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ABSTRACT: Long-term ultrafine particle (UFP) exposure
estimates at a fine spatial scale are needed for epidemiological
studies. Land use regression (LUR) models were developed
and evaluated for six European areas based on repeated
30 min monitoring following standardized protocols. In each
area; Basel (Switzerland), Heraklion (Greece), Amsterdam,
Maastricht, and Utrecht (“The Netherlands”), Norwich
(United Kingdom), Sabadell (Spain), and Turin (Italy),
160−240 sites were monitored to develop LUR models by
supervised stepwise selection of GIS predictors. For each area
and all areas combined, 10 models were developed in stratified
random selections of 90% of sites. UFP prediction robustness
was evaluated with the intraclass correlation coefficient (ICC) at 31−50 external sites per area. Models from Basel and The
Netherlands were validated against repeated 24 h outdoor measurements. Structure and model R2 of local models were similar
within, but varied between areas (e.g., 38−43% Turin; 25−31% Sabadell). Robustness of predictions within areas was high
(ICC 0.73−0.98). External validation R2 was 53% in Basel and 50% in The Netherlands. Combined area models were robust
(ICC 0.93−1.00) and explained UFP variation almost equally well as local models. In conclusion, robust UFP LUR models could
be developed on short-term monitoring, explaining around 50% of spatial variance in longer-term measurements.

■ INTRODUCTION

Numerous studies have shown associations of particulate matter
air pollution characterized as particles smaller than 10 μm (PM10)
or 2.5 μm (PM2.5) and adverse health effects.1,2 Much less is
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known about health effects of particles smaller than 0.1 μm, also
known as ultrafine particles (UFP), which may be more toxic
because of their potential to penetrate deeper into the lungs, their
higher biological reactivity per surface area, and their potential
uptake in the bloodstream.3,4 UFP contributes only a small
fraction to particle mass and thus UFP is not well reflected by
PM10 or PM2.5 measurements.5 The lack of data on health effects
of long-term UFP exposure is related to a lack of routine
monitoring and models describing the large spatial variation of
UFP.5 Therefore, there is a need for models that provide long-
term UFP exposure estimates at a fine spatial scale.
Land Use Regression (LUR) models are a common approach

in epidemiology to assess air pollution exposure at a fine spatial
scale, using predictor variables from Geographic Information
Systems (GIS). LURmodels for PM2.5 and NO2 are typically built
on data from (bi)weekly measurements at 20−80 monitoring
sites per study area.6,7 Few studies applied this monitoring
strategy to UFP.8,9 However, because of high costs and labor-
intensive operation of UFP monitors, this approach is not
attractive for UFP. Recent studies developed UFP LUR models
based on short-term monitoring10−15 or mobile monitoring
campaigns conducted while driving.15−18 Previously published
short-term and mobile UFP models substantially differed in
model structure (GIS predictors included in the model) and
model performance (percentage explained variability (R2)).
Due to differences in area size, number of monitoring sites,
duration, and frequency of monitoring, monitoring equipment,
GIS predictor variables, and model development procedures, it is
unclear whether the difference in model structure and perform-
ance is due to inherent differences between study areas or due
to these methodological issues. A recent study showed that
models based on short-term and mobile monitoring in the same
study area resulted in comparable model structures and highly
correlated predictions at external sites.15

Most studies develop a single best model, which is applied for
exposure assessment in epidemiological studies. Due to correla-
tions between predictor variables, it is likely that alternative
models can be developed which explain variability almost equally
well.12 Gulliver19 developed and interpreted four NO2 models
in the framework of 4-fold hold-out validation (HV). Wang20

applied model predictions of 40 models from a cross-validation
method to predict subject’s exposure to NO2 in an epidemio-
logical study. Very few studies have developed multiple models
for short-term monitoring designs (Hankey, 2015). Little is
known about the robustness of model predictions at external
sites by applying multiple models developed on one monitoring
data set. Using external sites is important as for short-term and
mobile monitoring, the monitoring sites used for model develop-
ment may differ systematically from the often residential
addresses to which the model are applied, for example, in
distance to roads.
We performed a harmonized short-term monitoring campaign

contemporaneously in six European study areas. We developed
ten LUR models per area based on 90% subsets of the sites,
following a common modeling approach. Our aims were to
develop LUR models for predicting spatial patterns in UFP for
six European study areas; to assess the agreement in LUR model
structure and performance within and between study areas.
A further aim was to evaluate the performance of a model using
the UFP concentration data from six study areas combined.
Important new contributions of this paper include (a) the
evaluation of the robustness of model predictions at external
residential sites, not included in model development in all six

areas; (b) Validation of the models with UFP monitoring data
with longer monitoring duration at residential external sites in
two of the areas; (c) an evaluation of the potential to develop
a model for a large geographic area and comparison with
performance of local models.

