

© Springer-verlag 1991

Landau type theorem for Orlicz spaces

Lech Maligranda^{1,*} and Witold Wnuk²

 ¹ Departamento de Matemáticas, IVIC, Apartado 21827, Caracas 1020-A, Venezuela
² Institute of Mathematics, Polish Academy of Sciences, Mielżyńskiego 27/29, 61-725 Poznań, Poland

Received June 14, 1990; in final form February 25, 1991

Introduction

In 1907 Edmund Landau [9] proved the reverse Hölder inequality, i.e., if $(x_n y_n)_{n=1}^{\infty} \in l^1$ for all sequences $(x_n) \in l^p (1 , then <math>(y_n) \in l^q$, where q is the conjugate exponent of p. In his original proof he used the following Dini theorem: if $a_n \ge 0$ and $\sum_{1}^{\infty} a_n = \infty$ then $\sum_{1}^{\infty} (a_n/s_n) = \infty$ and $\sum_{1}^{\infty} (a_n/s_n^{1+\varepsilon}) < \infty$ for any $\varepsilon > 0$, where s_n is the n-th partial sum. Now, if there were $\sum_{1}^{\infty} |y_n|^q = \infty$, then by the Dini theorem with $x_n = |y_n|^{q-1} / \sum_{k=1}^{n} |y_k|^q$ we would have $(x_n y_n) \notin l^1$ but $(x_n) \in l^p$.

Today everybody is able to prove the above result at once using the uniform boundedness principle or the form of linear continuous functionals on l^p . Landau's theorem belongs to the group of representation theorems of the Köthe dual E^x (=associate space in the other terminology) of a Banach function space E. The case $E = L^M(\mu)$ (i.e., E is an Orlicz space) was thoroughly investigated and it is well-known that $E^x = L^{M^*}(\mu)$ (see for example [14]), where M^* denotes the conjugate function of M (=complementary function in the sense of Young). This fact was originally proved (for convex functions M) by Birnbaum and Orlicz [3]. The purpose of the paper is to present a direct short and elementary proof of Birnbaum's and Orlicz's result and extend it to Orlicz spaces over atomless or counting measures and generated by finite-valued (not necessarily convex) functions. At the end of the paper one can find an example of an Orlicz space $L^M(\mu)$ over purely atomic measure μ and generated by non-convex function M such that its Köthe dual is not isomorphic to any space of the form $L^{M^*}(v)$.

We refer readers interested in Orlicz spaces to [8, 11, 14].

Let (S, Σ, μ) be a σ -finite measure space. Moreover, assume that $M: [0, \infty) \rightarrow [0, \infty]$ is a non-decreasing function and M(0)=0.

^{*} Current address: Department of Mathematics, Luleå University of Technology, S-95187 Luleå, Sweden

If $L^0 = L^0(S, \Sigma, \mu)$ denotes the space of Σ -measurable functions (with the usual identification of functions equal μ -almost everywhere) then

$$L^{M}(\mu) = \{ f \in L^{0} : m_{M}(rf) = \int_{S} M(r | f(s)|) d\mu < \infty \text{ for some } r > 0 \}$$

is a linear subspace of the space L^0 (called the *Orlicz space*) and the functional

$$\| f \| = \inf \{ a > 0 : m_M(f/a) \leq a \}$$

is a monotone group semi-norm on the space $L^{M}(\mu)$, i.e., $\|0\| = 0$, $\|f+g\| \leq \|f\|$ + ||g|| and $||f| \leq |g|| \mu$ -almost everywhere implies $||f|| \leq ||g||$. It is clear that the topology determined by $\|\cdot\|$ is Hausdorff iff M is not identically zero. Moreover, $\|\cdot\|$ is an F-norm on $L^{M}(\mu)$ iff M is continuous at zero or $M(r) = \infty$ for r > 0. In papers devoted to Orlicz spaces authors usually assume that M is left continuous, continuous at zero, non-decreasing and M(0) = 0. If M is convex continuous at zero and $M \neq 0$, then the topology determined by $\|\cdot\|$ is equivalent to norm topology generated by $||| f ||| = \inf\{a > 0: m_M(f/a) \le 1\}$. The F-norm $|| \cdot ||$ is always complete.

We will often write L^{M} instead of $L^{M}(\mu)$ and l^{M} when μ is the counting measure on subsets of natural numbers, i.e., l^{M} is an Orlicz sequence space.

