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Landau theory for the Mpemba effect through
phase transitions
Roi Holtzman1 & Oren Raz1✉

The Mpemba effect describes the situation in which a hot system cools faster than an

identical copy that is initiated at a colder temperature. In many of the experimental obser-

vations of the effect, e.g. in water and clathrate hydrates, it is defined by the phase transition

timing. However, none of the theoretical investigations so far considered the timing of the

phase transition, and most of the abstract models used to explore the Mpemba effect do not

have a phase transition. We use the phenomenological Landau theory for phase transitions to

identify the second order phase transition time, and demonstrate with a concrete example

that a Mpemba effect can exist in such models.
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Under appropriate conditions, a cup of hot water may
freeze faster than an identical cup of cold water. This
counter intuitive phenomenon was documented as early

as 2300 years ago1,2, but is named after A. Mpemba—a school
student that rediscovered it in the 60’s3. Several mechanisms were
suggested to explain the Mpemba effect in water, including:
evaporation4,5, dissolved gases and solids6, convection flow7,
super-cooling8, and anomalous relaxation of hydrogen bonds9.

In recent years the term “Mpemba effect" was extended, and it
is now used to describe a wide range of non-monotonic relaxation
phenomena. These include experimental observations of hot
systems that undergo a phase transition before cold systems in
non-water substances (Polymers10, Clathrate hydrates11), as well
as in other types of phase transitions (Magnetic transition in
alloys12 and various spin models13–17), relaxation towards equi-
librium without a phase transition that is non-monotonous in the
initial temperature18–22 and similar effects in relaxation towards a
non-equilibrium steady states in driven molecular gas
models23–28. It was also recently used to describe relaxations in
which the non-monotonic characteristic is not in the initial
temperature, but in some other parameter29.

Significant progress was recently achieved in understanding
non-monotonic relaxations towards both equilibrium and non-
equilibrium states, including a careful mathematical formulation
of the problem18,30, prediction of an inverse Mpemba effect
where a cold system heats up faster than a hot one18,23, and of the
“strong Mepmba effect" where an exponentially faster relaxation
can be achieved from specific initial temperatures20. Some of
these theoretical predictions were experimentally verified in
refs. 31,32. These results focus on the long time behavior of the
system, and are therefore not informative for experiments and
numerical simulations where the system undergoes a phase
transition after a finite time, as in water, clathrate hydrates,
polymers and magnetic alloys.

In this work we present a theoretical framework for the
Mpemba effect through a second-order phase transition. We first
define, in the context of Landau theory, the exact phase of the
system throughout its relaxation process, which is naturally far
from equilibrium. With this definition, the phase transition can
be associated with a concrete time for any initial condition. Using
this “time to phase transition", a Mpemba effect can be defined
and identified. A specific mechanism for the Mpemba effect
through such a transition is then demonstrated with a concrete
example of a Landau free energy.

Throughout the manuscript we limit the discussion to the
Mpemba effect through a second-order phase transition. To keep
the description simple, from this point on we use the term
Mpemba effect to describe the scenario in which it takes less time
for an initially hot system to undergo a second-order phase
transition in comparison to an initially colder system.

Results
Non-equilibrium phase transition at finite time. The existence
of the Mpemba effect considered in this manuscript is determined
by the time it takes the system to undergo a second-order phase
transition as a function of the initial temperature, when the
system is quenched to a cold environment. However, during the
relaxation process the system is generically not in an equilibrium
state associated with any temperature, and it is not always pos-
sible to define the phase of the system in these cases. Moreover, in
many types of dynamics (e.g., coarsening dynamic33), the phase
transition happens only in the infinite time limit. Other finite
time phase transitions out of equilibrium are not associated with
the mean value of the order parameter, but rather with its
fluctuations34, and are therefore not useful in the context of the

Mpemba effect. For these reasons, we first suggest a simple
definition for the moment in time at which the phase transition
happens when the system is coupled to an infinite, memory-less
heat bath, and which is finite in some relevant class of models. In
the spirit of the Landau theory, we consider mean-field theories,
i.e. models without any spatial dependence.

The phases of the system. Consider a system that can be char-
acterized by a set of macroscopic parameters x1,…, xn. These are
often represented, for short handed, as x!¼ ðx1; :::; xnÞ. Some of
these parameters, say x1,…, xm are the order parameters, i.e.,
their value determines the phase of the system. We assume that
these order parameters are normalized by the number of particles
in the system, e.g., the mean magnetization, etc. For simplicity, in
what follows we assume that there is a single order parameter in
the system, x1. We denote the value of x! that corresponds to
equilibrium with respect to some bath temperature Tb by
x!eqðTbÞ. Upon quenching the system to a different temperature,
the macroscopic parameters evolve in the x! configuration space
towards their new equilibrium value.

Typically, an order parameter in a second-order phase
transition is defined such that it is zero in one phase and non-
zero in another phase. In this case the two phases are therefore
characterized by the equilibrium value of the order parameter,

xeq1 ðTbÞ
¼ 0; disordered; Tb ≥ Tc

≠0; ordered; Tb <Tc

�
ð1Þ

where Tc is the critical temperature of the model. For simplicity
we consider here the common case where above Tc the system is
disordered and consequently xeq1 ¼ 0, whereas below Tc the
system is in one of the ordered phases and xeq1 is either negative or
positive. We comment on the less common case where the system
is ordered for Tb > Tc and disordered for Tb < Tc in Discussion
section.

