentation [188], [191], [192]

uses specific criteria of building characteristics such as the

shadow that they cast [193], the uniform spectral reflectance

values [194], full resolution binary building mask [195], and so

on. HSR-RSIs also provide a possibility for segmenting linear

features such as road [196]–[198]. There have been proposed

a series of CNN-based road segmentation models such as

StixelNet [199], FCN [190], and MAP [200]. In the past

several years, numerous models for segmenting road, building,

and vehicle have been used for practical applications. Amit

et al. detected building changes via semantic segmentation

to update maps [201]. Mnih et al. [75] proposed to detect

the road by using RBMs to initialize the feature detectors. In

[202], a novel algorithm that classifies on-board images was

presented. This method trains a general dataset to generate

training labels and segments road areas in an individual image.

Buslaev et al. [203] proposed an FCN that consists of ResNet-

34 and the decoder to automatic extract road. Nicolas et al.

[204] applied SegNet to vehicle detection and segmentation

in remote sensing images. In [205], a global context based

dilated CNN (GC-DCNN) that is similar to the structure of

U-Net was proposed, which aims to address the challenges of

complex backgrounds and view occlusions of buildings and

trees around a road when segmenting road.

The essential difference between semantic segmentation and

single object segmentation is that single object segmentation

belongs to binary classification. Their data input and network

architecture are the same. The activation function of the last

layer of semantic segmentation is softmax, while single object

segmentation is sigmoid. The loss functions of these two

kinds of segmentation are also different. The loss function of

semantic segmentation is categorical crossentropy, while the

other loss function is binary crossentropy. A comparison of

semantic segmentation and single object segmentation can be

concisely illustrated in Table VIII.

VI. PERFORMANCE COMPARISON AND DISCUSSION

In recent years, a variety of semantic segmentation models

have been proposed. We select four state-of-the-art architec-

tures, including SegNet [178], U-Net [172], FCN-32s [103],

and FCN-8s [103] to compare segmentation performance.

They all take VGG-16 as the backbone. We evaluate them on

two widely used datasets of ISPRS Vaihingen and Potsdam.

Because DL-based semantic segmentation models rely on

large-scale data, we augment training samples.

A. Datasets

The ISPRS 2D semantic labeling contest dataset con-

tains aerial images of Vaihingen and Potsdam cities in Ger-

many. Each dataset is labeled into six categories: imper-

vious surfaces, buildings, low vegetation, trees, cars, and

clutter/background. The background category contains water

bodies and other objects (such as containers) that are different

from other defined categories. These objects usually belong to

uninteresting semantic objects in urban scenes.

The Vaihingen dataset: It comprises 33 orthophoto titles

at a ground resolution of 9 cm. 16 of them are labeled. 17

of them are used as the test image. The size of the images

is 2100×2100 approximate. The single image comprises three

bands: near-infrared, red, and green (IRRG).

The Potsdam dataset: It contains 38 orthophoto titles (5

cm). 24 of them are labeled. 14 of them are used as the test

images. The size of the tiles is 6000×6000. The single image

comprises four bands: red, green, blue, and near-infrared bands

(RGB-IR).
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TABLE VIII
COMPARISON OF SEMANTIC SEGMENTATION AND SINGLE OBJECT SEGMENTATION.

Methods Characteristics Network architecture
The activation function of

the last layer
Loss function

semantic segmentation
Classify each pixel into a
corresponding category

Encoder-decoder SoftMax Categorical crossentropy

Single object
segmentation

Binary classification Encoder-decoder Sigmoid Binary crossentropy

B. Evaluation metrics

we use three confusion metrics, including Kappa coefficient,

overall accuracy (OA), and user’s accuracy [206]. Let k denote

the number of categories, and let N be the total number of

pixels, let Nij denote the number of pixels that should be of

class i but are predicted to be of class j, let Ni+ be the total

number of pixels of class i in the test images, let N+j be the

number of pixels predicted to class j. The metrics are defined

as follow:

Kappa coefficient: It evaluates the inter-rater consistency

and reliability for the segmentation result.