■ MATERIALS AND METHODS

Study Areas and Design. In Basel (Switzerland), Heraklion
(Greece), Amsterdam, Maastricht, and Utrecht (The Nether-
lands, three cities collectively referred to as “The Netherlands”),
Norwich (United Kingdom), Sabadell (Spain), and Turin (Italy),
monitoring sites were selected based on criteria applied before
in the ESCAPE and MUSiC studies,7,12,21 and evaluated by a
team of experts from all centers (Supporting Information (SI) 1).
In each area, 160 sites were selected (240 in The Netherlands
because multiple cities were studied). For large spatial contrast in
traffic intensities and land use, seven types of monitoring site
were defined: traffic, urban background, urban green, water,
highway, industry, and regional background, as applied before.21

Measurements were made as close as possible to home faca̧des,
but not on private property. Traffic sites were monitored close to
home faca̧des along a major road with >10 000 vehicles/day, not
on curbsides. Urban background sites were close to home faca̧des
>100m away from a major road. Urban green sites were at the
edge of a park, water sites adjacent to a canal or a river, highway
sites were within 100m from a highway, industry sites were in a
mixed industrial-residential zone, and regional background sites
were outside the study city. Traffic sites represented approx-
imately 40% of the total sites in all areas.
In all areas, a harmonized short-term monitoring campaign

was conducted contemporaneously between January 2014 and
February 2015, measuring each monitoring site three times
in different seasons (Summer, Winter and Spring/Autumn).
Measurements were taken on Monday-Friday, and site types
were visited in random order. At each visit, UFP concentrations
were measured for 30 min following a prescribed protocol, and
a GPS coordinate was taken. To avoid rush hour influences and
increase comparability between monitoring sites, measurements
were taken between 9.00 am and 4.00 pm. During the entire
measurement campaign, reference site UFP measurements were
conducted in each area to allow temporal adjustment of local
data. The reference site was an urban background location in the
study area (SI 1). In the large study area of The Netherlands, the
reference site was in one of the areas (Utrecht), 40 km from
Amsterdam and 140 km from Maastricht.

Monitors. UFP was monitored in all study areas using a
CPC 3007 (TSI Inc., Shoreview, MN), operating at a flow of
100 mL/min measuring particles ranging from 10−1000 nm at
1 s intervals. The CPC 3007 does not specifically measure UFP,
but UFP typically dominates particle number.5 We will use the
term UFP to refer to the particle number counts. The reference
sites in The Netherlands and in Heraklion were also equipped
with a CPC, operating at identical settings, whereas other areas
used a MiniDiSC (Testo AG, Lenzkirch, Germany), because of
the limited number of CPCs available. The MiniDiSC operated
at a flow of 1000 mL/min measuring particles from 10−300 nm
at 1 s intervals. Previous studies had shown good agree-
ment between CPC 3007 and MiniDiSC.22,23 We colocated the
two instruments used in each study area regularly to check
comparability. In The Netherlands, Norwich and Sabadell, the
mean ratio of the two instruments was close to unity (SI 2).
In Turin, the CPC used at the short-term sites gave 27%
lower readings than the MiniDiSC used at the reference site.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b05920
Environ. Sci. Technol. 2017, 51, 3336−3345

3337

http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b05920/suppl_file/es6b05920_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b05920/suppl_file/es6b05920_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b05920/suppl_file/es6b05920_si_001.pdf
http://dx.doi.org/10.1021/acs.est.6b05920