Landau free energy. We denote the Landau free energy per par-
ticle of the system, which is defined for any value of the macro-
scopic parameters x!, by f ð x!;TbÞ. The equilibrium
configuration of the system at temperature Tb corresponds to the
global minimum of f ð x!;TbÞ, namely

x!eqðTbÞ ¼ argmin
x!

f ð x!;TbÞ: ð2Þ

We note that commonly f ð x!;TbÞ has more than one mini-
mum, e.g., in a ferromagnet for T < Tc the minima corresponding
to ‘up’ and ‘down’ magnetizations are identical, and so the
minimizer of the above equation is not unique. In this case, it
should be understood that one of these minima is arbitrarily
chosen.

To date, there is no single theory for the dynamics of the
macroscopic parameters under all non-equilibrium conditions,
but several models are often used to describe specific non-
equilibrium scenarios. To describe the relaxation towards an
equilibrium state, we use the common assumption33 that the
dynamic of the xi parameters is given by the negative gradient of
f ð x!;TbÞ and a stochastic noise,

_xi ¼ � ∂f ð x!;TbÞ
∂xi

þ ξi: ð3Þ

This form corresponds to Model A in the classification of
Hohenberg and Halperin (see Eqs. (4.1) in ref. 35), but our results

hold for other types of dynamic as well. ξ
!

is a noise associated
with the external bath temperature, 〈ξi(t)〉= 0 and 〈ξi(t)
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ξj(τ)〉= 2N−1Tbδ(t− τ)δij. With this definition for the noise, the
steady state distribution associated with Eq. (3) is the Boltzmann
distribution,

Pð x!;TbÞ ¼ e�Nf ð x!;TbÞ=Tb=Z; ð4Þ
where

Z ¼
Z

ddxe�Nf ð x!;TbÞ=Tb

is the partition function. Note that the noise was chosen such that
f ð x!;TbÞ is indeed the free energy per particle, as is evident from
Eq. (4). At each extremum point of f ð x!;TbÞ, the first term on the
right hand side of Eq. (3) vanishes. Thus, even though the noise is
negligible in the thermodynamic limit, without the noise term all
of these points were stationary. This is the desired property of the
minima of the free energy, but not of its other types of extremum
points. The noise term remedies this issue even for very large N:
the system remains in the vicinity of its minima, but not near any
other types of fixed points.

The phase of a non-equilibrium state. Consider a quench protocol
that takes a system that is prepared in equilibrium at Tinit > Tc,
corresponding to the disordered phase, and connects it to a bath
at Tb < Tc, corresponding to the ordered phase. Thus the system is
initiated at x1(t= 0)= 0, and ends at x1(t=∞) ≠ 0.

To identify the phase-transition time, it is natural to consider
the moment in time at which the system has changed from the
disordered phase to the ordered phase, manifested in the growth
of ∣x1∣. By Eq. (3), the dynamic of x1 is dictated by the effective
free energy f ð x!;TbÞ that acts as a potential that guides the
system towards its equilibrium state. As we assume spontaneous
symmetry breaking around x1= 0, namely that
∂x1 f ðx1 ¼ 0; x2; :::; xn;TbÞ ¼ 0, the growth of ∣x1∣ is determined

by the second derivative in the x1 direction of f ð x!;TbÞ around
the hyper-plane (x1= 0, x2,…, xn). For
∂2x1 f ðx1 ¼ 0; x2; ¼ ; xn;TbÞ> 0, the effective free energy confines

x1 around x1= 0, whereas for ∂2x1 f ðx1 ¼ 0; x2; ¼ ; xn;TbÞ< 0, the
effective free energy pushes x1 towards a non-zero value. In the
latter case, the specific noise realization breaks the symmetry and
dictates whether x1 becomes positive or negative.

We therefore define the phase-transition time tc as the smallest
time t that solves the following equation:

∂2x1 f h x!ðtÞi;Tb

� � ¼ 0; ð5Þ
where x!ðt ¼ 0Þ is sampled from the equilibrium corresponding
to the initial temperature Tinit, x!ðtÞ follows the dynamic in Eq.
(3) and where 〈⋯ 〉 denotes averaging over both noise
realizations and sampling of x!ðt ¼ 0Þ.

The phase-transition time tc can be alternatively defined by
taking the average over the full stability expression, namely, the
smallest time t that solves (compare with Eq. (5))

∂2x1 f x!ðtÞ;Tb

� �D E
¼ 0: ð6Þ

As in the case of Eq. (5) the angular brackets 〈⋯ 〉 denote
averaging over both noise realizations and sampling of x!ðt ¼ 0Þ.
It is not clear a priori which definition is favorable. However, we
show in Methods section that the two definitions provide very
close results for the examined system.

In Methods section we demonstrate these definitions of tc for a
concrete, microscopic model—the mean-field anti-ferromagnetic
Ising model under the Glauber dynamics36. We show the
following properties of the phase-transition time tc: (i) It can be
defined in a more general setting of relaxation dynamics than

considered in Eq. (3), namely a dynamic which is not the gradient
of the free energy; (ii) It is finite even in the thermodynamic limit;
and (iii) Its variance decreases with the system size, and therefore
tc is well behaved in the thermodynamic limit.