Let us distinguish the ideal $L_A^M \subset L^M$ consisting of elements with order continuous norm, i.e., $L_A^M = \{f \in L^M : |f| \ge f_n \downarrow 0 \text{ implies } ||f_n|| \to 0\}$. If (S_n) is a sequence of atoms of finite measure μ such that μ restricted to measurable subsets of $S \setminus \bigcup S_n$ is atomless, then

n = 1

$$L_{A}^{M} = \left\{ f \in L^{M}: \operatorname{supp} f \subset S \setminus \bigcup_{n}^{\infty} S_{n} \text{ and } m_{M}(rf) < \infty \text{ for all } r's \right\}$$
$$\bigoplus \overline{\operatorname{span}} \{ 1_{S_{n}}: n \in N \},$$

where 1_{S_n} is the characteristic function of the set S_n . For a function M we define the *conjugate function* M^* of M by

$$M^*(r) = \sup \{sr - M(s) \colon s \ge 0\},\$$

(we put $x - \infty = -\infty$ for every real number x). The function M^* is always convex and left continuous. The notation M^{**} means the function $M^{**} = (M^*)^*$. After simple computations we obtain a useful inequality

(*)
$$M^{**}(M^{*}(u)/u) \leq M^{*}(u)$$

(we understand $M^{**}(\infty)$ as ∞). We always have $M^{**} \leq M$ and $M^* = M^{***}$.

Since we also consider Orlicz spaces $L^{M}(\mu)$ which are not Banach spaces let us quote the exact definition of the Köthe dual $(L^{M}(\mu))^{x} = (L^{M})^{x}$ of $L^{M}(\mu)$:

$$(L^{\mathcal{M}})^{x} = \{g \in L^{0}(S, \Sigma, \mu) : f \cdot g \in L^{1}(\mu) \text{ for all } f \in L^{\mathcal{M}}(\mu)\}$$

The space $(L^M)^x$ is always a Banach space with respect to the norm

$$||g|| = \sup \{ ||f \cdot g||_{L^1} : m_M(f) \leq 1 \}$$

Landau type theorem

Main results

Theorem 1 If a function $M \equiv 0$ is convex and left continuous on $(0, \infty)$ then $(L^M)^x = L^{M^*}$.

Proof. It is sufficient to prove $(L^M)^x \subset L^{M^*}$ because the reverse inclusion is a consequence of the inequality $rs \leq M(r) + M^*(s)$.

Suppose $g \in L^0$ is such that $f \cdot g \in L^1$ for all $f \in L^M$. Therefore g determines a continuous linear functional G on L^M by the equality $G(f) = \int_S f \cdot g \, d\mu$. Put c = ||G||.

Let us consider two cases:

1. $M^*(r) < \infty$ for all r's.

Define

$$g_{0}(s) = \begin{cases} \frac{c+1}{|g(s)|} M^{*} \left(\frac{|g(s)|}{c+1}\right) & \text{for } g(s) \neq 0, \\ 0 & \text{for } g(s) = 0. \end{cases}$$

There is no loss of generality to assume M(u) is finite at some point u > 0(if $M(r) = \infty$ for r > 0 then $(L^M)^x \subset LM^* = L^0$ and we are done). It is clear that the support of L^M equals S and so we can choose a sequence (S_n) of measurable

sets with the following properties: $S_n \subset S_{n+1}$, $S = \bigcup_{n=1}^{\infty} S_n$, $0 < \mu(S_n) < \infty$ and $g_0 \cdot 1_{S_n} \in L^M$ (see [7, p. 136, Corollary 1]).

Since M is convex and left continuous we have $M = M^{**}$ in virtue of the Fenchel-Moreau theorem ([2, p. 86, Theorem 1.4] or [6, p. 186, Theorem 1]) and therefore using inequality (*) we obtain

$$m_{M}(g_{0} 1_{S_{n}}) \leq m_{M^{*}}\left(\frac{|g(\cdot)|}{c+1}\right) = \int_{S_{n}} g_{0}(s) |g(s)| (c+1)^{-1} d\mu < \infty$$