In Heraklion, the monitoring site CPC gave 41% higher UFP
readings than the reference site CPC with large variation. We did
not correct for these differences, as the reference site measure-
ments is used only to correct for temporal variation. GPS
coordinates were collected using a high sensitivity hand-held
GPS device.
Data Cleaning. QA/QC included zero checks before and

after measurements and regular colocation of all UFP monitors
per study area at the local reference site for at least 3 h per
exercise. All site and reference measurements were averaged over
the corresponding period, after removing measurements with
error codes of the instrument (e.g., deviating flow). Extreme
reference site 30 min measurements, defined as more than four
interquartile ranges (IQRs) lower or higher than the 25th or 75th
percentile, were flagged and individually inspected, as they might
indicate local sources near the reference site (e.g., diesel-powered
grass mower near the Dutch site) not reflective of concentration
patterns in the wider area. We identified 15, 30 min reference
observations as indicative of local sources (3 in The Netherlands,
10 in Norwich, 2 in Sabadell), 0.5% of all reference site
observations.
In Turin, reference site measurements were missing for 65% of

the 480, 30 min measurement periods due to misinterpretation
of the protocol. A regression model using Routine NOx, Hour of
the day, Barometric pressure and Relative Humidity, fit on the
valid 35% of the data (R2 62%), was applied to impute the missing
30 min reference site observations (SI 3). In Norwich 17% of
the reference site data was missing due to operational problems.
A regression model built on routine and meteorological data
(R2 50%) was used to impute these missing observations (SI 3).
In the other areas, no predictive model could be developed
(percentage missing <10% in Netherlands, Basel, and Sabadell
and 18% in Heraklion).
Temporal Variation Adjustment. To improve assessment

of spatial contrasts between sites, the UFP concentration at
the local reference site was used to adjust monitored UFP levels
for temporal variability in three steps, following procedures of
previous studies.12,24 First, the mean reference UFP concen-
tration of the corresponding interval was subtracted from the
annual mean concentration at the reference site. Second, this
difference was added to the concentration measured at a site.
Third, the adjusted average UFP concentration was calculated as
the average of three adjusted samples from one site. Application
of the ratio method (accounting for differences between two
instruments) resulted in unrealistic averages due to large individual
ratios (up to 8) on days with low UFP concentrations at the
reference site.
GIS Predictors. GPS coordinates from three site visits

were averaged and manually corrected for optimal accuracy in
position relative to roads on detailed road maps. Predictor
variables were generated locally for each of these sites in a GIS,
using coordinates and digital data sets on traffic, heavy traffic,
population density, land use and restaurant density. Predictors
and buffer sizes were similar to these used in the ESCAPE and
MUSiC studies,7,12 supplemented with airport land use and
restaurant data because of studies documenting increased
outdoor UFP concentrations related to emissions from airports25,26

and restaurants,27 and the inclusion of restaurants in a previous
UFP model.11 Traffic and heavy traffic predictors were collected
at buffer radii of 50, 100, 300, 500, and 1000 m from the best
available road network data (SI 4). Population and land use
predictors at radii of 100, 300, 500, 1000, and 5000 m (Land use
defined as airport only radii of 1000 and 5000 m) were collected

from population density data from the European Environmental
Agency and CORINE land use data sets (Coordination of
Information on the Environment). Number of restaurants was
collected at radii of 100, 300, 500, 1000, and 5000 m using the
Open Street Map application Turbo Overpass. Heavy traffic data
from Basel, Heraklion, Sabadell and Turin were not available in
a GIS. Restaurant data do not cover all restaurants in the city as
inclusion in the database is not free (SI 4). Restaurant data were
not used for Heraklion, since the number of amenities was
underreported and did not reflect realistic distributions across
neighborhoods.

External Sites. We used external sites to test the
robustness of predictions of the 10 LUR models. Residential
addresses of 31−48 subjects per study area participating in the
EXPOsOMICS study28 were used for all areas except Heraklion.
In Heraklion, 50 randomly selected addresses were used. GIS
predictors for subject’s home addresses were collected to test
robustness of model predictions. Additionally, in Basel and The
Netherlands 24 h average outdoor UFP concentrations were
monitored at the home faca̧de with MiniDiSCs in three seasons.
Study period and study area were harmonized between the short-
term monitoring campaign and residential outdoor measure-
ments. The temporally adjusted average UFP concentration was
used for external model validation when at least two valid 24 h
observations were available.

LUR Model Development. LUR models were developed
centrally by applying procedures equivalent to procedures
applied in the ESCAPE and MUSiC studies.7,12 Briefly,
temporal-variation adjusted 30 min average UFP concentration
per site was used as dependent variable in a linear regression
model, using GIS predictors as explanatory variables. Predictors
where the 90th percentile was zero were not used in any model.
Predictors that were not available for all areas or present in less
than 50% of the areas were not used in the combined area model.
Predictors were selected using a supervised stepwise selection
procedure, selecting the variable with the largest adjusted R2 to
the model if the direction of effect was as defined a priori and did
not change the direction of effect of previously included variables.
This process was continued until no more variables provided
a gain in adjusted R2. Variables included were checked for
p-values (removed when p-value > 0.10), collinearity (removed
when variance inflation factor > 3), and influential observations
(if Cook’s D > 1 the model was further examined).