The Mpemba effect
Definition. Once the exact time at which the phase transition
happens has been defined, the definition of the Mpemba effect
follows. We say that a Mpemba effect exists in the system if: (i)
The system has a phase transition at some critical temperature Tc,
such that Eq. (1) holds; (ii) There exist two initial temperatures
above the critical temperature, Thot

init >Tcold
init >Tc, and a bath

temperature below it, Tb < Tc, such that when quenched to the
bath temperature Tb, the time tc to reach the phase transition as
defined in Eq. (5) is smaller for the system initiated at the higher
temperature Thot

init than for a system initiated at the lower tem-
perature Tcold

init .
Note that some works did not consider a crossing between the

relaxation trajectories, but instead compared the rate at which
they diverge in the thermodynamic limit37. Others defined the
Mpemba effect by crossing of trajectories in some coarse-grained
parameter space representing the system24. In contrast, the
definition provided here does not consider such crossing. Each
initial temperature provides a phase-transition time, tc= tc(Tinit).
By comparing these times for two temperatures Tcold

init and Thot
init the

existence of the Mpemba effect is determined. Therefore, the
paths the different trajectories take in the parameters space is
irrelevant for this definition.

Mean-field systems with one macroscopic parameter. In the case of
n= 1, there is only one macroscopic parameter x1 which is
therefore also the order parameter. This means that the effective
free energy has, in the close vicinity of the phase transition, the
familiar form

f ðx1;TbÞ ¼ a0ðTb � TcÞx21 þ b0x
4
1; ð7Þ

where a0, b0 > 0 are phenomenological constants and the free
energy is expanded around the phase-transition point only to the
fourth order in x1. Indeed, for Tb > Tc there is one minimum at
x1= 0 corresponding to the disordered phase, whereas for Tb < Tc
there are two minima at x1 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ðTB � TcÞ=ð2b0Þ

p
.

For any initial temperature Tinit >Tc, the initial configuration
sampled from the equilibrium corresponding to Tinit, thus
x1ðt ¼ 0Þ� �

T init
¼ 0. For any bath temperature Tb < Tc the effective

free energy is unstable at x1= 0, namely ∂2x1 f ð0;TbÞ< 0, and
therefore by the definition of tc, Eq. (5), the phase transition happens
instantaneously.

Hence, in mean-field models that have a single macroscopic
parameter, as the ferromagnetic Ising model, all hot temperatures
cross the phase transition at zero time, and consequently there
cannot be a Mpemba effect as defined above. We note, however,
that for non-mean-field models, the mean value of a single order
parameter does not dictate the state of the system, and thus it is
possible to have a Mpemba effect even if there is a single order
parameter in the problem, as in a ferromagnetic 2D Ising model15.

Mean-field systems with two macroscopic parameters. As we next
show, when the configuration space is characterized by at least
two macroscopic parameters, the phase transition can occur at
some non-zero time. Therefore, in such systems the Mpemba
effect is plausible.

Consider the case where there are two macroscopic parameters,
x!¼ ðx1; x2Þ, with x1 being the order parameter that corresponds
to a spontaneous symmetry breaking, whose value determines the
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phase of the system according to Eq. (1). We assume that f is
symmetric with respect to x1= 0 at all temperatures. In this case,
for fixed values of x2 and Tb, f(x1, x2; Tb) as a function of x1 has
either a minimum or a maximum at x1= 0. Thus, it is possible
that for some temperature T the free energy surface has a range of
x2 values for which f(x1, x2; Tb) is stable with respect to x1, and a
different range of x2 values for which it is unstable with respect to
x1. If the initial condition corresponds to an average value that is
in the stable region of f, then in most realizations, the initial
condition of the system is sampled from the stable region, and its
dynamic, governed by Eq. (3), guides the system to the unstable
region. In such a case, a phase transition happens after a
finite time.

The above scenario is demonstrated by the free energy surface
plotted in Fig. 1a. This specific free energy is constructed in
section Example of a system with a Mpemba effect. The black line,
which we denote by x2 ¼ xst2 , separates between a stable region
(gray) and an unstable region (orange). Initial conditions in the
stable region, such as the blue and red dots, would stay confined
around the x1= 0 line, for most noise realizations. Once the system
crosses to the unstable region, x1 is no longer confined, and the noise
pushes the system towards one of the minima. An example for such
a trajectory is plotted in purple in Fig. 1a. Therefore, in this two-
dimensional configuration space different initial conditions cross the
phase transition at different non-zero finite times. This implies that a
Mpemba effect is plausible. In the next section we provide a concrete
example that demonstrates the Mpemba effect as defined above.