because $g_0 1_{S_n} \in L^M$. We claim $m_M(g_0) < \infty$. If $m_M(g_0)$ were infinite then $b = m_M(g_0 1_{S_n}) > 2$ for some *n* in virtue of $m_M(g_0 1_{S_n}) \uparrow m_M(g_0)$. Moreover, the convexity of *M* implies $b^{-1} |||g_0 1_{S_n}|| \leq 1$ and thus

$$b = m_M(g_0 \ 1_{S_n}) \leq \int_{S_n} g_0(s) |g(s)| (c+1)^{-1} d\mu$$

= $b(c+1)^{-1} \int_{S_n} (b^{-1} g_0(s)) |g(s)| d\mu \leq b c(c+1)^{-1} < b$

and we have got a contradiction. Therefore, it has to be $m_M(g_0) < \infty$ which implies $g \in L^{M^*}$.

2. There exists $r_0 > 0$ such that $M^*(r) < \infty$ for $r < r_0$ and $M^*(r) = \infty$ for $r > r_0$. We claim $g \in L^{\infty}$. Indeed, let $r > r_0$ be fixed. We have

$$\infty = \sup \{sr - M(s): s \ge 0\} = \sup \{sr - M(s): s > n\}$$

and so there is a sequence (s_n) increasing to infinity with $rs_n - M(s_n) > 0$, i.e., $M(s_n)/s_n < r$. For a number s > 0 choose an index n_0 such that $s < s_{n_0}$. Since

the function M(x)/x is non-decreasing we obtain $M(s)/s \leq M(s_{n_0})/s_{n_0} < r$. Finally $M(s) \leq rs$. Hence $L^1 \subset L^M$ and this inclusion implies $g \in L^\infty$. Putting

$$g_0(s) = \begin{cases} \frac{d}{|g(s)|} M^* \left(\frac{|g(s)|}{d}\right) & \text{for } g(s) \neq 0\\ 0 & \text{for } g(s) = 0, \end{cases}$$

where $d = \max(c+1, (\|g\|_{\infty} + 1)r^{-1})$, and repeating the arguments used in part 1 we will also obtain $g \in L^{M^*}$.

Remark 1 Let us note that the method used in the first part of the proof is similar to that in [10, Theorem 4].

Theorem 2 If $M \not\equiv 0$ is finite-valued, left continuous, continuous at zero, nondecreasing and μ is atomless, then $(L^M)^x = L^{M^*}$.

Proof. We have only to prove $(L^M)^x \subset L^{M^*}$. The inequality $M^{**} \leq M$ implies $L^M \subset L^{M^{**}}$. Let us consider two possibilities:

1. There exists a positive number r with $M^{**}(r) > 0$.

Let $g \in (L^M)^x$ and let G be the functional determined by |g|, i.e., $G(f) = \int_{S} f|g| d\mu$.

This functional restricted to L_A^M remains continuous with respect to the topology τ^{**} induced from $L_A^{M^{**}}([4, \text{ Theorem 2}])$. The support of L_A^M equals S, and so every positive function $f \in L^{M^{**}}$ is the supremum of some increasing sequence (f_n) of positive functions from L_A^M . Since (f_n) is τ^{**} -bounded and G is τ^{**} -continuous we have $\int_{S} f|g| d\mu = \sup_{n} \int_{S} f_n|g| d\mu < \infty$, i.e., $f \cdot g \in L^1$ for all $f \in L^{M^{**}}$. Therefore

 $g \in L^{M^{***}}$ in virtue of Theorem 1 and we are done because $L^{M^{***}} = L^{M^*}$. 2. $M^{***} \equiv 0$.

In this situation $M^*(r) = \infty$ for r > 0, i.e., $L^{M^*} = \{0\}$. Moreover, $\liminf_{r \to \infty} M(r)/r = 0$.

The last equality gives $(L^M)^x = \{0\}$ ([4, Corollary 1]). Finally $(L^M)^x = L^{M^*}$.

Remark 2 The assumption that μ is atomless is essential. If $M(r) = r^p (0 then <math>M^*(r) = \infty$ for r > 0 and the Orlicz sequence space l^{M^*} is trivial, but $(l^p)^x = l^\infty$.

Now we will pay attention to the case of Orlicz sequence spaces l^{M} . Let us recall that functions M and N are equivalent at zero if there exist positive constants a, b, c, d, x such that

$$aM(bu) \leq N(u) \leq cM(du)$$
 for $u \in [0, x]$.