Kappa =

N
k∑

i=1

Nii −

k∑
i=1

Ni+ ∗N+j

N2
−

k∑
i=1

Ni+ ∗N+j

(1)

where

Ni+ =
k∑

j=1

Nij (2)

N+j =
k∑

i=1

Nij (3)

Overall accuracy: It is a metric that measures the number

of truly classified pixels divided by the total pixels of the

whole test image.

OA =

k∑
i=1

Nii

N
(4)

User’s accuracy: It refers to the possibility that the cor-

responding ground truth category is i when the classifier is

assumed to classify pixels into category i.

user′s accuracy =
Nii

Ni+

(5)

C. Implementation details

We split the labeled images of the Vaihingen dataset into a

training dataset (12 images of ID 1, 3, 5, 7, 11, 13, 15, 17, 21,

23, 26, 28) and a test dataset (4 images of ID 30, 32, 34, 37).

We randomly crop the training images into a size of 256 ×

256 and flip and rotation images for data augmentation. Thus,

we can obtain 12000 patches for the process of training. We

train these four models with a batch size of 16 and other same

hyper-parameters setting, except that we use different learning

rates for different models. For the Potsdam dataset, we also

divided the labeled images into a test dataset (6 images of ID

2 10, 3 10, 4 10, 5 10, 6 10, 7 10) and a training dataset

(the remaining 18 images). Then, we can obtain 14000 256

× 256 patches for training when performs the same process

as the Vaihingen dataset. Pixels of clutter/background occupy

a tiny percentage. Therefore, we report the accuracy of the

remaining five classes merely. We are training from scratch of

models without bells and whistles. All performed experiments

are conducted in the TensorFlow framework with the platform

of an NVIDIA 2080Ti GPU.

D. Experimental results

1) Vaihingen dataset: The accuracy results of the semantic

segmentation of the four models are listed in Table IX. We

also visualize the results of ID 30, as displayed in Fig. 9, to

more easily compare the semantic segmentation performance

of different models. As can we see from Table IX, the overall

performance of LUM of the ISPRS Vaihingen dataset has

gradually improved, though small objects such as cars show a

relatively low accuracy. We observe that the U-Net achieved

the best OA of 86.08% and Kappa of 0.740, but the segmenta-

tion maps of the building are jagged at the edge. As for FCN,

the boundary of the object is blurred, and the result is reduced

visually, so it is usually impossible to detect objects that are

small or with many boundaries. But the performance of the car

category in FCN-8s (user’s accuracy: 50.55%) is higher than

in FCN-32s (user’s accuracy: 13.05%), which demonstrates it

is significant for segmenting small areas of low-level features.

The category of impervious (user’s accuracy: 85.93%) also

illustrates a definite response that probably interferes with the

car region in the SegNet network (OA:79.73%, Kappa: 0.727).

2) Potsdam dataset: In order to compare these four models

comprehensively, we also experiment on the ISPRS Potsdam

dataset, and quantitative maps are listed in Table X. We also

visualize the results of ID 3 10, as displayed in Fig. 10.

The LUM results of the Potsdam dataset are slightly worse

than those of Vaihingen in general. The difference between

these four models is mainly reflected in the performance of

segmenting small objects such as car, which is the case for

both datasets, as shown in Fig. 11. The U-Net (OA:80.86%,

Kappa: 0.524) model is superior to the other three models,

but it cannot completely recognize the boundaries of the

car category with various appearances of vision. The FCN-

8s (OA:76.54%, Kappa: 0.702), the best accurate model in

the FCN series [207], is a bit more accurate than SegNet

(OA:75.32%, Kappa: 0.693) in this experiment. However, it



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3078631, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

13

Fig. 9. Visualization results of the ID 30 of the Vaihingen dataset. (a) is a
raw image. (b) is corresponding ground truth. (c) (d) (e) (f) are the semantic
segmentation results of SegNet, FCN-32s, FCN-8s, and U-Net, respectively.