Example of a system with a Mpemba effect
Required features for the Mpemba effect. In this section we show
that a Mpemba effect can exist in a system with two macroscopic

parameters, namely for x!¼ ðx1; x2Þ. Before providing a concrete
example, let us first explain the basic idea, demonstrated in Fig. 1.
To this end, we consider for each bath temperature Tb the cor-
responding 2d free energy surface, f(x1, x2; Tb). The global
minima of this surface dictates the equilibrium values, xeq1 ðTbÞ
and xeq2 ðTbÞ. At some critical temperature Tc, x

eq
1 ðTbÞ changes

from xeq1 ¼ 0 for Tb > Tc to xeq1 ≠ 0 for Tb < Tc. We denote
x�2 � xeq2 ðTcÞ, namely the value of xeq2 at the critical temperature.

To observe the Mpemba effect, the system is sampled from two
different Boltzmann distributions with temperatures in the hot
temperature phase, where xeq1 ¼ 0. The difference between the
initial conditions at Thot

init and Tcold
init is therefore not in their x1, but

rather in their x2 mean values. We construct f ð x!;TbÞ such that
xeq2 ðTbÞ is non-monotonic in Tb, and is maximal at Tc, so that x�2
is the maximal equilibrium value of x2. This feature exists for
example in the mean-field anti-ferromagnet Ising model in the
presence of a weak external magnetic field (see ref. 38 as well as
the Methods section). The “equilibrium line” of the model
described in what follows is plotted over the (x1, x2) plane in
Fig. 1b, and it demonstrates this feature.

The next feature we describe regards the stability of the system,
determined by f(x1, x2; Tb), with respect to its symmetric
coordinate x1. At the cold bath temperature Tb, the free energy
surface should have the following property: the symmetry line of
the system, x1= 0 (the green line in Fig. 1a), has two different
regions—one stable in the x1 direction and the other unstable in
the x1 direction. The stability of the system with respect to x1 on
the symmetry line x1= 0 is given by the sign of the second
derivative ∂2x1 f ðx1 ¼ 0; x2;TbÞ: if it is positive the system is stable,
and if it is negative the system is unstable. Having two different

Fig. 1 Mpemba through a phase transition. A concrete example of a free energy demonstrating both a phase transition occurring after a finite time and a
Mpemba effect. The explicit form of the free energy f(x1, x2; Tb) is given in Eqs. (9), (10), (13), (14)). a The free energy surface evaluated at Tb= 0.1 < Tc.
The green line, x1= 0, corresponds to all equilibrium values at the disordered phase. The purple line is an example of a trajectory which starts at x!eqðTcold

init Þ
(the blue dot), and follows Eq. (3) for some random noise realization. The stability in the x1 direction along the x1= 0 line changes throughout the trajectory
—the black line separates between the stable region (gray) and the unstable region (orange). Crossing this line defines the phase transition, and it happens
at a non-zero finite time. The red and blue dots correspond to hot and cold initial equilibria in the disordered phase, i.e., to x!eqðThot

init Þ and x!eqðTcold
init Þ,

respectively. The black dots correspond to the symmetric equilibria of the bath temperature Tb= 0.1. Observing the trajectory governed by the free energy
surface, it is clear that as the colder initial condition must first reach the hotter initial condition, the colder initial condition takes more time, and so this
system exhibits the Mpemba effect. b The equilibrium line x!eqðTÞ of the free energy determined by Eq. (2). Temperatures range from T= 0 (blue) to
T=∞ (red). The black, blue, and red dots correspond the same dots of panel a, i.e., to x!eqðTbÞ; x!

eqðTcold
init Þ and x!eqðThot

init Þ, respectively. It is clear that the
hotter initial condition is closer to Tb than the colder initial condition. The black line corresponds to the black line in panel a, namely it separates the stable
region and the unstable regions at Tb= 0.1. c The free energy surface evaluated at Tb= 1.4 > Tc. This temperature is denoted as Thot

init and therefore the
minimum of fð x!; Thot

init Þ is obtained by x!eqðThot
init Þ as seen in the plot. The green line corresponds to the symmetry line x1= 0. It is demonstrated that x1= 0 is

stable for all values of x2 at this temperature. The stability of x1= 0 holds for all temperatures above Tc.
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regions of stability, means that the stability changes as a function
of x2. The simplest setting for these two regions is having one
point, which we denote the stability point xst2 , separating between
the stable and unstable regions. The presented example adheres to
this simple setting, as shown in Fig. 1a—the black line is located
at x2 ¼ xst2 and it separates between the stable region (gray) and
the unstable region (orange). These conditions are summarized
by

∂2x1 f ðx1 ¼ 0; x2;TbÞ
< 0; for 0< x2 < xst2
¼ 0; for x2 ¼ xst2
> 0; for xst2 < x2 < x�2 :

8><
>: ð8Þ

The form of the Landau free energy. Let us demonstrate the above
idea with a concrete construction of f(x1, x2; Tb). The Landau free
energy has the following form:

f ðx1; x2;TbÞ ¼ γðx2;TbÞ þ ψðx2;TbÞx21 þ x41: ð9Þ
It is composed of x01, x

2
1 and x41 terms, which is the simplest form

for a system with a second-order phase transition for x1. The x2
dependence of the effective free energy in Eq. (9) is chosen as
follows.

