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Abstract

Purpose Annotation of meaningful landmark ground truth on DCE-MRI is difficult and laborious. Motion correction

methods applied to DCE-MRI of the liver are thus mostly evaluated using qualitative or indirect measures. We propose a

novel landmark annotation scheme that facilitates the generation of landmark ground truth on larger clinical datasets.

Methods In our annotation scheme, landmarks are equally distributed over all time points of all available dataset cases and

annotated by multiple observers on a per-pair basis. The scheme is used to annotate 26 DCE-MRI of the liver. A subset of the

ground truth is used to optimize parameters of a deformable motion correction. Several variants of the motion correction are

evaluated on the remaining cases with respect to distances of corresponding landmarks after registration, deformation field

properties, and qualitative measures.

Results A landmark ground truth on 26 cases could be generated in under 12 h per observer with a mean inter-observer

distance below the mean voxel diagonal. Furthermore, the landmarks are spatially well distributed within the liver. Parameter

optimization significantly improves the performance of the motion correction, and landmark distance after registration is

2 mm. Qualitative evaluation of the motion correction reflects the quantitative results.

Conclusions The annotation scheme makes a landmark-based evaluation of motion corrections for hepatic DCE-MRI prac-

tically feasible for larger clinical datasets. The comparably large number of cases enables both optimization and evaluation

of motion correction methods.

Keywords Motion correction · Liver · MRI · Image registration · Evaluation

Background

In dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI), a contrast agent (CA) bolus is monitored over a

series of MR images. By acquisition of temporally scheduled
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volume scans, different vascular structures and tissue charac-

teristics are imaged. DCE-MRI of the liver is used for surgery

planning, tumor diagnostics, and functional analysis [10,17].

In clinical routine, a series of abdominal DCE-MRI typi-

cally includes 4–5 volumes: (native), arterial, portal-venous,

equilibrium, and late-venous phase. In special cases, subse-

quent images are acquired for the analysis of liver function

parameters. Typically, the volumes of the series are acquired

under separate breath-holds and the respiratory state may dif-

fer slightly from volume to volume. The resulting motion

between the scans needs to be corrected in order to fuse

the information of different phases and to analyze contrast

dynamics on a per-voxel basis. DCE-MRI motion correction

is typically implemented by image registration methods. The

aim of medical image registration is to find a transformation

between two or more images that optimally aligns anatom-

ically corresponding positions. Comprehensive reviews of

image registration methods can be found in [15]. The assess-
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ment of registration quality of a given method is not trivial.

Especially in deformable image registration (DIR), it can

be misleading to judge quality based on the aligned images

after registration [13]. The first time points of a hepatic DCE-

MRI are particularly challenging for image registration: The

presence of a contrast agent highlights different anatomical

structures, leading to the highest temporal variation of image

contrast within the series. Vascular features of the arterial

phase, for instance, may not be visible in other phases at all.

Related work

Several image registration-based motion correction meth-

ods have been proposed for DCE-MRI series of the liver.

In an early publication, Mainardi et al. corrected for organ

motion of two subsequent phases by a rigid alignment of

the liver followed by a slice-wise DIR [9]. Registration

quality was assessed based on similarity after registration,

leaving unclear whether the deformable transformation was

physically plausible. Tokuda et al. used a different method

to evaluate registration quality of a motion correction for

large 2D time series [16]. They calculated a marker for

liver function on the series using a pharmacokinetic model.

The model-fit error before and after registration was used

to assess the registration quality. A DIR for 3D time series

was presented by Hamy et al. [5]. This method employs

a robust principal component analysis to separate image

changes induced by motion from those induced by the con-

trast agent, limiting it to series with high and constant

temporal resolution. Besides qualitative measures, Hamy

et al. use synthesized data to quantitatively evaluate their

method. Registered non-contrast-enhanced time series are

manually segmented and contrast enhancements within the

different tissue classes are simulated based on pharmacoki-

netic modeling to generate a pseudo-ground truth. A DIR that

is suitable for aligning both common clinical hepatic DCE-

MRI as well as longer time series was proposed by Papiez et

al. [12]. The method was evaluated based on manually anno-

tated landmarks and an analysis of the deformation fields. For

liver-applications, however, the method was only evaluated

on two cases. Recently, Feng et al. proposed a manifold-

based registration framework for liver DCE-MRI, that also

relies on a decomposition of motion- and CA-related image

changes [2]. Motion correction quality was assessed via time-

intensity curves computed from manually annotated regions

as well as by several visual and thus qualitative indicators.

