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Introduction 

In 1907 Edmund Landau [9] proved the reverse H61der inequality, i.e., if 
(x .y , )~=l~l  t for all sequences (x . )~IP( l<p<oo) ,  then (y.)el  q, where q is the 
conjugate exponent of p, In his original proof  he used the following Dini theo- 

rem: if a.__>O and Z a ~ =  oo then Z(a . / s . )=oe  and ~(ajs~+~)<oo for any e>O, 
1 1 1 s c  

where s. is the n-th partial sum. Now, if there were ~ ly . lq=oc ,  then by 
/ n 1 

/ 

the Dini theorem with x .=ly. lq-~ ~ lyk[ q we would have ( x . y . )~ l  1 but 

(x.)~l p. / k 1 

Today  everybody is able to prove the above result at once using the uniform 
boundedness principle or the form of linear continuous functionals on I p. Lan- 
dau's theorem belongs to the group of representation theorems of the K6the 
dual E x ( =  associate space in the other terminology) of a Banach function space 
E. The case E=LM(#) (i.e., E is an Orlicz space) was thoroughly investigated 
and it is well-known that EX=LM*(#) (see for example [14]), where M* denotes 
the conjugate function of M ( =  complementary function in the sense of Young). 
This fact was originally proved (for convex functions M) by Birnbaum and 
Orlicz [3]. The purpose of the paper is to present a direct short and elementary 
proof  of Birnbaum's and Orlicz's result and extend it to Orlicz spaces over 
atomless or counting measures and generated by finite-valued (not necessarily 
convex) functions. At the end of the paper  one can find an example of an 
Orlicz space LM(#) over purely atomic measure/~ and generated by non-convex 
function M such that its K6the dual is not isomorphic to any space of the 
form LM*(v). 

We refer readers interested in Orlicz spaces to [8, 11, 14]. 
Let (S, Z,/~) be a a-finite measure space. Moreover,  assume that M: [0, oo) 

--* [0, oo] is a non-decreasing function and M(0)=  0. 

* Current address: Department of Mathematics, LuleS. University of Technology, S-95187 Lule~, 
Sweden 
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If L ~ = L ~ (S, Z, #) denotes the space of Z-measurable functions (with the usual 
identification of functions equal #-almost everywhere) then 

L ~ (#) = { f~  L ~ :mM (r f )  = ~ M (r l f  (s) l) d # < ~ for some r > O} 
S 

is a linear subspace of the space L ~ (called the Orlicz space) and the functional 

11 f ]l = inf{a > O: raM(f/a) < a} 

is a monotone group semi-norm on the space LM(#), i.e., 1101 =0, II f+g] l  < 1If 11 
+ ]igll and ]f l  < Ig] #-almost everywhere implies ' f II < llgll. It is clear that the 
topology determined by I[ �9 H is Hausdorff iff M is not identically zero. Moreover, 
I]" Ii is an F-norm on LM(#) iff M is continuous at zero or M( r )=ov  for r>O. 
In papers devoted to Orlicz spaces authors usually assume that M is left continu- 
ous, continuous at zero, non-decreasing and M(O)=0. If M is convex continuous 
at zero and M~O, then the topology determined by Ii" ]l is equivalent to norm 
topology generated by ]]]flll = i n f { a > 0 :  mM(f/a)<--_ 1}. The F-norm ]1 " l] is always 
complete. 

We will often write L M instead of LM(/~) and l M when # is the counting 
measure on subsets of natural numbers, i.e., l M is an Orlicz sequence space. 

Let us distinguish the ideal L~ c /2  u consisting of elements with order continu- 
ous norm, i.e., L~={feLM: Ifl>f.+0 implies I1LII ~0}. If (S,) is a sequence 
of atoms of finite measure # such that g restricted to measurable subsets of 

S \  ~ S, is atomless, then 
n = l  

L~ = f e  LM: s u p p f  c S \ ~ S, and mM (r f ) <  oo for all r's 
n 

Gspan{ l s  :n~N},  

where ls,  is the characteristic function of the set S,. 
For  a function M we define the conjugate function M* of M by 

M * ( r ) = s u p { s r -  M(s): s>0},  

(we put x - - m  = -  ~ for every real number x). The function M* is always 
convex and left continuous. The notation M** means the function M** = (M*)*. 
After simple computations we obtain a useful inequality 

(,) M** (U* (u)/u) <= M* (u) 

(we understand M**(oc) as oe). We always have M * * <  M and M* = M***. 
Since we also consider Orlicz spaces LM(#) which are not Banach spaces 

let us quote the exact definition of the K&he dual (L M (/~))x = (Lu)x of L M (#): 

(LM)X = {geL~ Z, # ) : f .geLl ( I  ~) for all feL~(#)}.  