Local UFP Models. In each area, 10 models were developed
to evaluate robustness of model structure and model predic-
tions at the external sites, following the 10-fold cross-validation
approach. First, monitoring sites were stratified by site type
(traffic vs nontraffic) and subsequently randomly distributed in
10 groups. Next, each time 90% (9 groups) of the sites was used
for model development and 10% (1 group) for validation. The
model R2 and root mean square error (RMSE) were obtained
from each individual model, the HV R2 and RMSE were obtained
by predicting UFP levels in each validation set and regressing
these against measured values over all pooled random draws.
In Basel and The Netherlands, an additional validation was
obtained by testing modeled against measured 24 h outdoor UFP
concentrations at the external sites. We calculated bias, defined as
the average of modeled minus measured UFP.
For model structure comparison, we classified predictors

in nearby traffic (traffic predictors, radius ≤100m), distant
traffic (traffic predictors, radius > 100m), population, industry,
port, airport, restaurants, and green space. Predictions from the
10 models at external sites in a specific area were compared with
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scatterplots and correlation coefficients. The intraclass correla-
tion coefficient (ICC) was calculated as a summary. Predictions
were performed after truncation of predictors such that they were
within the range in the model development data (truncation
applied on one site in Basel, two sites in Heraklion, two sites in
The Netherlands, three sites in Norwich). A chart of procedures
is presented in Figure 1.

Combined Area UFP Models. Ten models on combining
data from all areas were developed following the procedure
described before, additionally stratifying sites by study area
prior to stratification by site type. To account for systematic
differences in background concentration between study areas, we
specified random intercepts using a linear mixed-effect model
after the supervised stepwise model development procedure.
We further evaluated random slopes to account for differences in

emissions due to, for example, composition of the vehicle fleet
across areas.
Leave one area out validation (LOAOV) was applied to

explore applicability of combined LUR models in areas without
measurements. All short-term sites from one area were excluded
and one model was developed for all other areas. A random
intercept per area was introduced and the LOAOV R2 and RMSE
were obtained by evaluating modeled and measured UFP levels
in the excluded area. For Basel and The Netherlands LOAOV
models were also compared with measurements at the external
sites.
GIS predictors were generated locally in ArcGIS (ESRI,

Redlands, CA) (land use, population, and traffic predictors) and
in the Overpass Turbo29 and QGIS30 applications (Restaurant
predictors). Local data cleaning and calculations per center
were performed using the statistical package available (SAS,
STATA, R), final checks and model building were performed
using the statistical package R 3.2.2.31

■ RESULTS

For LUR model development, 160 monitoring sites per city in
Basel, Heraklion, Sabadell and Turin, 161 sites in Norwich and
242 sites in The Netherlands were monitored (total 1043 sites).
Adjusted average UFP observation were included for LUR
modeling when based on at least two 30 min site observations,
corrected for corresponding reference measurements, leading to
loss of 1 site in Basel, 2 sites in The Netherlands and 10 sites
in Heraklion, an overall loss of 13 sites (1.2%). There was large
variability in adjusted average UFP concentrations among sites in
all study areas (Figure 2). Concentrations were highest at the
traffic sites and industrial sites in Turin and Sabadell. Higher
median UFP concentrations were observed in Sabadell and
Turin. Variability of the individual three 30 min observations was
high. The average within site standard deviation after temporal
adjustment was 6985 particles/cm3, 51% of the overall mean
across study areas.

Figure 1. ; Overview of model development and evaluation. External
sites are residential addresses of participants in the personal exposure
monitoring survey.

