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Introduction

In 1907 Edmund Landau [9] proved the reverse Holder inequality, ie., if
(x, v 1 elt for all sequences (x,)el?(1 <p< o), then (y,)el9, where ¢ is the
conjugate exponent of p. In his original proof he used the following Dini theo-

rem: if ,20 and Y a,=co then Y (a,/s,)=00 and ) (a,/s) "% < oo for any £>0,
1 1 1 el

where s, is the n-th partial sum. Now, if there were ) |y,|?=cc, then by

jn 1

the Dini theorem with x,,:ly,,lq“‘/f/ Y [yl we would have (x,y,)¢!' but
(x)el”. D=1

Today everybody is able to prove the above result at once using the uniform
boundedness principle or the form of linear continuous functionals on [?. Lan-
dau’s theorem belongs to the group of representation theorems of the Kothe
dual E* (=associate space in the other terminology) of a Banach function space
E. The case E=IM(u) (i.e, E is an Orlicz space) was thoroughly investigated
and it is well-known that E¥= IM"(u) (see for example [14]), where M* denotes
the conjugate function of M (=complementary function in the sense of Young).
This fact was originally proved (for convex functions M) by Birnbaum and
Orlicz [3]. The purpose of the paper is to present a direct short and elementary
proof of Birnbaum’s and Orlicz’s result and extend it to Orlicz spaces over
atomless or counting measures and generated by finite-valued (not necessarily
convex) functions. At the end of the paper one can find an example of an
Orlicz space IM(u) over purely atomic measure u and generated by non-convex
function M such that its Koéthe dual is not isomorphic to any space of the
form IM*(v).

We refer readers interested in Orlicz spaces to [8, 11, 14].

Let (S, Z, ) be a o-finite measure space. Moreover, assume that M: [0, oo)
—[0, o] is a non-decreasing function and M(0)=0.
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If I9=1I°(S, %, 1) denotes the space of Z-measurable functions (with the usual
identification of functions equal u-almost everywhere) then

M(u)={fel’:myu@ )= M(|f(s))du<oo forsomer>0}

is a linear subspace of the space L (called the Orlicz space) and the functional

| £ =inf{a>0: my(f/a)<a)

is a monotone group semi-norm on the space LM (u), ie., |0/ =0, | f+gl <[]
+ig| and |f|<g| p-almost everywhere implies | /| < |gll. It is clear that the
topology determined by | - || is Hausdorff iff M is not identically zero. Moreover,
| < |t is an F-norm on IM(yu) iff M is continuous at zero or M(r)=cc for r>0.
In papers devoted to Orlicz spaces authors usually assume that M is left continu-
ous, continuous at zero, non-decreasing and M (0)=0. If M is convex continuous
at zero and M =0, then the topology determined by | - || is equivalent to norm
topology generated by ||| f]|| =inf{a>0:my (f/a)<1}. The F-norm | - || is always
complete.

We will often write IM instead of IM(u) and ™ when u is the counting
measure on subsets of natural numbers, ie., I™ is an Orlicz sequence space.

Let us distinguish the ideal I = IM consisting of elements with order continu-
ous norm, i.e, IM={fel™:|f|=f,10 implies | f,| —0}. If (§,) is a sequence
of atoms of finite measure u such that u restricted to measurable subsets of

S\ U S, is atomless, then

n=1

Lﬁ:{feLM:suppch\US,, and my,(r /)< oo for all r’s}

@span{lg :neN},

where 1g_is the characteristic function of the set S,.
For a function M we define the conjugate function M* of M by

M*(r)=sup{sr—M(s):s=0},

(we put x—oo=—co for every real number x). The function M* is always
convex and left continuous. The notation M** means the function M** =(M*)*.
After simple computations we obtain a useful inequality

(*) M= (M* (w)/u) < M* (1)

(we understand M**(cc) as o0). We always have M** <M and M* = M***.
Since we also consider Orlicz spaces IM(u) which are not Banach spaces
let us quote the exact definition of the Kdthe dual (IM (u))* = (LM)* of LY (u):

(LMY = {ge [2(S, %, - [-geL (o) for all feI¥ (w)}.
The space (IM)* is always a Banach space with respect to the norm

lgll=sup{ll f-gllL: mu(IZ1].
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Main results

Theorem 1 If a function M=£0 is convex and left continuous on (0, co) then
(LM)x: LM".
Proof. 1t is sufficient to prove (IM*<IM" because the reverse inclusion is a
consequence of the inequality rs < M (r) + M*(s).