Most publications assess performance via qualitative and

indirect measures [6]. Indirect measures typically involve

pharmacokinetic modeling and potentially introduce biases

or are limited to certain scenarios. Motion corrections aiming

at clinical applicability should further be evaluated on large

datasets exhibiting realistic variety that may be problematic

to synthesize.

A well-established direct method for registration evalua-

tion is to sparsely generate transformation ground truth by

annotating corresponding landmarks in the scans to be reg-

istered [1]. The distances between corresponding landmarks

after registration, short landmark distances (LD), are then

used to calculate a metric for registration quality. Castillo et

al. formulated two requirements for a meaningful landmark-

based evaluation of DIR methods: First, the landmarks should

be spatially well distributed over the region of interest and

second, the annotations should be numerous to ensure cer-

tain statistical criteria. They annotated numerous landmarks

in some pairs and estimated the pooled standard deviation

of landmark distance after registration s̄
p
DIR. The number of

annotations that are needed to ensure that a 95% confidence

interval (CI) of size ±d mm around the mean LD is then

given by

NDIR

±d =

(

2s̄
p
DIR

d

)2

(1)

The method of Castillo et al. is mostly used for evalua-

tion of DIR algorithms on single image pairs. On evaluation

datasets with multiple pairs it is assumed that the LD after

registration is predominantly a property of the registration

method and less dependent on differing motion between the

pairs.

A common scheme for landmark annotation on time series

is to automatically find distinctive features on a fixed image

and to annotate them in the moving images to be regis-

tered [11]. Changing visibility of image features renders this

strategy infeasible for early phases of hepatic DCE-MRI.

Annotating numerous landmarks on multiple time points of

multiple time series and by multiple observers is practically

not feasible and thus rarely reported, as also pointed out in

[6].

Contribution

Landmark-based evaluation of DCE-MRI motion corrections

is hampered by the excessive workload of ground truth gen-

eration. We propose a new annotation scheme for DCE-MRI

that makes landmark-based ground truth generation prac-

tically feasible for datasets with a large number of cases.

We apply the scheme to collect ground truth data from 26

DCE-MRI series. Further, we combine a state-of-the-art DIR,

a linear preregistration, and a novel liver segmentation to

several exemplary motion correction methods for hepatic

DCE-MRI and evaluate them using the generated ground

truth. The high number of annotated cases enables us to split

the ground truth into a training and an evaluation dataset. We

show how the training dataset can be used to optimize the

parameters of the motion compensation.
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Methods

Ground truth

Annotation scheme

Landmark-based ground truth generation for DCE-MRI has

two main challenges:

1. Changing visibility of image features within a DCE-MRI

series makes it hard to annotate one anatomical position

in all time points.

2. Annotation of a large number of landmarks in every time

point of a DCE-MRI dataset with multiple cases is prac-

tically not feasible.

We propose an annotation scheme for DCE-MRI that mit-

igates those difficulties: First, independent landmarks are

defined for each pair of fixed and moving image of the

DCE-MRI series individually to promote the selection of

landmarks that are assessable in both images of the pair.

Second, we relax the requirement of numerous landmarks

per scan pair but distribute numerous annotations equally

over the whole dataset. An illustration of the annotation

scheme is given in Fig. 1. In a first step, all pairs of fixed

and moving images are divided into two halves and each

half is assigned to one radiographer to annotate L corre-

sponding landmarks per pair. In a second step, the pair

sets are switched and the radiographers annotate the given

fixed image landmarks of the other annotator a second

time.

The statistical considerations on how many landmarks and

how many cases are necessary for a statistically meaningful

evaluation dataset are given in Section “Choice of annotation

scheme parameters.”