Figure 2.Distribution of average UFP concentrations (cm−3) per study area. The Netherlands is comprised out of the cities of Amsterdam, Utrecht, and
Maastricht.
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Local LURModels.Model R2 differed between areas, ranging
from on average 28% in Sabadell to 48% in The Netherlands.
Model R2 and RMSE of the ten models within areas were
very similar (Table 1). Within an area, the 10 models typically
contained one to three predictor categories (e.g., nearby traffic)
in all 10 models (Figure 3). Other predictor variables were
included in a selection of models, such as port -included in
6 of 10 models in The Netherlands- or industry which was
included in 6 of 10 models in Turin. The exact predictor variables
(e.g., traffic intensity nearest road) and coefficients differed
more among the 10 models (SI 5). Between study areas more
difference in model structures was seen (Figure 3, SI 5). Nearby
traffic was included in all models, population was included
in 46 of 60 models (not at all in Sabadell), industry was included
in 41 of 60 models (not at all in Basel), and restaurant data
were included in all local models in Basel and Sabadell, but not in
any model of the other study areas.
HV R2 decreased by 7−20% compared to model R2 and RMSE

increased by about 10% (Table 1). The models predicted UFP
variability at external sites with longer duration monitoring
substantially better (R2 in Basel 53% and in The Netherlands
50%) At the external sites, there was virtually no bias for The
Netherlands and a modest 20% systematic overestimation at the
Basel sites.
Consistent with the modest differences in local model structure,

UFP predictions among models per area were highly correlated
(Figure 4, Table1). Predictions in individual models showed high
similarity in Basel, The Netherlands, Sabadell, and Turin (ICC
0.96−0.98) andmore variation inNorwich and especially Heraklion
(Figure 4 and SI 6). Because of the high consistency of models,

we also developedmodels based on 100% of the sites (SI 7). In each
area, models were very similar to the 10 models per area.

Combined area LURModels. Final LURmodels included a
random intercept for study area. A random slope per area did not
improve prediction and was not included (SI 5 and 8). Models
built on short-term sites from all areas resulted in a Model R2 of
34% with low SD (Table 2). Every model consisted of predictors
representing nearby traffic, distant traffic, population and
industry (SI 5). Modeled concentrations of the 10 models on
external sites were highly correlated (Table 2 and SI 6). HV R2

over all areas was close to the model R2. HV R2 and RMSE of the
combined model assessed per area were similar to HV R2 and
RMSE of local models (Table 3). Validation R2 at external sites
in both Basel and The Netherlands was higher than HV R2,
comparable to performance in local models.
We further tested the combined model by dropping complete

areas from the model development (SI 9). The LOAOV R2

was close to the HV R2 of local and combined models. When
applying LOAOV models on external sites, it performed equally
well as local and combined area models in Basel, where in
The Netherlands R2 decreased and RMSE increased (Table 3).
Systematic overestimation (Heraklion, Turin) and underestimation
(Sabadell, Switzerland) up to about 30% of the overall mean
were found for combined models excluding complete areas.
At external sites overestimation of about 2% (Netherlands) and
20% (Basel) were found. Measurements at the external sites
were 24 h averages, including night-time with typically lower
concentrations.

Table 1. Model Performance and Robustness of Prediction of Local LUR Models Sitesa

local models Basel Heraklion Netherlands Norwich Sabadell Turin

model performance n = 159 n = 150 n = 240 n = 161 n = 160 n = 160

model R2 (%) mean (SD) 30 (2) 37 (4) 48 (2) 39 (2) 28 (3) 40 (2)

model RMSE (UFP/cm3) mean (SD) 5251 (175) 6128 (220) 5511 (169) 5149 (132) 7507 (354) 4676 (126)

HV R2 (%) 18 17 35 25 18 33

HV RMSE (UFP/cm3) 5611 6930 5548 5672 8247 4913

HV bias (UFP/cm3) −25 −49 37 −74 88 81

n = 40 n = 41

external R2 (%) mean (SD) 54 (2) 49 (5)

external RMSE (UFP/cm3) mean (SD) 2827 (70) 3524 (118)

external bias (UFP/cm3) mean (SD) 2675 (291) 471 (223)

model robustness n = 48 n = 50 n = 42 n = 31 n = 42 n = 44

UFP/cm3 mean (SD) 13625 (291) 11131 (931) 15414 (223) 9565 (285) 17752 (225) 14714 (99)

ICC 0.98 0.73 0.97 0.86 0.96 0.98
aExplained variability (R2), root mean square error (RMSE), and bias (difference between modeled and measured UFP) from the 10 models at
model development, holdout validation (HV, based on pooled analysis), and at application on external sites. Model robustness expressed in mean
and SD of predicted UFP/cm3 and intraclass correlation coefficient (ICC) of 10 models at application on external sites.

