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Abstract— For a wide variety of sensor network environments,
location information is unavailable or expensive to obtain. We
propose a location-free, lightweight, distributed, and data-centric
storage/retrieval scheme for information producers and informa-
tion consumers in sensor networks. Our scheme is built upon
the Gradient Landmark-Based Distributed Routing protocol
(GLIDER) [8], a two-level routing scheme where sensor nodes
are partitioned into tiles by their graph distances to a small set
of local landmarks so that localized and efficient routing can be
achieved inside and across tiles. Our information storage and
retrieval scheme uses two ideas on top of the GLIDER hierarchy
— a distributed hash table on the combinatorial tile adjacency
graph and a double-ruling scheme within each tile. Queries
follow a path that will provably reach the data replicated by
the producer(s). We show that this scheme compares favorably
with previously proposed schemes, such as Geographic Hash
Tables (GHT), providing comparable data storage performance
and better locality-aware data retrieval performance. More
importantly, this scheme uses no geographic information, makes
few assumptions on the network model, and achieves better load
balancing and structured data processing and aggregation even

for sensor fields with complex geometric shapes and non-trivial
topology.

I. INTRODUCTION

Making effective use of the vast amount of data gath-

ered by large-scale sensor networks requires scalable and

energy-efficient data storage and data dissemination algo-

rithms. Queries on sensor networks may be content-based, in

that users are primarily interested in data satisfying certain

attributes, not in the details of which node currently contains

the data. An information producer generates data that may be

of interest to multiple information consumers located in other

parts of the network at a much later time. This separation

of communication in space and time calls for an information

brokerage scheme for sensornets. An information brokerage

scheme is a mechanism that carries out data publication, data

replication for the information producers (a.k.a. producers)

and data retrieval for the information consumers (a.k.a. con-

sumers). In the sensor network setting, we formulate it as a

mechanism to enable a network of nodes to self-organize and

store the sensed data, cooperate to route and answer the query.

The utility of a sensor network derives primarily from

the data it gathers. Previous work has addressed data-centric

routing [1], [10], [11], [15] and data-centric storage [16] as

efficient data management schemes for sensor networks.

In data-centric routing, low-level communications are based

on names that are external to the network topology and

relevant to the applications. A typical data-centric routing

protocol, directed diffusion [11], uses a flooding algorithm to

distribute interests to match with data obtained at source nodes.

Matched data are delivered back to the sink (consumer) on

reversed paths, the best of which will be reinforced for contin-

uing future use. Little collaborative preprocessing is performed

on the data gathered by the sensors in such schemes. Thus the

discovery of the desired information has to rely on flooding

the network.

In contrast, in data-centric storage data generated by sensors

is preprocessed and stored in a distributed fashion. A simple

yet powerful idea, the Distributed Hash Table (DHT), was

proposed to match data from the producers and interests from

the consumers. In DHTs, data is named and stored via its

content. Specifically, a piece of data is hashed to a node based

on its content, using a common hash function known to the

producers and consumers. That node stores the data of the

producers and acts as a reservoir from which the consumers

can retrieve its desired data assuming proper routing service

is provided. DHTs avoid expensive network-wide flooding

and can achieve good storage load balancing by using hash

functions that evenly distribute load across the network.

DHTs were originally proposed for distributed data storage

on the Internet. The idea has been adopted in the sensor

network context. One example is the Geographic Hash Table

(GHT) [16] which combines the DHT idea with geographic

naming and routing. It uses geographic locations as reservoirs

where data is hashed to and retrieved from, and uses a

geographic routing approach, GPSR [12], as the underlying

routing scheme. However, since GHT uses location-based

naming and routing schemes, it inherits all the disadvantages

of them as well: location-based routing requires that the

accurate location information about the sensors be available; it

requires that the communication network follow the unrealistic

unit disk graph model; it also assumes that a planar subgraph

of the communication graph with the same connectivity is

correctly constructed; furthermore, it performs poorly when

the sensor networks have complex geometric shapes and non-

trivial topologies, e.g., have many holes (caused by obstacles,

events, or clusters of failed nodes) [7], etc. Nodes on the

boundaries of holes are used more often due to the extensive

use of perimeter forwarding when packets bypass holes and

subsequently depleted nodes enlarge the holes. This counter-

acts the load balancing argument for DHT.

DHTs have inefficiencies that are not of major concern in
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the Internet environment but become significant drawbacks for

its application in sensor networks. First, DHT uses a hash

function to map a piece of data to a randomly determined node.