DCE-MRI data

The annotation scheme is applied to DCE-MRI of 26 patients.

The images were acquired on a 3T Discovery scanner (GE

Healthcare Systems, USA) in an assessment step for a

radioembolization intervention. Images were acquired in

axial orientation with a standard LAVA sequence (flip angle:

12◦). Eleven cases were acquired with a 256 × 256 imaging

matrix, 15 with a 512 × 512 matrix, resulting in an in-plane

voxel size between 0.74 and 1.72 mm (mean 1.11 mm).

Slice thickness varied between 2 and 5 mm (mean 2.65 mm)

and the mean voxel diagonal was 3.17 mm. Each DCE-

MRI consists of five phases; the late-venous phase was

acquired 15 min after CA (Primovist, (Bayer Healthcare,

…
…

…

…

…

Re-annotation by other annotator

Annotated by annotator 1

Time point within DCE-MRI series

…

Annotated by annotator 2

Initial per-pair annotation

Reference 

time point

c
a
s
e
s

Step 2Step 1

Fig. 1 Schematic of the proposed annotation scheme for DCE-MRI

datasets with multiple time point (horizontal direction) and multiple

cases (vertical direction). One time point of the DCE-MRI series is

selected as the fixed image. To account for varying feature-visibility,

landmarks are annotated for pairs of fixed and moving image individu-

ally. In a first step, each annotator sets a small number of L landmarks on

half of the pairs. Subsequently, the pairs are switched and the annotators

re-annotate the other annotator’s fixed image landmarks
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Germany) injection. In two cases the imaging matrix and

field of view of the late-venous phase differed from the pre-

vious time points. For motion compensation, we reformatted

these time points to achieve a consistent resolution within

the series.

Annotation

Two trained radiographers were tasked to annotate the land-

mark ground truth. Our motion correction method registers

the first 4 time points to the late-venous phase, resulting in

four pairs of fixed and moving image per case and a total

with a total of 104 pairs.

In principle, any annotation software could be used for

landmarks annotation according to our scheme. We used an

in-house annotation software (see Fig. 2), based on methods

proposed by Castillo et al. [1]. The software simultaneously

displays both volumes in axial, sagittal, and coronal orien-

tation. To aid precise annotation, three tools are provided to

the annotator:

(a) Display zoom factor can be switched between 1, 4, and

8.

(b) A small box around an annotated moving image land-

mark can be overlaid to the fixed scan.

(c) Moving image landmarks can be updated by a trans-

lational, normalized cross-correlation-based registration

of the small box within the fixed image.

The box size can be varied to 8, 16, or 32 voxels in-

plane, and 8 or 16 voxels through-plane. The annotators

were encouraged to use different zoom levels and box sizes

during annotation and were asked to choose landmarks

that are distinct and spatially well distributed throughout

the liver. During re-annotation, annotators could flag land-

marks to indicate they were uncertain about the landmark

position.

Fig. 2 Screenshot of the in-house annotation tool used to define and

find the landmarks. Fixed and moving images are displayed in separate

rows and in three main directions. The user can switch between differ-

ent zoom factors (zoom factor 4 shown). Once a landmark is defined

in both images the user can overlay a local region around the moving

image landmark in the fixed image (red overlay). The user can adjust

the region size (bottom toolbar) as well as the windowing of the images

and the overlay. The user can also perform a registration of the local

region within the fixed image (button “snap local”)
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Fig. 3 Steps of the liver segmentation. A mean intensity projection of

all time points (a) is multiplied by a linear ramp (b) to give an image

with high values within the liver region (c). On a threshold of this image

(d) we subsequently compute a morphological opening (e) and the con-

vex hull (f). The resulting mask is dilated again to include surrounding

anatomy (g)

Motion correction

Our method uses a sequence of pairwise registrations to cor-

rect for motion that occurs between the acquisition of the

DCE-MRI volumes. We use the late-venous phase as the

fixed image and employ a two-step pipeline: First, coarse

differences in respiratory state are reduced by a rigid preregis-

tration. Subsequently, organ deformations are corrected by a

deformable registration. The preregistration step is restricted

to the liver region by a coarse automatic liver segmentation

that will be detailed below.