Figure 3. Selection of predictor categories in the 10 models per study area.
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■ DISCUSSION

LUR models for UFP were developed in six European areas
based on harmonized short-term monitoring campaigns and
a common modeling approach. The 10 models developed within
each area were generally robust in model structure and in
prediction at external sites. Model structure differed between the
six areas. Model and HV R2 were low to moderate. Validation at
external sites with repeated 24 h monitoring in two of the six
areas showed substantially higher R2s (50−53%). A combined
area model explained UFP variability at external sites from two
areas equally well as local models.
Robustness of LUR Model Predictions within Areas.

Predictor categories selected in the 10 models per area had high
agreement, resulting in highly correlated model predictions
at external sites. Exact predictors in final models could differ,
but due to correlation of predictors within a predictor category,

modeled UFP concentrations were highly correlated. Variables
like traffic intensity and heavy traffic intensity on the nearest
road, variables of two adjacent buffer categories (e.g., 300 and
500m) as well as population and address density, were correlated
as observed before.12 Predicted UFP levels from local models
were very consistent in four of the areas, with slightly higher
variability in Heraklion and Norwich. In these two areas more
moderate correlations were found with 2 of the 10 models which
included the predictor traffic intensity divided by distance. In
Heraklion, one of the models with lower correlation had a lower
coefficient for traffic on the nearest road (the main predictor in
the Heraklion models) compared to the other nine models.
This likely contributed to the more modest correlation with
other models.

Local LUR Model. Despite harmonized monitoring and
modeling approaches, differences in model R2, RMSE and struc-

Figure 4. ; Predicted UFP concentrations of each model plotted against each other for Basel (A, highly similar) and Heraklion (B, more variation) in the
lower panel, together with the Pearson correlation coefficient in the upper panel. Red lines represent the best fit lines; *** = p-value < 0.001.

Table 2. Model Performance and Robustness of Prediction of Combined Area LUR Modelsa

combined models Basel Heraklion Netherlands Norwich Sabadell Turin

n = 1030

model performance n = 159 n = 150 n = 240 n = 161 n = 160 n = 160

model R2 (%) mean * (SD) 34 (1)

model RMSE (UFP/cm3) mean * (SD) 6105 (117)

HV R2 (%) pooled 32

per area 18 15 38 26 18 27

HV RMSE (UFP/cm3) pooled 6170

per area 5615 7012 5403 5631 7963 5149

HV bias (UFP/cm3) pooled 1

per area 205 120 59 106 −554 −184

n = 40 n = 41

external R2 (%) mean (SD) 52 (1) 51 (1)

external RMSE (UFP/cm3) mean (SD) 2827 (25) 3466 (49)

external bias (UFP/cm3) mean (SD) 2433 (289) 790 (162)

model robustness n = 48 n = 50 n = 42 n = 31 n = 42 n = 44

UFP/cm3 mean SD 13 351 (289) 11 760 (281) 15 722 (162) 10 446 (118) 18 388 (334) 15 720 (339)

ICC 0.99 0.93 1.00 0.99 0.99 1.00
aExplained variability (R2), root mean square error (RMSE), and bias (difference between modeled and measured UFP) from the 10 models at
model development, holdout validation (HV, based on pooled analysis), and at application on external sites. Model robustness expressed in mean
and SD of predicted UFP/cm3 and intraclass correlation coefficient (ICC) of 10 models at application on external sites. bBased on values prior to
introduction of Random Intercept
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ture were found between the six areas, which were much larger
than differences between the 10 models within an area. Models
from all areas included nearby traffic−often traffic intensity at the
nearest street-, consistent with the major influence of motorized
traffic emissions on urban UFP concentrations.5 Nearby traffic
variables predicted a substantial contrast in UFP, of typically
4000−6000 particles/cm3 for a difference between the 10th and
90th percentile of the predictor. The relatively high number
of traffic predictors offered is another potential explanation,
however the inclusion of many more near compared to distant
traffic predictors argues in favor of the source interpretation.
Population density was included in all 10 models in four of the
six areas, 6 out of 10 models in Heraklion, and in none of the
models in Sabadell. This is possibly due to the lower population
variability in this moderate sized town. Industry, port, airport and
restaurants were included in models of only one or a few areas.
Port in a 5 km buffer was only represented in Heraklion and
The Netherlands, not located within this radius in the other
areas. Airport was not selected in The Netherlands, probably
because few sites were located within a 5 km radius of an airport.
The inclusion of these nontraffic sources is consistent with
studies documenting that UFP emissions are related to multiple
combustion sources.5