Since properties of a space l^M are determined by the behaviour of M in a neighborhood of zero we can assume that M is *finite-valued*.

Theorem 3 If M has all properties listed in Theorem 2, then $(l^M)^x = l^{M_{\infty}^*}$, where $M_{\infty}(u) = M(u)$ for $0 \le u \le 1$ and $M_{\infty}(u) = \infty$ for u > 1.

(The notation M_{∞}^* means the conjugate function of M_{∞} – not the function $(M^*)_{\infty}$).

Proof. Let us consider two cases:

1. M(u) = 0 iff u = 0.

Denote by \hat{M} the convex minorant of the function M in the interval [0, 1], i.e., $\hat{M}(t) \leq M(t)$ for all $t \in [0, 1]$ and if N is a convex function on [0, 1] and it satisfies $N(t) \leq M(t)$ for $t \in [0, 1]$ then $N(t) \leq \hat{M}(t)$ for all $t \in [0, 1]$. Putting $\hat{M}(u) = \infty$ for u > 1 we obtain that \hat{M} is convex on the half line $[0, \infty)$ and $\hat{M} \leq M_{\infty}$. Thus $\hat{M} \leq M_{\infty}^{**}$ and $l^{M} = lM_{\infty} \subset l^{M_{\infty}^{**}} \subset l^{\hat{M}}$.

Let (y_n) be a sequence of positive numbers belonging to $(l^M)^x$. The functional G defined on l_A^M by the formula $G((x_n)) = \sum_{n=1}^{\infty} x_n y_n$ is continuous with respect to

the topology induced from $l_A^{\hat{M}}$ (see [5, Theorem 5.1]), and so it will remain continuous with respect to the topology induced from $l_A^{M^{**}_{\infty}}$ because this topology is stronger.

If $0 < x = (x(k)) \in l^{M_{\infty}^{**}}$, then there exists a sequence (x_n) of elements from l_A^M such that $0 \le x_n \uparrow x$. Since the sequence (x_n) is bounded in the topology induced from $l_A^{M_{\infty}^{**}}$, then $c = \sup G(x_n) < \infty$. Using the famous Fatou lemma we will obtain

 $c = \sum_{1}^{\infty} x(k) y(k)$. Therefore $(y_n) \in (l^{M_{\infty}^{**}})^x = l^{M_{\infty}^{**}} = l^{M_{\infty}^{*}}$ (the first equality follows from

Theorem 1). In other words $(l^M)^x \subset l^{M^*_{\infty}}$.

On the other hand the inclusion $l^{M_{\infty}} \subset l^{M_{\infty}^{**}}$ gives $l^{M_{\infty}^{*}} = (l^{M_{\infty}^{**}})^x \subset (l^{M_{\infty}})^x \subset (l^M)^x$. Finally $(l^M)^x = l^{M_{\infty}^{*}}$.

2. $M([0, t]) = \{0\}$ for some t > 0.

It is obvious that $l^M = l^{\infty}$, and so $(l^M)^x = l^1$. The proof will be finished if we show $l^{M^*_{\infty}} = l^1$.

Suppose first $t \ge 1$. Under this assumption we have $M_{\infty}^{*}(u) = \sup \{uv - M(v): 0 \le v \le 1\} = u$, i.e., $l^{M_{\infty}^{*}} = l^{1}$.

If t < 1 then $M_{\infty}^{*}(u) \ge \sup \{uv - M(v): 0 \le v \le t\} = tu$. The convexity of the function M_{∞}^{*} implies $M_{\infty}^{*}(u) \le M_{\infty}^{*}(1) u \le u$ for $u \in [0, 1]$. Therefore M_{∞}^{*} is equivalent at zero to the function N(u) = u and thus $l^{M_{\infty}^{**}} = l^{1}$ and we are done.

Remark 3 If M(1) > 0 and $\liminf_{u \to \infty} M(u)/u > 0$, then $M_{\infty}^{*}(u) = M^{*}(u)$ for u belonging

to some neighborhood of zero and therefore $l^{M_{\infty}^{*}} = l^{M^{*}}$.