Fig. 10. Visualization results of the ID 3 10 of the Potsdam dataset. (a) is raw
image. (b) is the corresponding ground truth. (c) (d) (e) (f) are the semantic
segmentation results of SegNet, FCN-32s, FCN-8s, and U-Net, respectively.

mistakes certain impervious surface regions for buildings. The

predicted mapping results outputted by FCN-32s (OA:75.24%,

Kappa: 0.665) are rough and easy to lose relatively small

objects (car: 15.40% and tree: 65.61% user’s accuracy).

E. Discussion

As we have observed from Table IX, Table X, and Fig.11,

the performance of LUM for HSR-RSIs has been successfully

advanced as the continuous breakthrough of semantic segmen-

tation models. DL-based LUM methods were mainly based on

FCN during the early stages, and researchers often utilize the

ISPRS Vaihingen and Potsdam datasets [97], [189], [208]–

[211] and the DeepGlobe land cover classification dataset

[212]–[217] to perform FCN extended algorithms evaluation.

Until now, FCN-based approaches are still promising on

the semantic segmentation datasets of HSR-RSIs for directly

predict semantic labels of input images, which shows end-

to-end networks have got exceeding success under the BP.

Nevertheless, if the amounts of test images are much smaller or

larger than the training images, the mapping results are worse

because the fusion strategy adds pool features of the previous

layer, which results in high-level features not being used

well. Blurry object boundary is also a usual problem in the

mapping results of FCN owing to downsampling operations

ignore local information. Moreover, though FCN-8s performs

better than FCN-16s and FCN-32s, which indicates that the

shallow predicted results contain more detailed features, the

labeling maps of FCN-8s and FCN-32s are relatively rough

than SegNet and U-Net, as shown in Fig. 9 and Fig. 10.

Therefore, some researchers illustrated a series of approaches

to improve the LUM results, such as combining with DSM

[156], [218].

Fortunately, other modified and extended variants based

on FCN, such as encoder-decoder structures (notably SegNet

and U-Net), are remarkable, aiming to make transforms more

suitable for semantic segmentation. Furthermore, researchers

demonstrate that encoder-decoder structures trained with Im-

ageNet weights are more easily transferred to the remote

sensing domains [186]. To restore the feature map to the orig-

inal input image size, SegNet utilizes max-pooling indices for

nonlinear upsampling, while FCN uses deconvolution. SegNet

that adopts dilated convolution to decrease local information

loss can also balance performance and computational cost. As

a result, SegNet takes up less memory and provides a compet-

itive inference time than FCN. However, the edge problem is

serious when the sliding window is too large in segmentation.

Specifically, the splicing edges of the predicted labels are

obvious. When SegNet performs semantic segmentation, a

CRF module is usually used to refine the output results.

As for U-Net, skip connection can concatenate high-level

semantic and low-level fine-grained information, which meets

the requirements of semantic segmentation. To increases out-

put resolution, it also uses unsampled operators to replace

pooling operators. The biggest advantage of U-Net is that it

can be trained well with small scale datasets, which is more

suitable for the current lacking sufficient training labeled HSR-

RSIs of semantic segmentation. But it still needs data augmen-

tation, just like the comparative experiment in this paper. U-

Net also cannot expand the difference between classes because

it does not fully explore all level semantic information. This

results in limiting its applications in semantic segmentation

for HSR-RSIs. Hence, novel end-to-end models such as CSE-

UNet [219] are proposed to resolve these inter-class homo-

geneity challenges.

With several publicly available datasets (e.g., Zurich Sum-

mer dataset, EvLab-SS, and GID) releasing, it becomes easier

to compare semantic segmentation models comprehensively.