We do not have a clear explanation of the difference in model
R2 between the six study areas. Differences in model R2 could
be due to the characteristics of the study area such as size
and complexity, but also to differences in the variability of GIS
predictor variables. Different performance of our temporal
adjustment may have contributed to variability in model R2

as well. In Norwich and especially Turin, imputation of
measurements at the reference site was used to avoid missing
values. This may have reduced the effectiveness of temporal
adjustment.
The current local model R2s, ranging from 28% to 48%, and

predictors used in thesemodels are comparable to those reported

of spatial LUR models in previous short-term monitoring work.
In Girona province, Spain, a model with only traffic predictors
captured 36% of UFP variability at 644 sites measured for a single
15 min period.10 For Vancouver, Canada, a single measure-
ment at 80 locations resulted in model R2s from 29 to 53%
including traffic population, port and restaurant predictors.11

In Amsterdam and Rotterdam, The Netherlands, 37% of UFP
variability at 160 sites was explained with traffic, population and
port predictors.12

Our spatial models can be applied for assessing long-term
average exposures. We did not develop spatiotemporal models,
further including temporal predictors such as temperature, to
allow temporally more refined estimates.

Model Validation.HV R2s were low to moderate in all areas
of our study. A low HV R2, however, does not imply that models
do not provide valid predictions, as argued previously.12 Current
UFP models predicted repeated 24 h measurements from Basel
and The Netherlands substantially better than the HV R2

suggested. For both areas a moderately high R2 of around 50%
was found, compared to HV R2 of 18 and 35% in Basel and
The Netherlands. We previously documented higher external
validation R2 related to longer averaging times at the external
validation sites relative to the model development sites in two
studies.12,15 Our spatial predictors are constant in time and
therefore cannot explain remaining temporal variation in short-
term measurements. Repeated 24 h measurements likely reflect
long-term average UFP concentrations better than short-term
monitoring, because these observations are less affected by
temporal exposure variation. Model R2 and HV R2 from short-
term monitoring may not be the metric that should be leading in
assessing model performance. Based on these metrics models
fromThe Netherlands (R2 = 48%) were better than Basel models
(R2 = 30%), but at external sites models performed equally well.
This suggests that testing on external sites with longer-term
monitoring is a better tool to assess performance. Long-term

Table 3. Model Performance of the Combined Area Model by Leave One Area Out Validationa

Basel Heraklion Netherlands Norwich Sabadell Turin

short-term sites n = 159 n = 150 n = 240 n = 161 n = 160 n = 160

HV R2 (%) LOAOV 20 14 28 22 14 28

HV R2 (%) local 18 17 35 25 18 33

HV R2 (%) combined 18 15 38 26 18 27

HV RMSE (UFP/cm3) LOAOV 6180 7020 5700 5840 7990 5080

HV RMSE (UFP/cm3) local 5611 6930 5548 5672 8247 4913

HV RMSE (UFP/cm3) combined 5615 7012 5403 5631 7963 5149

HV bias (UFP/cm3) LOAOV −1060 2416 −85 1442 −3086 3031

HV bias (UFP/cm3) local −25 −49 37 −74 88 81

HV bias (UFP/cm3) combined 205 120 59 106 −554 −184

external sites n = 40 n = 41

R2 (%) LOAOV 53 41

R2 (%) local 53 50

R2 (%) combined 53 51

RMSE (UFP/cm3) LOAOV 2795 3831

RMSE (UFP/cm3) local 2800 3485

RMSE (UFP/cm3) combined 2817 3459

bias (UFP/cm3) LOAOV 1845 181

bias (UFP/cm3) local 2708 481

bias (UFP/cm3) combined 2434 790
aLeave one area out validation (LOAOV) models are based on combined model with one complete area excluded in model development, on which
the model is subsequently tested. Holdout validation (HV) R2, root mean square error (RMSE), and bias (difference between modeled and
measured UFP) of local and combined area models repeated from Tables 1 and 2. Local and combined area external R2, RMSE and bias are based on
average predicted UFP concentration of the 10 models.
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UFP concentration data are however not routinely available
and thus require a dedicated monitoring effort, as illustrated in
a recent Swiss study where external validation from routine
monitoring was available for four sites for UFP and 80−100 sites
for PM10 and NO2.

9

Model andHVR2were lower in our andmost other short-term
and mobile LUR models for UFP compared to LUR models
developed for pollutants such as NO2 and PM2.5.