First, the function γ(x2, Tb) determines the minima with
respect to x2 in the hot phase Tb > Tc, where x

eq
1 ¼ 0. We set it as

γðx2;TbÞ ¼ 5ðx2 � yðTbÞÞ2

yðTbÞ ¼
Tb

Tc

� 	2

e� Tb=Tcð Þ2 ;
ð10Þ

where Tc is the critical temperature of the model. We set Tc= 1 in
all the figures in this manuscript. For a fixed Tb, the minimum of
γ(x2, Tb) is located at x2= y(Tb), which is a non-monotonic
function of Tb with a single maximum at Tc, where
yðTcÞ ¼ x�2 ¼ e�1 � 0:37.

Next, we construct ψ(x2, Tb) such that (i) It generates the
second-order phase transition at Tb= Tc; (ii) It does not alter the
non-monotonic behavior of xeq2 ðTbÞ; (iii) At low temperatures
(below Tc) the stability of symmetry line x1= 0 changes as a
function of x2 in the range of the equilibrium values ð0; x�2Þ.
Namely, the stability point xst2 satisfies 0< xst2 < x�2 .

To have a phase transition in the x1 coordinate at Tc, we
require that

ψ xeq2 ðTbÞ;Tb

� �� > 0; forTb >Tc

¼ 0; forTb ¼ Tc

< 0; forTb <Tc:

8><
>: ð11Þ

In addition, to make the equilibrium of Tinit > Tc stable in the
x1 direction for dynamics with bath temperature at Tb < Tc, we
require that ψ xeq2 ðT init >TcÞ;Tb <Tc

� �
> 0. Combining this con-

dition with the condition in Eq. (11) for Tb < Tc and Tinit > Tc, we
find these two conditions

ψ xeq2 ðT initÞ;Tb

� �
> 0

ψ xeq2 ðTbÞ;Tb

� �
< 0:

ð12Þ

The conditions in Eqs. (11), (12)) are demonstrated graphically
in Fig. 1a, c.

A simple way to fulfill all the demands for ψ(x2, Tb) is by a
parabola in x2 that changes as a function of temperature:

ψðx2;TbÞ ¼ ax22 þ bðTbÞx2 þ cðTbÞ: ð13Þ
The temperature dependence of the parabola is captured

graphically by Fig. 2. For Tb > Tc, ψ(x2, Tb) > 0 for all values of x2.
At Tb= Tc, it is positive at all values of x2 except for x2 ¼ x�2 ,
where ψðx�2 ;TcÞ ¼ 0. For Tb < Tc, it is negative for some values of
x2, including xeq2 ðTbÞ, but positive for some x2 < x�2 . Note that the

roots of ψ(x2, Tb), which exist only for Tb ≤ Tc, determine the
boundaries of the stability regions. For low enough temperatures,
the smaller root of ψ(x2, Tb) is negative, and so only the larger
root is in the range of the model’s parameters. Thus this single
root is exactly the stability point xst2 , see for example the green dot
in Fig. 2. A concrete choice that adheres to this behavior is given
by

a ¼ 80

bðTbÞ ¼ � 10ax�2
Tb

Tc

cðTbÞ ¼ 5x�2
Tb

Tc
� 1

� 	
þ 5aðx�2Þ2

Tb

Tc

� 	2

:

ð14Þ

We note that the f constructed above is at most quadratic in x2,
and that the coefficients of x22 in both γ and ψ are positive—
therefore the free energy has a minimum at all temperatures.

Existence of the Mpemba effect. The Landau free energy f(x1,
x2; Tb= 0.1) given in Eqs. (9), (10), (13), (14)) is plotted in Fig. 1a.
By complying with the features explained above, it demonstrates
the Mpemba effect: the blue and red dots correspond to
x!eqðTcold

init Þ and x!eqðThot
initÞ, respectively. In both cases, following

the dynamic in Eq. (3), x2 decreases as a function of time, and
reaches the stability line (the black line in Fig. 1a) at finite time.
Crossing from the stable region to the unstable region, x1 is
deflected from the x1= 0 line. As the cold (blue) initial condition
x!eqðTcold

init Þ passes by the hot (red) initial condition x!eqðThot
initÞ,

and they follow the same dynamic, it takes longer time for the
cold initial condition to reach the phase-transition line than the
hot initial condition. Thus the Mpemba effect exists.

Finally, let us analyze the range of temperatures for which the
Mpemba effect occurs. The phase-transition time is a function of
both the bath and initial temperatures, namely tc(Tinit, Tb). If for
some value of Tb, the phase-transition time has tcðThot

initÞ< tcðTcold
init Þ

(which means that the hot system crosses to the ordered phase
faster), then we have a Mpemba effect. Recall that in this analysis
we require that Tinit > Tc and Tb < Tc.