The space (LU) x is always a Banach space with respect to the norm 

]lg][ =sup{Hf'gllL~: raM(f) < 1}. 
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Main results 

Theorem 1 I f  a function M~-O is convex and left continuous on (0, oo) then 
(LM)~=L ~*. 

Proof. It is sufficient to prove  (lJ~)~cL M* because the reverse inclusion is a 
consequence of the inequali ty r s <__ M (r) + M* (s). 

Suppose  gEL ~ is such that  f . g ~ L  1 for all f ~ L  M. Therefore  g determines  
a cont inuous  linear functional  G on L M by the equali ty G ( f ) = ~ f . g d p .  Put  

c =  Ilall. s 

Let us consider two cases: 
1. M* (r) < oo for all r's. 

Define 

[ c + 1 {Iglstl] 
, ,  | ~  \ c ~ ]  for g(s)4=0, 

gols) = ~0 for g (s) = 0. 

There  is no loss of general i ty to assume M(u) is finite at some point  u > 0  
(if M ( r ) = o o  for r > 0  then (LM)Xc/ l l4*=L ~ and  we are done). It  is clear that  
the suppor t  of  L M equals S and so we can choose a sequence (S,) of  measurable  

sets with the following propert ies :  S, cS,+~, S= @ S,, 0 < p ( S . ) < o o  and 

go" Is. ~ku (see [7, p. 136, Corol la ry  I]) .  , - 1  
Since M is convex and left cont inuous  we have M = M * *  in virtue of the 

Fenche l -Moreau  theorem ([2, p. 86, T h e o r e m  1.4] or  [6, p. 186, Theo rem 1]) 
and therefore using inequali ty (.) we obta in  

 M,(Igl of]: S mM(g~ l s " )<  \ c + l ]  s, g~ lg(s) l (c+l)- ld#<~176 

because go l s e L  M. We claim m M ( g o ) < ~ .  If  mu(g0) were infinite then b =  
mu  (go l s , ) >  2 for some n in vir tue of m M(go Is,)I" m,u (go). Moreover ,  the convex-  
ity of  M implies b -1  [l[go ls,[l[ < 1 and  thus 

b :  mM (go is.)_-< ~ go (s)Ig(s)l (c + 1) - 'd /~  
so 

= b ( c +  1 ) - '  ~ (b-~go(s))Ig(s)l d # < b c ( c + l ) - ~ < b  
S.  

and we have got a contradict ion.  Therefore,  it has to be mM(go)<Oo which 
implies g e l  M*. 

2. There  exists ro > 0 such that  M* (r) < oo for r < ro and M* (r) = oo for r > ro. 
We  claim geL% Indeed,  let r>ro be fixed. We have 

oo =sup {sr-- M (s): s=>0} =sup {sr-- M (s): s>n} 

and so there is a sequence (s,) increasing to infinity with rs , -M(s , )>O,  i.e., 
M(s.)/s,<r. For  a number  s > 0  choose an index no such that  s<S,o .  Since 
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the function M (x)/x is non-decreasing we obtain M (s)/s < M (S,o)/S, o < r. Finally 
M(s) < rs. Hence L~c L M and this inclusion implies g e l  ~. Putting 

go(s)= for g(s) =0,  

where d - m a x ( c +  1, (llgll~ + 1)r- l ) ,  and repeating the arguments used in part 1 
we will also obtain g e l  M". 

Remark 1 Let us note that the method used in the first part of the proof is 
similar to that in [10, Theorem 4]. 

Theorem 2 I f  M #gO is finite-valued, left continuous, continuous at zero, non- 

decreasing and # is atomless, then (LM)X = L ~*. 

c / z  . The inequality M * * < M  implies Proof. We have only to prove (LMff ~* 
IA u c L M**. Let us consider two possibilities" 

1. There exists a positive number r with M** (r)> 0. 
Let gE(LM) x and let G be the functional determined by [gl, i.e., G ( f ) =  Yflgl d#. 

S 

This functional restricted to L~ remains continuous with respect to the topology 
z** induced from EA ([4, Theorem 2]). The support of L~ equals S, and so 
every positive function f E L  M** is the supremum of some increasing sequence 
(f,) of positive functions from L M. Since (f~) is z**-bounded and G is r**-continu- 
ous we have I fig] dot=sup y f~lgl dl~< 0% i.e., f . g e L  1 for all f ~ L  M**. Therefore 

S n S 

L ~*** /2u, g ~ L M*'* in virtue of Theorem 1 and we are done because = . 
2. M * * - 0 .  