For deformable registration, we use a fast nonparamet-

ric method proposed by König et al. [8]. This method uses

the similarity measure normalized gradient field (NGF) [4],

which was successfully used for DCE-MRI of the kidney [6].

NGF has a parameter η, that is used to control the influence

of features with different gradient magnitude. A high η value

will tend to diminish the influence of features with low gradi-

ents. Curvature regularization [3] is used as a regularization

term. The influence of the regularization term is weighted by

a factor α.

For rigid preregistration, we use a method of Rühaak et

al. [14] that also uses NGF as a similarity measure. To focus

the preregistration to the liver, we restrict the evaluation of

the similarity measure to an automatically computed coarse

liver segmentation.

Our liver segmentation is based on the accumulation of CA

in the liver (see Fig. 3). A mean intensity projection over all

time points is computed giving an image with relatively high

intensities in the liver and spleen regions (a). The liver region

is emphasized over the spleen region by multiplying a linear

ramp image to the projection that has its maximum value in

the most anterior right position and its lowest value in the

posterior left (b, c). After that, a region including the liver

is extracted by applying a threshold at the 90% quantile of

image values (d). Non-liver parts in the resulting mask are

reduced by a morphological opening with a large kernel of

10 mm (e). The convex hull of the resulting mask gives the

coarse liver segmentation (f). To include anatomies around

the liver, the segmentation is again dilated with a kernel size

of 5 mm (g).

We will denote the algorithm including all steps the full

method and two variants, without masking the preregistra-

tion (RMwom), and without preregistration (RMwop) the

reduced methods.
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Parameter optimization

Motion correction quality of our method is governed by the

choice of regularization factor α and the edge parameter η.

While algorithm parameters are often chosen empirically, a

quantitative ground truth on numerous cases, as we built it on

our data, enables a different strategy: We define six randomly

selected cases as training data and excluded them from eval-

uation. The algorithm parameters α and η are then optimized

with respect to the mean LD (see Section “Evaluation”) on

the training set. To this end, we calculate motion correc-

tions for parameter combinations within a broad search range

(η = {0.25, 1, 4, 16, 64}, α = {4, 16, 64, 256, 1024}). Next,

a focused search range (η = {0.5, 0.71, 1, 1.41, 2, 2.83}

and α = {16, 22.63, 32, 45.26, 64, 90.51, 128}) is evalu-

ated around the best performing parameters within the broad

range. The best performing parameters of the second range

are then used to evaluate our method on the remaining

data. We compare the full method with optimal parameters

(FMopt) to an empirically motivated parametrization of the

method (FMemp) we used before the ground truth was avail-

able (η = 1, α = 100).

Evaluation

While landmarks are used to sparsely sample the transforma-

tion ground truth, they cannot be used to evaluate the physical

plausibility of a registration. We thus augment the landmark-

based evaluation by a check for foldings in the deformation

field. Further, we evaluate the motion compensations over a

qualitative measure.

Quantitative measures

We evaluate our method based on the LD and the absence of

foldings in the deformation field.

The landmarks were annotated by two observers to com-

pensate for possible annotation errors. Landmark annotation

error can either stem from inaccuracies in the annotation of

the same anatomical structure (type A error) or even inadver-

tent annotation of different anatomical structures of similar

appearance (type B error). To mitigate erroneous evaluation

results due to type B annotation errors, we calculate the LD

with respect to the closer of the two landmarks. We calculate

mean, median, minimum, as well as the 75, 90, 99, and 100%

quantiles of the LD and compare the LD distributions after

all motion correction variants with the Wilcoxon signed-rank

test with a significance threshold of 0.05.

To check for the absence of foldings, each voxel of a defor-

mation field is split into eight equally sized tetrahedrons. A

folding is detected if a tetrahedron changes its orientation

after transforming its corners with the deformation.