Suppose gel? is such that f-gel' for all feIM. Therefore g determines
a continuous linear functional G on IM by the equality G(f)= | f-gdu. Put
c=G]. S

Let us consider two cases:
1. M*(r)< oo for all r's.

Define
ﬂM*('“”') for g(s)+0,
0( ):

g (s)l c+1
0 for g(s)=0.

There is no loss of generality to assume M (u) is finite at some point u>0
(Gf M(r)=o0 for r>0 then (IM*cIM*=1" and we are done). It is clear that
the support of I equals § and so we can choose a sequence (S,) of measurable

sets with the following properties: S,=S,,, S=JS,, O<u(S,) <o and
go-ls € LM (see [7, p. 136, Corollary 1]). n=1

Since M is convex and left continuous we have M = M** in virtue of the
Fenchel-Moreau theorem ([2, p. 86, Theorem 1.4] or [6, p. 186, Theorem 17)
and therefore using inequality (*) we obtain

My (8o L) < Miyp (%%)=J 20(9) (S (c+ ) dp< oo

because gy 15, €M We claim my(go) <oo. If my(go) were infinite then b=
My (go 1s,)> 2 for some n in virtue of my, (g, 15,) Tmy(go). Moreover, the convex-
ity of M mmplies b~ "|||go 15,//| <1 and thus

b=my(go1s)< | go(8) gl (c+1) " dn

Sn

=ble+1)7" [ (b7 go(s) g dusbe(c+1)" <b

and we have got a contradiction. Therefore, it has to be my(go) < oo which
implies ge IM".

2. There exists r,>0 such that M*(r) < oo for r<ry and M*(r)= o0 for r>r,.
We claim ge L*. Indeed, let r>r, be fixed. We have

00 =sup{sr—M(s): s=0} =sup {sr—M(s): s>n}

and so there is a sequence (s,) increasing to infinity with rs,—M(s,)>0, ie.,
M(s,)/s,<r. For a number s>0 choose an index n, such that s<s,,. Since
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the function M (x)/x is non-decreasing we obtain M (s)/s < M (s,,)/s,, <r. Finally
M(s)<rs. Hence L' < I and this inclusion implies ge L. Putting

d « (18
) IgmM (T) for g(s)%0

8= for g(s)=0,

where d=max(c+1, (gl +1)#™"), and repeating the arguments used in part 1
we will also obtain ge ™.

Remark 1 Let us note that the method used in the first part of the proof is
similar to that in [10, Theorem 4].

Theorem 2 If M =0 is finite-valued, left continuous, continuous at zero, non-
decreasing and u is atomless, then (IM)*=1M".

Proof. We have only to prove (IM*<IM*. The inequality M**<M implies
IMc [, Let us consider two possibilities:
1. There exists a positive number r with M**(r) > 0.
Let ge(IMy* and let G be the functional determined by [g|, i.e., G(f)= | f|gldp.
s

This functional restricted to I™ remains continuous with respect to the topology

t** induced from IM"([4, Theorem 2]). The support of I equals S, and so

every positive function feIM™ is the supremum of some increasing sequence

(f,) of positive functions from I™. Since (f,) is t**-bounded and G is t**-continu-

ous we have | flgldu=sup | f,lg|du<oo, ie., f-geL' for all fe M. Therefore
S n S

geIM™ in virtue of Theorem 1 and we are done because IM™ = [M",
2. M**=0.
In this situation M*(r)=cc for r>0, i.e., IM" ={0}. Moreover, lim inf M (r)/r=0.

r— o

The last equality gives (IM)*= {0} ([4, Corollary 1]). Finally (IMy*= ™",

Remark 2 The assumption that p is atomless is essential. If M(r)=r’(O<p<1)
then M*(r)= oo for r>0 and the Orlicz sequence space ™" is trivial, but (IP)*=1[*.