In this situation M*(r )=  ~ for r>0 ,  i.e., LM*= {0}. Moreover, lim in fM(r) /r=O.  

The last equality gives (L~ff= {0} ([4, Corollary 1]). Finally (LM)~ = L M*. 

Remark 2 The assumption that # is atomless is essential. If M ( r ) = r v ( O < p <  1) 
then M* (r) = oo for r > 0 and the Orlicz sequence space l ~* is trivial, but (l;ff = l B. 

Now we will pay attention to the case of Orlicz sequence spaces fit. Let 
us recall that functions M and N are equivalent at zero if there exist positive 
constants a, b, c, d, x such that 

a M ( b u ) < N ( u ) < c M ( d u )  for u~[O,x].  

Since properties of a space I ~ are determined by the behaviour of M in 
a neighborhood of zero we can assume that M is finite-valued. 

Theorem 3 I f  M has all properties listed in Theorem 2, then (lM)X=l M~, where 

M ~  (u) = M(u)  for 0 <- u <- 1 and M ~  (u) = oc for u > 1. 

(The notation M *  means the conjugate function of M~ - not the function 
(M*)~), 

Proof. Let us consider two cases: 
1. M(u) = 0 iffu =0. 
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Denote by 1~ the convex minorant of the function M in the interval [0, 1], 
i.e., _ATl(t)<M(t) for all t~[0 ,1]  and if N is a convex function on [0, 1] and 
it satisfies N(t)<M(t) for te l0 ,  l] then N(t)<fl( t i  for all t e [0 ,1] .  Putting 
~ / ( u ) = ~  for u > l  we obtain that A) is convex on the half line [0, o9) and 
M<=M~. Thus A)__< M** and I M = I M ~ I M ~ I  ~. 

Let (y,) be a sequence of positive numbers belonging to (lM) ~. The functional 
:c) 

G defined on l~ by the formula G((x,))=~x,y ,  is continuous with respect to 
1 

the topology induced from l~ ~ (see [5, Theorem S.2]), and so it will remain 
continuous with respect to lhe topology induced from ,A because this topology 
is stronger. 

If O<x=(x(k))~W ~, then there exists a sequence (x,) of elements from IA M 
such that O<x,'rx. Since the sequence (x,) is bounded in the topology induced 

tM~** from oa , then c = s u p  Gfx, )<  oc. Using the famous Fatou lemma we will obtain 

c=~x(k)  y(k). Therefore (y~)E(/M~)~= lug*= l ,~  (the first equality follows from 
1 

Theorem 1), In other words (IM)~ l M*~. 
M~ x ~  M~ x C On the other hand the inclusion l M~ ~ l M~ gives I ' ~  =(l  ) (1 ) (/M) ~. 

Finally (IM) ~ = I M~. 
2. M([0,  t ] )= {0} for some t>O. 

It is obvious that IM=l ~, and so (lMp=I 1. The proof  will be finished if we 
show t M*~ = 11  . 

Suppose first t > l .  Under this assumption we have M*(u)=sup{uv 
- M ( v ) :  0<v_< 1} =u,  i.e., l~t%=l I . 

If t < 1 then M *  (u) > sup { u v - M (v): 0 -< v _< t} = t u. The convexity of the func- 
tion M*  implies M*~(u)<M*(I)u<u for ur 1]. Therefore M*, is equivalent 
at zero to the function N(u)=u and thus IM~=l ~ and we are done. 

Remark 3 If M (i) > 0 and lira inf M (u)/u > 0, then M*, [u) = M* (u) for u belonging 
u ~ o o  

to some neighborhood of zero and therefore 1M~ = W'. 
Indeed, supposing lira infM(u)/u>O we find numbers a > 0 ,  Vo> 1 such that 

M(v)/v>a for all V>Vo. Taking v~(1, vo) we have M(v)/v>M(1)/vo>O, and so 
inf{M(v)/v: v> l} >min(a,  M(1)/Vo)). The following inequalities are valid for 
u e [0, min (a, m (1)/vo)): 

M*(u)=sup {uv-- M(vl: v>O}=sup{uv- M (v):O<-v<-1} 

=sup{uv-M~(v): 0<_~<_ l} =sup{.v-M~(v):  v=>0} = M*~lu). 

The assumption M ( I ) > 0  is essential" if N(u )=0  for 0_<u_<2 and N(u)= 
u 2 - 4  for u>2 ,  then N*(u)>sup{uv--N(v): 0 < v _ < 2 ) = 2 u  and N*(u)=u, and 
so the functions N* and ~ are different, althogh they are equivalent at zero. 