6,7 The large
spatial variation of UFP may be more difficult to model, but the
use of short-term averages for UFP compared to much longer
average times for NO2 and PM2.5 likely explains part of the
difference in model R2. In a Swiss study, based upon 2 week
monitoring periods, model R2 was similar for UFP and PM2.5

absorbance and higher than for PM2.5 and NO2.
9

Combined LURModels.Combined model R2 was 34% with
very high consistency across the 10 models, almost similar
pooled HV R2, and identical predictor categories represented.
Within the different areas combined models performed almost
similar to Local models in HV R2 and RMSE. The relatively
modest differences in UFP concentrations across study areas
and the dominance of traffic as the major predictor may have
contributed to the possibility to develop combined models
that were only slightly less predictive than the local models.
While UFP concentrations were somewhat higher in Sabadell
and Turin, the difference with the other areas was lower than
previously reported for pollutants such as PM2.5, NO2 and black
carbon.7,24,32

The rationale for developing combined area models is
especially that combined area models may be applied in areas
without monitoring more readily than single area models. Models
for large geographical areas for other pollutants are increasingly
developed33 and our study suggests that this approach is feasible
for UFP as well. Increased model validity related to using
more sites34,35 is another rationale. Problems with developing
combined models include availability and comparability of
predictor data and assumptions of the same effect of a specific
predictor (e.g., traffic nearest road) on concentrations. For
example different traffic compositions may result in different
associations to traffic related predictors per area, but this was not
observed in the current study (SI 8). If a predictor variable
(source) is present in a few areas only, it is difficult to distinguish
the influence of this source from other systematic differences
between areas. In the current study, ports were absent in four
study areas. We chose to exclude port as a predictor variable in
combined models. We further excluded restaurant data, as data
were missing in Heraklion. This potentially contributed to the
lower model R2 compared to local models from Heraklion, The
Netherlands, or Turin in the current study, since UFP variability
can no longer be explained by port or restaurant.
LUR models with short-term sites from one area excluded

explained UFP variability in Basel equally well as local and
combined models, where LOAOV R2 remained at 53%. In
The Netherlands LOAOV R2 dropped by 10% and RMSE
increased by 10% compared to local and combined models.
The Netherlands study area was the only individual study area
that covered a large geographical area with both large cities and
smaller towns. The LOAOV model in contrast to the local
model did not include 5000 m population and address density,
accounting for these urbanistic related differences. These
results suggest that transferability of models to independent
areas is more difficult, but this could only be tested in two areas.
The use of local sites in the development of LUR models seems

to be beneficial for model fit at independent sites, as shown for
The Netherlands.

Implications for Epidemiological Studies. We suggest
to apply all the 10 models we developed to assess long-term UFP
exposure in epidemiological studies and to perform 10 epidemio-
logical analyses. This will allow assessment of the consistency of
epidemiological associations obtained with these 10 different
models, improving assessment of uncertainty of effect estimates
beyond standard errors. The number ofmodels could be extended,
using, for example, Monte Carlo approaches.18 Applying multiple
models will likely provide consistent associations for models with
high agreement, but more variation for areas with lower ICCs
(Norwich and Heraklion). Alternatively, exposure could be the
average of 10 models (for example by Bayesian model averaging)
applied at cohort addresses. Exposure estimates will in both cases
depend less on specific selected GIS variables compared to using a
single bestmodel based onmodelR2. This is particularly of interest
for variables for which it is unclear whether they are causally related
toUFPor are proxies for other variables. An example is the variable
“port” in TheNetherlands, which was selected in six of tenmodels.
Port has been a predictor in previous UFP LUR models,8,11,12 but
in the current study could also represent other differences between
the city of Amsterdam (with port) and the other two Dutch cities
without ports. The inclusion of port in 6 of 10 models may reflect
the uncertainty of the importance of this variable. The lack of
inclusion of port in somemodels was not due to too few sites with
a nonzero value: 77 of the sites had a nonzero value.
For epidemiological studies within the study areas covered

by monitoring, we suggest to primarily use the local models.
Although our study did not show large differences in perform-
ance compared to the combined model, the inclusion of more
specific predictors in the local model favors its use. The combined
model could be applied as a further test of consistency of
epidemiological findings. As our study areas did not cover very
largemetropolitan areas (London, Paris), Northern orCentral and
Eastern Europe, rural areas, nor altitude differences, we cannot
apply the model with confidence across Europe. We therefore
advise to apply the combined model in urban areas similar to the
monitored areas. A combinedmodel is furthermoremore useful in
multicity studies than in single city studies, particularly if between-
city contrasts in exposure are exploited.33
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