Indeed, supposing $\liminf_{u \to \infty} M(u)/u > 0$ we find numbers a > 0, $v_0 > 1$ such that

M(v)/v > a for all $v \ge v_0$. Taking $v \in (1, v_0)$ we have $M(v)/v \ge M(1)/v_0 > 0$, and so $\inf\{M(v)/v: v > 1\} \ge \min(a, M(1)/v_0)$. The following inequalities are valid for $u \in [0, \min(a, M(1)/v_0))$:

$$M^{*}(u) = \sup \{uv - M(v): v \ge 0\} = \sup \{uv - M(v): 0 \le v \le 1\}$$

= sup { $uv - M_{\infty}(v): 0 \le v \le 1$ } = sup { $uv - M_{\infty}(v): v \ge 0$ } = $M^{*}_{\infty}(u)$.

The assumption M(1)>0 is essential: if N(u)=0 for $0 \le u \le 2$ and $N(u)=u^2-4$ for u>2, then $N^*(u) \ge \sup \{uv - N(v): 0 \le v \le 2\} = 2u$ and $N^*_{\infty}(u) = u$, and so the functions N^* and N^*_{∞} are different, although they are equivalent at zero. Remark 4 If $\liminf_{u\to\infty} M(u)/u = 0$ then $M^*(u) = \infty$ for u>0.

We can find a sequence (u_n) tending to infinity such that $(M(u_n)/u_n)$ converges to zero. Therefore, fixing r > 0 and taking sufficiently large *n* we will obtain $M^*(r) \ge u_n(r - (M(u_n)/u_n)) \ge 2^{-1}ru_n$, i.e., $M^*(r) = \infty$.

Remark 5 If $\liminf M(u)/u=0$ (in particular, if M is concave) then $l^{M_{\infty}} = l^{\infty}$. Indeed, the inequality $\liminf M(u)/u>0$ guarantees the existence of positive numbers c and u_0 such that M(u)/u>c for $0 < u \le u_0$. Denoting $c_0 = \inf\{M(v): u_0 \le v \le 1\}$ we obtain $M_{\infty}^*(u) = 0$ for $u < \min(c, c_0)$. Moreover M_{∞}^* is not identically equal to zero. If there were $M_{\infty}^*(u)=0$ for u>0, then we would have $uv \le M(v)$ for all u>0 and all $v \in [0, 1]$. In particular, $u \le M(1)$ for all u and we have got a contradiction because we consider finite-valued functions only. Finally, the facts that M_{∞}^* vanish in some neighborhood of zero but M_{∞}^* is not identically zero imply $l^{M_{\infty}^*} = l^{\infty}$.

Remark 6 Theorem 3 (under slightly stronger assumptions about M) was also proved (as a corollary of more general results) by M. Nowak (see [12, Theorem 3.3]) but his proof is more complicated.

Let us note assumptions about measures in Theorems 2 and 3 are important. There exists an Orlicz space $L^{M}(\mu)$ over a purely atomic measure μ with M non-convex such that the Köthe dual $(L^{M}(\mu))^{x}$ is not isomorphic to the space $L^{M*}(\nu)$ for any measure ν .

Theorem 4 Let M have all properties listed in Theorem 2 and suppose M satisfies the following conditions: M(u) = 0 iff u = 0, $\limsup M(2u)/u = \infty$ and $M^{**}(u) = u$.

There exists a purely atomic measure μ such that $(L^{M}(\mu))^{x}$ is not isomorphic to the space $L^{M^{*}}(v)$ for any measure v.

Proof. Using [13, Theorem 1] we can choose a sequence (a_n) of positive numbers such that defining the measure μ on subsets of natural numbers by the formula $\mu(A) = \sum_{n \in A} a_n$ we will have that $L^M(\mu)$ is order isomorphic to l^∞ . Therefore $(L^M(\mu))^x$

and l^1 are order isomorphic. If the spaces $(L^M(\mu))^x$ and $L^{M^*}(\nu)$ were isomorphic for some measure ν , then $LM^*(\nu)$ would be order isomorphic to l^1 on account of [1, Theorem 5]. Thus by Theorem 1 the space $L^{M^{**}}(\nu) = (L^{M^*}(\nu))^x$ would be order isomorphic to l^∞ , but this is impossible because $M^{**}(u) = u$ implies $L^{M^{**}}(\nu) = L^1(\nu)$.