Remark 4 If lim inf M(u)/u = 0 then M*(u)= ~o for u > 0. 
u ~ c r 3  

We can find a sequence {u,) tending to infinity such that (M(u,)/u,) converges 
to zero. Therefore, fixing r > 0  and taking sufficiently large n we will obtain 
m* (r) > u , ( r - ( m  (u,)/u,)) > 2- l ru,, i.e., m*( r )=  ~ .  
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Remark5 If l imin fM(u) /u=O (in particular, if M is concave) then IM~=I ~. 

Indeed, the inequality l imin fM(u) /u>O guarantees the existence of positive 
numbers c and Uo such that M(u) /u>c for 0 < u < u  0. Denoting co=inf{M(v): 

uo < v < 1 } we obtain M *  (u) = 0 for tt < rain (c, Co). Moreover  M*~ is not identically 
equal to zero. If there were M * ( u ) = 0  for u>0 ,  then we would have u v< M(v )  

for all u > 0  and all ve[0,  II,  In particular, u__<M(1) for all u and we have 
got a contradiction because we consider finite-valued functions only. Finally, 
the facts that M *  vanish in some neighborhood of zero but M *  is not identically 
zero imply l ~ =-1 ~. 

Remark 6 Theorem 3 (under slightly stronger assumptions about  M) was also 
proved (as a corollary of more general results) by M. Nowak  (see [12, Theo- 
rem 3.3]) but his proof  is more complicated. 

Let us note assumptions about  measures in Theorems 2 and 3 arc important.  
There exists an Orlicz space LM(g) over a purely atomic measure ~ with M 
non-convex such that the K6the dual (LM(/~)) ~ is not isomorphic to the space 
LM*(v) for any measure v. 

Theorem 4 Let M have all properties listed in Theorem 2 and suppose M satisfies 

the following conditions: M (u) = 0 iff u = 0, lira sup M (2 u)/u = oo and M** (u) = u. 
t l ~ o 9  

There exists a purely atomic measure # such that (LU(#)) ~ is not isomorphic to 

the space LM'(v) for any measure v. 

Proof Using [13, Theorem 1] we can choose a sequence (a,) of positive numbers 
such that defining the measure # on subsets of natural numbers by the formula 
#(A) = ~ a, we will have that L~(~,) is order isomorphic to l ~. Therefore (LM (#)) ~ 

n E A  

and l 1 are order isomorphic. If the spaces (LM(#)) ~ and LM*(v) were isomorphic 
for some measure v, then LM*(v) would be order isomorphic to I t on account 
of [1, Theorem5].  Thus by Theorem 1 the space LM**(v)=(LM*(v)) ~ would be 
order isomorphic to po, but this is impossible because M**(u)=u implies 
g M * ~  ~ -~ 

tv) = L 1 (v). 

Example of the function M satisfying the assumptions of Theorem 4. Let 

f2 .~ . -  1~,2 for odd n's 

a" =~2~"- 2~("- a~/2 + 1 for even n's 

~2.~.- 1~j2 + 1 for odd n's 

b. = ~,2~.+ 1~,2 for even n's. 

Define a function M by the formula 

M(u)={~.~.+ t~j2 
if 0_<u_< 1 

if a , < u < b , .  

It is easy to see that M is left continuous, continuous at zero, non-decreasing 
and M vanish only at zero. Putting u, = b 2 . - t  we get 2u.e(a2~ ben] and 

M(2u,) /M(u,)  = 22~ --* oc, i.e., lira sup M(2u)/u -- oe. 
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Suppose that  N is a convex funct ion  defined on [0, o0) satisfying the inequali-  

ty N ( u ) < M ( u ) f o r  all u's. If we show that N(u)<u,  then the funct ion M ( u ) = u  

will be the convex m i n o r a n t  of M on account  of the inequal i ty  u< M(u). There- 

fore M**(u)=u because M** is the greatest convex funct ion on [0, o0) not  
exceeding M. 

Assume first u > 2 .  Since u~[b2k-1, b2k+l] for some k then u=Cb2k-1 
(1 --c) bzk+ 1 for some ce[0 ,  11. Thus  

N(u) <= cN(b2k_ 1) + (1 - c) N(b2k + 1) <= cM(b2k-  1) + (1 - c) M(b2k + ,) 

:Cb2k-  1 -~( l  - -C)  b2k + 1 =U.  

If 1 < u < 2 then repeating the above a rguments  with 1 = bzk_ 1 and  2 = bzk + 
we ob ta in  N(u)<u.  Finally,  we have N(u)< M(u)=u  for 0_< u<  1. Thus  N(u)<u  
on the half  line and  we are done. 

Acknowledgement. The authors are grateful to Professor Marek Nawrocki who has explained 
the idea of construction of the function M in the above example. 
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