To understand the dependence of the phase-transition time tc
on the initial temperature Tinit and the bath temperature Tb, note
that Tinit sets the initial value of x02 � x2ðt ¼ 0Þ, and Tb sets the

Fig. 2 Stability vs. temperature. ψ(x2, Tb), as defined in Eqs. (13), (14)), is a
parabola that slides on the linear line 5ðx2 � x�2Þ (black) as a function of
temperature. The minimum of the parabola coincides with the black line
and is denoted by white dots. For Tb > Tc, ψ is strictly positive; for Tb= Tc, ψ
is non-positive only at x2 ¼ x�2, where it zeros; for Tb < Tc, ψ is both positive
and negative. The contrast between these positive and negative regions at
Tb < Tc exactly accomplishes the wanted behavior in Fig. 1a, which is
encapsulated by Eq. (8). The point x2 where ψ vanishes corresponds to the
stability point xst2 (such a point is denoted in green in the Fig. for Tb= 0.2)
that separates between the stable region and the unstable region. It
corresponds to the black line in Fig. 1a, b.
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stability line xst2 (recall Eq. (8)). As xeq2 ðT initÞ is a decreasing
function (for Tinit > Tc), increasing Tinit means that the initial
value x02 decreases and starts closer to xst2 . Thus we expect that for
high enough Tinit, the initial condition starts in the unstable
region, x02 < xst2 , and so the phase transition happens instanta-
neously, namely tc= 0.

Next, consider the dependence of tc on the bath temperature
Tb. As Tinit increases, the position of the stability line xst2 increases
as well. To see this, note that the stability line xst2 is given by the
greater root of ψ(x2, Tb) (Eq. (9)). Increasing Tb increases the
roots of ψ(x2, Tb), as can be seen in Fig. 2. Therefore, increasing
Tb means that the range of initial temperatures which have non-
zero tc gets smaller. These two features are apparent in Fig. 3,
where tc is plotted as a function of Tinit and Tb. The Mpemba
effect therefore exists for all triplets Tb <Tcold

init <Thot
init such that the

point ðTb;T
cold
init Þ is to the left of the red line in Fig. 3.

Discussion
In this manuscript, we used the gradient of the free energy as the
force that drives the macroscopic parameters x!ðtÞ in the thermal
relaxation process, and identified the point in time at which the
stability of the order parameter changes as the “phase transition
time". With this identification we could define a Mpemba effect
with respect to a phase transition, and construct a Landau free
energy that demonstrates it. We stress that the Mpemba effect
defined here is not restricted to the specific dynamics we con-
sidered (Eq. (3)). Indeed, as stability of the order parameter is
generic in second-order phase transitions, the identification of the
time in which the order parameter crosses from a stable region to
an unstable region can be applied in other non-equilibrium
relaxation models as well. We demonstrate this in Methods sec-
tion, where we consider the phase-transition time for a model
with a microscopic dynamics whose thermodynamic limit is not
the gradient of the free energy.

Of specific interest are non-mean-field models, which correspond
to more realistic systems with spatial structure. In these models a

spatially dependent field is needed for a proper description. Ana-
lyzing the dynamic in Fourier components, which are commonly
coupled, it might happen that the non-zero components corre-
sponding to spatial fluctuations of the field affect the zero Fourier
component, which determines the mean of the order parameter
field. If the stability of the zero Fourier component changes due to
the dynamics of other Fourier components, a phase transition at a
finite time, and consequently a Mpemba effect might exist even in a
system with a single macroscopic parameter as the ferromagnetic
Ising model39. In other words, the non-zero Fourier components in
statistical field theories can play the same role as x2 plays in the
simple example discussed in this manuscript. A different approach
for addressing large, Markovian systems is through coarse-graining
procedures40,41. These offer a complementary description with
respect to the effective dynamics generated by the Landau theory.
However, these require identifying time-scale separations in the
degrees of freedom. Such mechanisms can explain out-of-
equilibrium and anomalous relaxations phenomena in weak and
boundary couplings42.

The phase-transition time defined in Eq. (5) is not the only
possible definition. For example, an alternative definition that can be
used is the point in time at which the probability distribution of the
order parameter changes from having a single maximum at x1= 0
to having two distinguishable maxima at non-zero value of the order
parameter. This phase-transition time is expected to be correlated,
but delayed with respect to the phase-transition time used in this
manuscript. The main advantage in such a definition is that it is
experimentally and numerically easier to observe in models where
direct stability analysis cannot be done. However, in this case the
exact phase-transition time depends on the noise characteristics.

In contrast to the Mpemba effect in Markovian systems18,31 or
in granular gases23,43, the inverse Mpemba effect—where a cold
system heats faster than a hot one—is less expected in the sug-
gested framework. In the regular effect, the two hot systems are
initiated at xeq1 ¼ 0 and the phase transition happens at tc where
x1(tc)= 0 becomes unstable. In the inverse effect, the two systems
are expected to be initiated at some xeq1 ≠0. Regardless of the
stability in the x1 direction, most models cannot attain 〈x1(t)〉= 0
at a finite time t, but only approach zero asymptotically at t→∞.
Therefore it is not obvious how to identify the exact phase-
transition time in this case. The inverse Mpemba effect might
nevertheless exist in this framework, but in models that have a
second-order phase transition between a disordered phase at cold
temperature and an ordered phase at high temperature. An
example for such a model is the mean-field anti-ferromagnet at
some small range of magnetic field values38.

The model presented in this manuscript is phenomenological,
and it would be of great interest to find a concrete, microscopic
model that demonstrates the same effect. However, the tem-
perature dependence in the free energy we constructed is quite
involved. It cannot originate from a simple coarse-graining pro-
cedure that gives a linear temperature dependence as e.g., in
ref. 38, but rather from a more involved procedure, e.g., the
Hubbard-Stratonovich transformation44, that often results in a
more complicated temperature dependent free energy.