Qualitative measures

A motion correction should transform anatomical positions

to consistent image positions over time. Time cut images

(TCI) are a visualization technique that can be used to assess

whether a motion correction achieves this. In a TCI, the image

values on a one-voxel line through the volume at subsequent

time points are stacked horizontally to yield a 2D image, i.e.,

the image displays the temporal evolution of images values

on the line. Motion between the time points of the series

will result in discontinuous horizontal lines. If the motion is

compensated well, the horizontal lines appear straight (see

green and gray arrows in Fig. 5b, c). We calculate TCI for

three anterior–posterior lines on the slice with maximal liver

extent. Within this slice, the lines were manually placed left,

right, and in the center of the liver (see Fig. 5a). Pairs of

TCI before and after motion compensation with FMopt are

visually rated by an expert whether the temporal consistency

of images features improved, decreased or is left indifferent

by motion correction. TCI after all other methods are com-

pared to the TCI after FMopt and rated whether the method

performed better, indifferent, or worse.

A video showing all slices of a representative case before

and after motion correction with FMopt is provided in the

supplementary material.

Choice of annotation scheme parameters

Our landmark annotation scheme has two parameters, the

number of landmarks per pair L and the number of pairs P .

The parameter L is chosen to fulfill the requirement that land-

marks should be well distributed over the region of interest.

We choose L = 10 as a compromise between spatial cover-

age of the liver and induced workload.

For a coarse estimation of P we treat each pair as if it

had only one annotation. Following the assumption that the

LD after registration is mostly independent of the under-

lying motion we can then use Formula 1 to estimate the

number of pairs that are necessary to ensure a certain size

of a 95% CI. We aim on an evaluation method that has a

95% CI smaller than half the mean voxel diagonal and thus

choose ±d = 0.7925. Further, we estimate the standard

deviation of the LD after registration with FMemp by anno-

tating a single case with 50 landmarks per time point and

computing the standard deviation after motion compensa-

tion s̄FMemp = 3.07. Using Formula 1 we calculate P > 61.

To compensate for estimation errors we annotated 104 pairs.

After annotation of the 104 pairs with 10 landmarks, we

calculate the actual standard deviation of LD after the full

method with empirical parameters to sFMemp = 1.9 mm. We

estimate the number of pairs necessary for a 95% CI of size

2 ×0.7925 as before and get P > 23 as a lower bound. Con-
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sequently, we chose a training dataset that contains 24 pairs,

i.e., six cases.

Results

Ground truth

In total, 990 landmarks were annotated on the 26 cases, each

by two annotators. One hundred and two of those landmarks

were marked as ‘uncertain’ and were thus excluded from

the evaluation. Five time points exhibited strong intra-scan

motion artifacts and could not be annotated at all. To give

an estimate of the ground truth quality, we calculate the

inter-observer distance (IOD), i.e., the distance between cor-

responding moving image landmarks of the two annotators.

Mean IOD was 3.01 mm (median: 2.09 mm, min: 0 mm, max:

22.64 mm), which is smaller than the mean voxel diagonal.

Overall annotation time per annotator for all landmarks was

below 12 h, distributed over several sessions. Statistics for

Table 1 Statistics of the extent of the bounding box around all fixed

image landmarks and average extents of the normal liver as reported in

[7]

Direction Mean

(mm)

Min (mm) Max (mm) Normal liver

extent from

[7] (mm)

Left–right 154.6 56.8 263.4 200–255

Craniocaudal 116.9 29.7 200.8 150–175

Anterior–

posterior

120.5 52.0 220.5 100–125

the spatial extent of fixed image landmarks as well as average

normal liver extents reported in [7] are given in Table 1.

Parameter optimization

Mean LD was computed for 65 different parameter combi-

nations of α and η on the training data. Figure 4 shows the

mean LD as contour plots for the broad and the focused search

range. Foldings were detected for several parameter config-

urations with low α and η values (below red line). Within the

focused search range, mean LD was minimal at a combina-

tion of α = 32 and η = 2. Those parameters were used for

FMopt.