Example of the function M satisfying the assumptions of Theorem 4. Let

$$a_n = \begin{cases} 2^{n(n-1)/2} & \text{for odd } n\text{'s} \\ 2^{(n-2)(n-1)/2} + 1 & \text{for even } n\text{'s} \end{cases}$$
$$b_n = \begin{cases} 2^{n(n-1)/2} + 1 & \text{for odd } n\text{'s} \\ 2^{(n+1)/2} & \text{for even } n\text{'s.} \end{cases}$$

Define a function M by the formula

$$M(u) = \begin{cases} u & \text{if } 0 \le u \le 1 \\ 2^{n(n+1)/2} & \text{if } a_n < u \le b_n. \end{cases}$$

It is easy to see that M is left continuous, continuous at zero, non-decreasing and M vanish only at zero. Putting $u_n = b_{2n-1}$ we get $2u_n \in (a_{2n} b_{2n}]$ and

$$M(2u_n)/M(u_n) = 2^{2n} \to \infty$$
, i.e., $\limsup_{u \to \infty} M(2u)/u = \infty$.

Landau type theorem

Suppose that N is a convex function defined on $[0, \infty)$ satisfying the inequality $N(u) \leq M(u)$ for all u's. If we show that $N(u) \leq u$, then the function $\tilde{M}(u) = u$ will be the convex minorant of M on account of the inequality $u \leq M(u)$. Therefore $M^{**}(u) = u$ because M^{**} is the greatest convex function on $[0, \infty)$ not exceeding M.

Assume first $u \ge 2$. Since $u \in [b_{2k-1}, b_{2k+1}]$ for some k then $u = cb_{2k-1}$ $(1-c)b_{2k+1}$ for some $c \in [0, 1]$. Thus

$$N(u) \leq c N(b_{2k-1}) + (1-c) N(b_{2k+1}) \leq c M(b_{2k-1}) + (1-c) M(b_{2k+1})$$

= $c b_{2k-1} + (1-c) b_{2k+1} = u.$

If $1 < u \le 2$ then repeating the above arguments with $1 = b_{2k-1}$ and $2 = b_{2k+1}$ we obtain $N(u) \le u$. Finally, we have $N(u) \le M(u) = u$ for $0 \le u \le 1$. Thus $N(u) \le u$ on the half line and we are done.

Acknowledgement. The authors are grateful to Professor Marek Nawrocki who has explained the idea of construction of the function M in the above example.

References

- 1. Abramovič, Ju.A., Wojtaszczyk, P.: The uniqueness of the order in spaces $L_p[0, 1]$ and l_p (in Russian). Mat. Zametki 18, 313–325 (1975)
- 2. Barbu, V., Precupanu, Th.: Convexity and Optimization in Banach Spaces. Bucharest: Sijthoff and Noordhoff 1978
- Birnbaum, Z.W., Orlicz, W.: Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Stud. Math. 3, 1–67 (1931); reprinted in: Orlicz, W.: Collected Papers, pp. 133–199. Warsaw: Polish Scientific Publishers 1988
- Drewnowski, L.: Compact operators on Musielak-Orlicz spaces. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 27, 225–232 (1988)
- Drewnowski, L., Nawrocki, M.: On the Mackey topology of Orlicz sequence spaces. Arch. Math. 39, 59-68 (1982)
- Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems (in Russian). Moscow: Nauka 1974
- 7. Kantorovič, L.V., Akilov, G.P.: Functional Analysis (in Russian). Moscow: Nauka 1984
- 8. Krasnosel'skii, M.A., Rutickii, Ya.B.: Convex Functions and Orlicz Spaces. Groningen: Noordhoff 1961
- 9. Landau, E.: Über einen Konvergenzsatz. Nachr. Königl. Ges. Wiss. Göttingen, Nr.8, 25–27 (1907)
- Maligranda, L., Persson, L.E.: Generalized duality of some Banach function spaces. Indagationes Math. 51, 323-338 (1989)
- 11. Musielak, J.: Orlicz Spaces and Modular Spaces (Lect. Notes Math., vol. 1034). Berlin Heidelberg New York: Springer 1983
- 12. Nowak, M.: The Köthe dual of Orlicz sequence spaces without local convexity. Math. Japonica 34, 619-627 (1989)
- 13. Wnuk, W.: Orlicz spaces which are Riesz isomorphic to l^{∞} . Rocky Mt. J. Math. 18, 185–193 (1988)
- 14. Zaanen, A.C.: Riesz Spaces II. Amsterdam New York Oxford: North-Holland 1983