Lastly, we note that our discussion here is limited to a second-
order phase transition, whereas in various examples as water2 or
clathrate hydrates11 the observed Mpemba effect happens
through a first order phase transition. The non-equilibrium
dynamic through a first order phase transition, e.g., “nucleation
and growth”45,46, is vastly different from the dynamic discussed
here, and is a main challenge for future studies.

Methods
In this section we provide an example of a phase transition at a finite time in a
mean-field model.

Fig. 3 Phase-transition time vs. initial temperature Tinit and final
temperature Tb. Note that the initial conditions correspond to the
disordered phase so Tinit > Tc, and the bath temperatures correspond to the
ordered phase so Tb < Tc. As for any bath temperature Tb⪅ 0.8, the phase-
transition time tc(Tinit, Tb) is a decreasing function of Tinit, the system
exhibits the Mpemba effect. The red line separates the temperatures space
(Tinit, Tb) to two regions: on the left the Mpemba effect exists, whereas on
the right it does not.
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The phase-transition time tc defined in Eq. (5) (see also an alternative definition
in Eq. (6)) is quite intuitive, but to the best of our knowledge, it is not commonly
used. In this section we explore its nature, and show that it behaves as one expects
from a phase-transition time. To this end, we first note that tc defined in Eq. (5) (or
in Eq. (6)) is already an average quantity. To understand the validity of the defi-
nition, we therefore define the (stochastic) “empirical phase-transition time" for a
given realization as the minimal ~tc that solves

∂2x1 f ðx1ðtÞ; x2ðtÞÞ;Tb

� � ¼ 0 ð15Þ
The suggested definitions in Eqs. (5), (6)) are physically solid only if the mean

time, h~tci, does not diverge and its variance decreases with the system size.
However, these cannot be checked at the level of a Landau theory, where the noise
is somewhat synthetically added, and the thermodynamic limit is already taken.
Instead, it should be considered at the microscopic level. As we demonstrate in
what follows, crossing the phase transition at a finite time can be demonstrated for
example in the Glauber dynamics of the mean-field anti-ferromagnetic Ising
model, discussed e.g., in ref. 38. This example also serves us in demonstrating that
our definition for the phase-transition time works not only for the gradient of the
free energy dynamics (Eq. (3)), but also for other possible dynamics that can arise
from microscopic models.

Model definition. To demonstrate the well behavior of the phase-transition time and
the applicability of our definition in non-free energy gradient decent dynamics, we
consider the mean-field model of the Ising anti-ferromagnet under Glauber
dynamics. The equilibrium properties of the model are presented in ref. 38, and the
Glauber dynamic for this model is discussed in ref. 20.

In mean-field models of spin systems, every spin interacts with all other spins in
the system. As we consider the anti-ferromagnet, we divide the system into two sub-
lattices of equal size where every spin in one sub-lattice interacts with all other spins
in the other sub-lattice, but not with the spins on the same sub-lattice. In the mean-
field picture there is no spatial structure, thus the state of the system can be described
by the number of up-spins in the first sub-lattice N1,↑ and the number of up-spins in
the second sub-latticeN2,↑. For a system ofN spins, each sub-lattice is composed ofN/
2 spins, and so the normalized magnetization of each sub-lattice is given by

y1 ¼
N1;" � N1;#

N=2
; y2 ¼

N2;" � N2;#
N=2

; ð16Þ

where Ni,↑,Ni,↓ are the number of up-spins and down-spins in sub-lattice i,
respectively. In terms of y1, y2 the mean-field Hamiltonian is given by

H ¼ �N Jy1y2 þ hðy1 þ y2Þ
� �

; ð17Þ
where J is the coupling constant and h is the magnetic field. For anti-ferromagnetic
interactions, the coupling constant is negative, and we set J=−1 for simplicity. From
thesemagnetizations of the sub-lattices y1, y2, follow themore informative parameters
of staggered magnetization s and total magnetization m defined as

s ¼ y1 � y2
2

; m ¼ y1 þ y2
2

: ð18Þ

As the order of the system is encapsulated by the staggered magnetization only,
using our notation of section Mean-field systems with two macroscopic parameters,
the order parameter is x1= s, and the other macroscopic parameter is x2=m. Indeed,
for h < 1 the staggered magnetization s satisfies Eq. (1), namely

seqðTÞ ¼ 0; disordered T ≥ Tc

≠ 0; ordered; T <Tc:

�
ð19Þ

The critical temperature Tc is a function of themagnetic field h, and it exists for small
enough values of h. In what follows we assume that h is small enough for Tc to exist.

Glauber dynamics of the model. The Glauber dynamics for this system, allowing
only single spin flips, was derived in ref. 20.