Registration quality

Table 2 lists LD statistics for our full method with optimal

parameters (FMopt), the full method with empirically moti-

vated parameters (η = 1, α = 100) (FMemp), the reduced

versions without masking the preregistration (RMwom) and

without preregistration (RMwop), as well as the landmark

distances before registration. FMopt performs best on aver-

age as well as in the median and maximum LD. Both reduced

methods only slightly reduce the maximum LD before regis-

tration and have elevated values in the 99% quantile. For the

FMemp the median is slightly elevated (+9%) as compared

to the full method. With respect to the Wilcoxon signed-

rank test with a significance threshold of 0.05, the difference

between FMopt and FMemp is statistically significant, the

difference of FMopt to both reduced methods is statistically

not significant.

Fig. 4 Median landmark distances (mm) for different parameter com-

binations in a broad (left) and a focused (right) search range. Foldings

occurred in parameter combinations below the red line. Note that the

contours are interpolated in between the sampled positions and that the

scales of the two contour plots differ
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Table 2 Statistics for LD after registration for our full method with

optimal parameters (FMopt), the full method with empirically moti-

vated parameters (FMemp), two reduced versions, one without masking

the distance measure of preregistration (RMwom) to the coarse liver

segmentation and one without preregistration (RMwop) and before reg-

istration

Method Mean Median Min q75% q90% q99% Max Foldings

FMopt 2.00 1.33 0.12 2.77 4.43 9.92 13.68 0

FMemp 2.10 1.45 0.08 2.76 4.57 9.31 17.49 0

RMwom 2.28 1.34 0.08 2.81 4.67 20.72 27.48 0

RMwop 2.24 1.37 0.06 2.84 4.73 14.36 24.73 0

Before reg. 10.23 8.42 1.10 14.22 23.82 28.66 31.91 –

All values are given in mm

Fig. 5 Time cut images (TCI) of three anterior–posterior lines of an

exemplary case (a) before motion correction (b) after motion correction

with the full method (c) and after motion correction without preregis-

tration (d). The blue lines in (a) indicate the positions at which the TCI

are calculated. The green and gray arrows point to structures that are

temporally more consistent after motion compensation (green: blood

vessel, gray: liver surface). The full method was rated as improving the

temporal consistency in this case. The blue arrows in (c) and (d) mark a

time point where the reduced method did not perform as well as the full

method. The result of the reduced method was thus rated worse than

the one of the full method for this case

Per evaluation case, three TCI pairs before and after

motion compensation with FMopt were visually compared.

In 51 TCI pairs, temporal consistency was rated as improved,

in nine pairs it was rated indifferent. In all cases, at least

one TCI pair indicated an improvement. The TCI of FMopt

were compared to the TCI of the other methods on a per

case basis. The TCI were mostly rated indifferent, only few

cases were rated worse (FMemp:0, RMwom:4, RMwop:2)

and none better. Time cuts for three lines of an exem-

plary case are displayed in Fig. 5. In this case, the result

of FMopt was rated as improved as compared to the before

motion compensation and RMwop was rated worse than

FMopt because of a misalignment of a single time point

(blue arrow). The green and gray arrows point to anatomical

structures that show the improvement in temporal consis-

tency.

The phase images of a representative case, before and after

motion correction, are provided in a video as supplementary

material. While continuously looping through the phases, the

image slice is swept through the volume in the axial direc-

tion.
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Speed

Motion correction was performed on a desktop computer

with standard hardware running Windows 10 (Intel Core I7

4770k, 32 GB RAM). Average computation time per scan

pair was 62 and 246 s per case.