And the performance of DL-based approaches also highly lies

in the amounts of training images. Therefore, sample-driven
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TABLE IX
SEMANTIC MAPPING RESULTS OF THE ISPRS VAIHINGEN DATASET.

Models
User’s Accuracy (%)

OA (%) Kappa Imp. Surfaces Building Low Veg. Tree Car

FCN-32s [103] 74.57 0.662 75.61 86.53 58.85 80.62 13.05

SegNet [178] 79.73 0.727 85.93 88.11 63.32 79.42 48.57

FCN-8s [103] 81.68 0.761 82.45 90.92 79.38 76.24 50.55

U-Net [172] 86.08 0.740 86.47 91.63 80.58 72.81 52.71

TABLE X
SEMANTIC MAPPING RESULTS OF THE ISPRS POTSDAM DATASET.

Models
User’s Accuracy (%)

OA (%) Kappa Imp. Surfaces Building Low Veg. Tree Car

FCN-32s [103] 75.24 0.665 76.72 85.52 67.44 65.61 25.40

SegNet [178] 75.32 0.693 84.53 93.41 70.11 70.14 77.78

FCN-8s [103] 76.54 0.702 85.10 93.25 62.71 69.96 82.28

U-Net [172] 80.86 0.524 85.69 90.41 74.50 74.66 51.20

Fig. 11. Visualization analysis results of car category. The first row is in the Vaihingen dataset, while the second row is the results of the Potsdam dataset.

semantic segmentation schemes can be further promoted by

constructing large scale and challenging HSR-RSIs datasets.

Generally, transferring the successful experience of semantic

segmentation models from computer vision to the remote

sensing domain is also an urgent and challenging task for

improving the performance of LUM for HSR-RSIs.

VII. CONCLUSIONS

LUM of HSR-RSIs has obtained significant achievements

through several decades of rapid development. To our knowl-

edge, the number of papers on LUM of HSR-RSIs, especially

about DL-based methods, is breathtaking. This paper is the

first one that focuses on exhaustively reviewing LUM ap-

proaches based on the rising topic of DL, covering the current

work in this field. We have also compared and discussed

the quantitative performance of such representative models.

The performance of these models proves their effectiveness in

resolving practical issues, though it has not yet reflected the

full potential of DL.

Due to the increased availability of the HSR-RSIs dataset

and computational resources of DL, it is expected that DL

rapidly develops in the LUM of HSR-RSIs in the next
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few years. Nevertheless, the research in DL-based LUM for

HSR-RSIs is still immature and remains many unanswered

questions. It is quite a long way to reach its full potential

when addressing numerous unsolved challenges. Currently,

the difficulties and key points of LUM focus on the lack

of labeled training samples, small object segmentation, and

accurate edge segmentation. Thus, the following are several

potentially interesting topics in the LUM for HSR-RSIs.

1) The complexity of HSR-RSIs: Unlike natural scene

images, each land parcel used for one purpose of HSR-RSIs

often includes multiple categories of land-use with distinct

characteristics. The complexity of HSR-RSIs increases, lead-

ing to the difficulties of learning discriminative features from

image scenes with DL algorithms.

2) The number of labeled training images: The existing

datasets for LUM mostly cover a small area and concentrated

locations, which cannot fully reflect the true distribution of

ground truth. It also limits the discriminative ability of the

CNN model that relies heavily on the quality and quantity of

the training images. In addition, the labeled training HSR-RSIs

are not largely available until now. In this case, maintaining

the representation learning performance of the DL-based ap-

proaches with fewer labeled training samples is still a huge

challenge. Based on this problem, semi-supervised learning,

weakly supervised learning, and unsupervised learning meth-

ods have great potential.

3) Small object segmentation and edge segmentation: The

present work to improve accuracy is close to saturation, and as

a result, researches mainly focus on obtaining accurate small

object segmentation performance and high-quality boundaries

[220]–[222].
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