The property that contents are scattered in the network is good

for load balancing, but bad for structured data organization

and subsequently bad for queries that require cross-type data

aggregations. Second, DHTs are not locality aware. An

information consumer may have to travel far to a hashed

location to fetch a piece of data even if the data is actually

generated from an information producer nearby. Hierarchical

hashing [13] has been proposed to improve the locality of

the flat hash table. But the construction of this hierarchy

complicates the overall design and the asymptotic bounds on

storage and retrieval costs have hidden large constants that do

matter in practice. It has been experimentally observed that

such a scheme only outperforms flat hashing on networks with

extremely large sizes [5].

Another approach to information storage and retrieval that

gets around the problems suffered by DHTs is what we call

double-ruling. Double-ruling works as follows: data is stored

not at a single node or its nearby neighbors, but at nodes that

follow a one-dimensional curve while a data request travels

along a set of nodes that follow another one-dimensional

curve. The curves are functions of only the locations of the

producer and the consumer respectively, and not of the types

of data that is stored or sought. Therefore, successful retrieval

is guaranteed if every retrieval curve intersects every data

storage curve. For an easy case, assume the network is a two-

dimensional grid embedded in the plane with nodes located at

all the lattice points (see Figure 1). The information storage

curves follow the horizontal lines. The information retrieval

curves follow the vertical lines. Each vertical line intersects

each horizontal line, thus an information consumer can always

find the data produced by the producer. In fact, by travelling

along a vertical line, an information consumer finds all the

data stored in the network. This double-ruling scheme is

locality aware — if the producer and consumer are actually

near each other, they must also be near each other along the

path connecting them using the horizontal and vertical lines.

Moreover, it has better fault tolerance by replicating data on

nodes that are uncorrelated with node proximity.

q

p

Fig. 1. A nice and simple double ruling scheme on a grid network. The infor-
mation producer p replicates its data along a horizontal line. The information
producer q queries along a vertical line. Data retrieval is guaranteed since
every vertical line intersects every horizontal line. This scheme also reflects
locality since nearby sensors are also nearby using the L1 distance.

Despite all these good properties, the double-ruling idea

is hard to realize on arbitrary communciation graphs. This

is mainly due to the rich geometric flavor of the double-

ruling scheme. So far research along this line has either

focused on networks with nice graph structures, e.g., those

that resemble grids [14], [18], [17] whereby two sets of curves

are constructed using geometric information, or depends on

heavy data replication to guarantee successful retrieval. An

example of the latter is rumor routing [3]. In rumor routing,

data are replicated along a set of straight line gradients from

the information producer, while a query is sent along a random

straight line from the consumer. However, this requires a

substantial number of data replication lines to guarantee with

high probability that the query line will meet with one of

the event lines within the sensor field. In general, in a sensor

field with uneven sensor distribution and irregular geometric

shapes, it is unclear how to construct a good double-ruling

scheme where the data replication paths of different producers

and the data retrieval paths of different consumers are not too

long each (not too many replications) and are evenly spread

out across the network. The problem becomes even harder

when geometric coordinates of each node in the network are

unknown.

II. OVERVIEW

For a class of sensornet applications, multiple producers and

consumers of the same data may appear at any locations within

the network. One such example is real-time environmental

monitoring in a national park. For example, a canonical query

a tourist may ask: “where are the giraffes located at the

present time?” From the consumers’ (the tourists’ in this

example) point of view, it is desirable to have the giraffe

information readily stored at some nearby nodes, which means

the same piece of information have to be replicated sufficiently

frequently within the network. This increases the cost for

information producers. From the producers’ point of view, it

is most cost effective for them to store data locally, in which

case, the consumers have to flood the network to get its query

answered.

We are therefore interested in investigating a scheme that:

first, balances the cost for the producers and consumers;

second, allows the possibility of data aggregation whenever

possible to reduce transmission cost (which can benefit real-

time monitoring applications); third, is locality aware, meaning

when a consumer is close to the producer, the consumer

should not travel far before it retrieves the information; fourth,

achieves the above goals without requiring nodes’ geographic

information as in GHT or other double-ruling solutions.

In this paper, we present a two-level data-centric storage

and retrieval scheme that integrates the distributed hash table

idea and the double-ruling idea, using a naming and routing

infrastructure, the Gradient Landmark-based Distributed Rout-

ing protocol (GLIDER) proposed by Fang et al. [8].