Discussion

To enable landmark-based ground truth generation for DCE-

MRI with multiple cases, we relax the requirement of

numerous landmarks per scan pair but distribute numerous

annotations equally over the whole dataset. In doing so, we

accept that the statistical certainty of an evaluation measure-

ment on a single scan pair is low. However, we compensate

for this low per-pair certainty by drawing a high number of

samples, i.e., we evaluate our metric on a high number of

image pairs. This approach follows the assumption that the

LD after registration is predominantly a property of the reg-

istration method and less dependent on the motion between

time points of the DCE-MRI data. The qualitative analysis

showed that the reduced methods did not follow this assump-

tion in some cases: While both reduced methods produced

very similar results to the full method in most cases, they

failed to compensate motion in some time points. This behav-

ior could be detected by elevated values in upper quantiles

of the LD. The number of failing time points was, however,

so low, that differences between FMopt and both reduced

methods did not reach statistical significance, i.e., the null

hypotheses that the LD after compared methods come from

the same distribution cannot be discarded. FMemp does not

show these outliers, and the comparison between FMemp

and FMopt is statistically meaningful. In addition to common

metrics such as the mean LD, evaluations based on our anno-

tation scheme should thus also report quantiles of the LD.

Since the number of landmarks per pair is comparably low,

only statistics over numerous cases can be used for evalua-

tion (see Section “Choice of annotation scheme parameters”).

The comparison of TCI after different methods seems only

suitable for the detection of large registration errors. Minuit

difference in registration quality is hard to judge.

Having two annotators, our strategy to compensate for

type B annotation errors is to calculate the LD with respect

to the closer of the two annotated landmarks. Evaluation is

thus “in doubt for the algorithm.” For an extended evalu-

ation, the scheme can easily be generalized to an arbitrary

number of annotators. For more that two annotators a major-

ity vote could be used if the annotations disagree by a certain

threshold.

Applying the proposed annotation scheme, we could

annotate a comparably large dataset of 26 DCE-MRI in

acceptable time with a plausible IOD. Manually annotated

fixed image landmarks span a reasonable range when com-

pared to mean extents of the normal liver. In certain time

points, however, the landmarks are only distributed over a

small area as indicated by relatively small values in the min-

imum extents in all three directions. At first glance, this may

seem like an indication, that it is hard for an annotator to ful-

fill the demand of spatially well-distributed landmarks. Upon

inspection of the cases with minimal spatial extent, the nar-

row spatial range of fixed image landmarks can be attributed

to a heavy tumor load in the left lateral and left medial section

(case with left-right minimum extent), an area of low contrast

in the caudal part of the liver (craniocaudal minimum), and

a partially resected liver (anterior–posterior minimum).

The quantitative measures in combination with the train-

ing dataset enabled a convenient search for physically

plausible image registration with optimal parameters. Dur-

ing parameter optimization, detected foldings coincided with

elevated mean LD values, as indicated in Fig. 4. Mean LD

values within both search ranges show a substantial variation,

and the difference between FMopt and FMemp is statistically

significant. Optimizing parameters of a DCE-MRI motion

correction with respect to a landmark ground truth can thus

lead to an improvement of algorithm performance. With the

best performing parameter set of the narrow search range,

our motion correction method was able to achieve a mean

LD of 2.0 mm.

The elevated maximum LD values and qualitative anal-

ysis of the two reduced methods indicate that the reduced

methods do not achieve a good registration in a few time

points. The case on which both reduced methods performed

worst is a case with strong motion and the maximal distance

of corresponding landmarks before registration of the entire

dataset (31.9 mm). As compared to the reduced method,

the proposed method with a masked preregistration is more

robust with respect to a substantial variation of liver position

within the series. The linear preregistration without restrict-

ing the distance measure to the liver region does not lead to

an improvement.

Conclusions

In this paper, we present a novel landmark annotation scheme

that enables landmark-based evaluation of motion correc-

tion methods on large hepatic DCE-MRI datasets. With this

scheme, 26 DCE-MRIs of the liver were annotated by two

annotators within 12 h and with a mean inter-observer dis-

tance of 3.01 mm. With a high number of annotated cases,

we used a part of the ground truth to optimize the parameters

of a deformable DCE-MRI motion correction. Based on the

ground truth, we compared several variants of our motion

correction and found the ground truth to be sensitive to reg-

istration failures in single cases.
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Parameter optimization led to a statistically significant

improvement of the method. Reduced versions of our motion

compensation without preregistration and without masking

the preregistration failed to compensate the motion of single

time points. Qualitative evaluation of the motion compensa-

tion on TCI was in-line with the findings of the quantitative

landmark-based evaluation.
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