Now we will pay attention to the case of Orlicz sequence spaces ™. Let
us recall that functions M and N are equivalent at zero if there exist positive
constants q, b, ¢, d, x such that

aM(bu)sNwcM(du) for uel0, x].
Since properties of a space I™ are determined by the behaviour of M in
a neighborhood of zero we can assume that M is finite-valued.

Theorem 3 If M has all properties listed in Theorem 2, then (IM)*=I["% where
M (w)=M(u) for0fuzland M (W)= foru>1.

{The notation M?¥ means the conjugate function of M — not the function
(M*)y,).

Proof. Let us consider two cases:
1. Mw)=0iff u=0.
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Denote by M the convex minorant of the function M in the interval [0, 1],
ie, M()=<M() for all te[0,1] and if N is a convex function on [0,1] and
it satisfies N(t)<M(t) for te[0, 1] then N()<M(1) for all te[0, 1]. Putting
M(u)=co for u>1 we obtain that M is convex on the half line [0, «o) and
M<M_.Thus M<M** and IM=IM MM,

Let (y,) be a sequence of positive numbers belonging to (/*)*. The functional

G defined on IY by the formula G((x,)=) x, y, is continuous with respect to
1

the topology induced from % (see [5, Theorem 5.1]), and so it will remain
continuous with respect to the topology induced from I%* because this topology
is stronger.

If 0<x=(x(k))el™%, then there exists a sequence (x,) of elements from [¥
such that 0<x,7x. Since the sequence (x,) is bounded in the topology induced
from %%, then ¢ =sup G{x,) < oc. Using the famous Fatou lemma we will obtain

c=) x(k) y(k). Therefore (y,)e(IM¥)*=IM%" =M% (the first equality follows from
1

Theorem 1). In other words (M)* < [M%,

On the other hand the inclusion [M= < [M¥ gjves [M% = (M) < (JM=)* = (IM)*.

Finally (I™)* = [M%,

2. M([0, t])={0} for some ¢ >0.

It is obvious that /M =[®, and so (IMy*=I'. The proof will be finished if we
show M% =],

Suppose first t=1. Under this assumption we have M¥ (u)=sup{uv
—M(@): 0201} =y, ie, Me=]"

If t <1 then M¥ (u)Zsup{uv— M (v): 0= v =<t} =tu. The convexity of the func-
tion M* implies M* (u) S M* (1)u=<u for ue[0, 1]. Therefore M¥ is equivalent
at zero to the function N (u)=u and thus /¥ =/' and we are done.

Remark 3 If M(1)>0 and lim inf M (u)/u >0, then M¥ (u)= M*(u) for u belonging
to some neighborhood of zero and therefore M= =",
Indeed, supposing lim inf M (u)/u>0 we find numbers a>0, vy >1 such that

M (v)/v>a for all v=v,. Taking ve(l,vy) we have M (v)/v =M (1)/v,>0, and so
inf{M (v)/v: v>1} Zmin(a, M(1)/v,)). The following inequalities are valid for
uel0, min(a, M (1)/vy)):

M*(u)=sup{uv—M(v):v20} =sup{ur—M(@v):0sv=1}
=sup{uv—M  (v):0=5v=1}=sup{uv—M . (v): v=20} = M* (u).

The assumption M(1)>0 is essential: if N(u)=0 for 0<Lu<2 and N(u)=
u?—4 for u>2, then N*(u)=sup{uv—N({): 0=v<2}=2u and N}(u)=u, and
so the functions N* and N* are different, althogh they are equivalent at zero.