In the thermodynamic limit, the dynamical equations for s,m are given by

_s ¼ 1
4

tanh
h�mþ s

Tb

� 	
� tanh

h�m� s
Tb

� 	
 �
� s

2
ð20Þ

_m ¼ 1
4

tanh
h�m� s

Tb

� 	
� tanh

h�mþ s
Tb

� 	
 �
�m

2
; ð21Þ

where Tb is the bath temperature. This dynamic is not the gradient flow of any
potential, as can be easily checked. Therefore, it provides a different type of non-
equilibrium relaxation dynamic than considered in the main text (Eq. (3)).
Nevertheless, an analogous stability criterion to the one in Eq. (5) can be defined in
this system too. Indeed, the stability of s at s= 0 is determined by the derivative of _s
in the s direction: ∂s _sjs¼0;m < 0 corresponds to m values which are stable with
respect to s, whereas ∂s _sjs¼0;m > 0 corresponds to m values which are unstable with
respect to s. The explicit condition, using Eq. (20), is given by

∂_s
∂s

����
s¼0;m

¼ 1
2

1

Tbcosh
2 h�m

Tb

 �� 1

0
@

1
A <0; stable

>0; unstable:

�
ð22Þ

This function is plotted in Fig. 4 for Tb= 0.2 and h= 0.5, and it shows the two
stability regions. To see how this stability condition corresponds to a measurement
of the “phase transition time” tc we next consider the equilibrium line in the
configuration space of the macroscopic parameters s,m.

The Equilibrium line. The equilibrium line of the model is obtained by finding the
fixed points of the dynamics in Eqs. (20), (21)), i.e., by solving for _s ¼ 0; _m ¼ 0 (for
an alternative method see ref. 38). The equilibrium line and the dynamic properties
of the model are a function of the magnetic field h. For weak magnetic fields,
∣h∣ < ∣J∣, these properties are qualitatively the same, and therefore from now on we
set h= 0.5 for all the numerical calculations that are presented.

The equilibrium line, plotted in Fig. 5a, has the same qualitative shape as the
example given in section Example of a system with a Mpemba effect. In particular
the non-monotonicity of the equilibrium values of the magnetization as a function
of temperature, meq(T), which has a maximum at Tc is qualitatively the same.

Stability of the non-equilibrium state when quenched to a cold temperature.
To show that the phase-transition time tc is well defined, we perform Monte–Carlo
simulations on finite systems with different sizes, from which we measure
numerically the statistics of ~tc. We calculate ~tc in two ways corresponding to both
definitions given in Eqs. (5), (6)).

The numerical measurements are performed as follows. For each system size N,
we initiated each of the 3 × 104 realizations with a random spin configuration. This
is equivalent to sampling the system from the equilibrium associated with
Tinit=∞. Each realization is then evolved by a Monte–Carlo algorithm that
implements the Glauber dynamics with Tb= 0.2. Note that the model is stochastic
by its discrete nature, so no added noise is needed. The initial condition
corresponds to (seq(T=∞),meq(T=∞))= (0, 0), which is a stable point in the s
coordinate. By Eq. (22), for h= 0.5, Tb= 0.2, we find that the value of m which
separates the stable and unstable regions is given by mst(Tb= 0.2) ≈ 0.211 (see
Fig. 4). For each realization, we track the evolution of (s(t),m(t)) and we denote the
time in which the system crosses mst for the first time as the “phase transition time”
~tc. To compare between different system sizes we count ~tc in units of “Monte-Carlo
Sweep time”, namely the number of spins N. This calculation corresponds to the
average as given in Eq. (5).

For the alternative definition in Eq. (6), instead of considering the expression in
Eq. (22), we consider the expression

∂_sðtÞ
∂s

¼ 1
4Tb

1

cosh2 h�mðtÞþsðtÞ
Tb

 �þ 1

cosh2 h�mðtÞ�sðtÞ
Tb

 �
2
4

3
5� 1

2
ð23Þ

For each trajectory we record the smallest time t for which the above expression
vanishes—this is the time in which the trajectory crosses to the unstable region (see
Eq. (22)). We repeat the numerical experiment described above, namely We
average over 3 × 104 realizations for each system size to compare with the
measurements described in the previous paragraph.

Figure 6 shows the calculated mean and variance of ~tc for both calculations
described above. It can be seen that the mean is constant, whereas the variance
decreases with the system size. Moreover the two definitions provide very similar
results. Thus we conclude that the stochastic variable ~tc (defined either by Eq. (5),
or by Eq. (6)) is a measurable quantity which gives a finite non-zero time for the
crossing of the phase transition.

No Mpemba effect in the mean-field anti-ferromagnet. In order to contrast the
existence of the Mpemba effect in the example given in the main text, we point out
that in the mean-field anti-ferromagnet discussed in this section there is no
Mpemba effect. Indeed, by observing the equilibrium line in Fig. 5 it is seen that the
colder initial condition crosses the stability line before the hotter initial condition,
and so there is no Mpemba. For a concrete illustration we plot two stochastic

Fig. 4 Stability of the order parameter. The stability of the flow on the
symmetry line s= 0, ∂_s∂s js¼0;m given in Eq. (22) for h= 0.5, Tb= 0.2. The
green vertical line separates between the stable and the unstable regions.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01063-2 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:280 | https://doi.org/10.1038/s42005-022-01063-2 | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


trajectories, one starts at Thot
init ¼ 1 (red), and the other starts at Tcold

init ¼ 5 (blue).
Both trajectories flow at the same direction, and the colder one crosses the stability
line (green) first, which means that there is no Mpemba in this system.

Data availability
The datasets generated during the current study are available in the
MpembaPhaseTransitionsData repository, https://github.com/roiholtzman/
MpembaPhaseTransitionsData.
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