Remark 4 If lim inf M (u)/u=0 then M*{u)= o0 for u>0.

u—

We can find a sequence (u,) tending to infinity such that (M (u,)/u,) converges
to zero. Therefore, fixing r>0 and taking sufficiently large n we will obtain
M*(r) 2 u, (r— (M (w,)/u) 227 'ruy, ie., M*(r)= 0.



62 L. Maligranda and W. Wnuk

Remark 5 If liminf M (u)/u=0 (in particular, if M is concave) then M%=[®,
Indeed, the inequality lim inf M (1)/u>0 guarantees the existence of positive
numbers ¢ and u, such that M(u)/u>c for 0<u<u,. Denoting ¢y =inf{M (v):
uo<v < 1} we obtain M¥ (u)=0for u<min(c, ¢,). Moreover M% is not identically
equal to zero. If there were M¥ (1) =0 for u>0, then we would have uv< M(v)
for all u>0 and all ve[0,1]. In particular, u<M(1) for all u and we have
got a contradiction because we consider finite-valued functions only. Finally,
the facts that M¥ vanish in some neighborhood of zero but M¥ is not identically
zero imply M= =],

Remark 6 Theorem 3 (under slightly stronger assumptions about M) was also
proved (as a corollary of more general results) by M. Nowak (see [12, Theo-
rem 3.37]) but his proof is more complicated.

Let us note assumptions about measures in Theorems 2 and 3 are important.
There exists an Orlicz space IM(u) over a purely atomic measure p with M
non-convex such that the Kdthe dual (IM(u)* is not isomorphic to the space
IM*(v) for any measure v.

Theorem 4 Let M have all properties listed in Theorem 2 and suppose M satisfies
the following conditions: M (u)=0 iff u=0, lim sup M (2u)/u= o0 and M**(u)=u.
u—*

There exists a purely atomic measure p such that (IM(u)* is not isomorphic to
the space 1M (v) for any measure v.

Proof. Using [13, Theorem 1] we can choose a sequence (a,) of positive numbers
such that defining the measure p on subsets of natural numbers by the formula
u(A)= > a, we will have that LM () is order isomorphic to [*. Therefore (L (u))*
neA

and I' are order isomorphic. If the spaces (I (u))* and IM*(v) were isomorphic
for some measure v, then LM*(v) would be order isomorphic to I' on account
of [1, Theorem5]. Thus by Theorem 1 the space IM™(v)=(IM"(v))* would be
order isomorphic to [*, but this is impossible because M**(u)=u implics
IM* ()= L(v).

Example of the function M satisfying the assumptions of Theorem 4. Let

2nin=1)2 for odd n’s

a, = _ — 3
200241 for evenn’s

b mn= D2 4 1 for odd n’s
T 2002 for evenn’s.

Define a function M by the formula

u if 0Su=sl
M(u)={2,,(,.+1)/2 if a,<u<b,.

It is easy to see that M is left continuous, continuous at zero, non-decreasing
and M vanish only at zero. Putting u,=b,,_., we get 2u,e(a,, b,,} and

MQ2u,)/M(u,)=2>"— oo, ie., lim sup M (2u)/u=c0.

U=
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Suppose that N is a convex function defined on [0, o) satisfying the inequali-
ty N(u)< M(u) for all w’s. If we show that N(u)<u, then the function M(u)=u
will be the convex minorant of M on account of the inequality u < M (u). There-
fore M**(u)=u because M** is the greatest convex function on [0, cv) not
exceeding M.

Assume first u=2. Since uel[b,,_, baxs,] for some k then u=ch,,_,
(1—c)bsy 4, for some ce[0, 1]. Thus

NWEcNby- 1) I~ Nbyys )M by 1)+ (1 —c) M(bays )
=chy— 1 +(1=0) by =u

If 1 <u<2 then repeating the above arguments with 1 =b,,_, and 2=b,, .,
we obtain N () u. Finally, we have N(w)S M(u)=u for 0Su=<1. Thus N(w)Su
on the half line and we are done.

Acknowledgement. The authors are grateful to Professor Marek Nawrocki who has explained
the idea of construction of the function M in the above example.
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