GLIDER is a location-free naming and routing scheme that

discovers and abstracts the global topology of the sensor field

in a preprocessing stage using landmarks (a well-chosen subset

of sensors). It partitions the nodes into routable tiles — regions
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where the node placement is sufficiently dense and regular so

that local greedy methods can work well. Such global topology

includes not only connectivity but also higher order topological

features, such as the presence of holes, for example, the empty

circular region in Figure 2. These tiles are glued in a way

represented by the tile adjacency graph whose edges are shown

as the line segments in the figure.

Fig. 2. The tile partitioning in GLIDER by using a number of
landmarks. Landmarks are shown by triangles. Sensor nodes are
shown as small circles. The nodes are divided into tiles. The dark
nodes are the boundaries of the tiles. A combinatorial graph on the
set of landmarks is drawn to represent the tile adjacency relationship.
Namely, a pair of landmarks are connected by an edge if their
corresponding tiles are adjacent.

Conceptually our scheme has two levels: a distributed hash

table for information storage at the tile adjacency graph level;

and a double-ruling scheme at the lower level (inside each

tile), which ensures information retrieval within each tile.

We hash a piece of data to a tile (i.e. the hashed tile) that is

determined by the content of data. Based on the tile adjacency

graph, the shortest path tree rooted at the hashed tile can be

computed at each node. All producers and consumers of the

same content proceed to the hashed tile following this common

shortest path tree. For a producer, data is replicated inside

all the tiles (not all the nodes) along the way from where

the producer resides to the hashed tile (which we call the

replication path). The information consumer proceeds towards

the hashed tile and checks each tile on its way for the desired

data (which we call the retrieval path), returns when the

retrieval path meets the replication path.

A. Hashing on the tiles

In the traditional DHT, an information consumer q may

have to travel to a hashed location far away, even when the

information producer p is actually nearby. However, notice

that the CDG usually has low degree (a small constant most

of the time). Since the sensors usually are embedded in the

Euclidean plane, for a specific landmark x, the number of

landmarks with exactly h hops from x on CDG is usually

of order O(h). If the information producer and consumer are

geographically close, it is likely that their shortest paths to

the same hashed tile will merge before reaching the common

root. For the information consumer in the same tile as the

producer, the consumer will find the data inside its resident

tile, without the need to travel to the hashed tile which can

be far away. Therefore, our information brokerage scheme is

locality aware — an information consumer can retrieve data

more quickly without going to the hashed tile if the consumer

is actually close to the ‘data reservoir’ of interest. This is also

confirmed through simulations.

Furthermore, routing in sensor network does not generally

follow the Internet’s end-to-end principle. It is desirable that

a node receiving a packet can inspect the data and make

a local decision on whether to continue passing along the

packet or transform the data or drop the packet. The fact that

the producers send their data following the shortest-path-tree

on the tile adjacency graph creates opportunities for the data

replication paths of different producers but of the same data

category to cross before reaching the hashed tile. This creates

additional opportunities for en-route data aggregation for the

producers and hence contributes to overall system efficiency.

Our scheme also provides better support for structured data

storage and query. This built-in correlated data storage allows

the possibility for the consumers to fetch all the data of the

same category using only a single retrieval path inside the

hashed tile and ease of aggregation on data of the same cate-

gory. More detailed discussion is deferred to subsection IV-D.

B. Double-rulings within each tile

Data replication and retrieval inside a tile are implemented

by a double-ruling scheme. Specifically, for a producer, its

data is replicated at nodes along three curves organized in a

tree. These three curves are formed by the producer following

the shortest paths towards three neighboring landmarks, called

guides, starting from a random node. To save storage, we

store data on only one or a small number of sensors on the

curves, and store at the other nodes only pointers to where

data is replicated. Data retrieval follows either a zigzag curve

that visits the tile’s boundary with each guide, or simply

a shortest path towards the next landmark on the globally

planned combinatorial path. It is guaranteed by the properties

of the tile partitioning that the data retrieval path actually meets

with each data replication tree. Figure 3 gives an example of

an information producer and consumer pair.

In general, designing a good double-ruling scheme requires

detailed understanding of the geometry of the sensor layout.

However, the tile adjacency graph provided by GLIDER cap-

tures spatial adjacency information of a landmark with respect

to the other landmarks, by exploiting which we can design our

double-ruling scheme without the sensors’ geographic location

information, and in a locally controlled way. This extends

the current double ruling ideas on regular grid topologies to

arbitrary topologies.
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Fig. 3. This figure shows the routes of a pair of information producer
and consumer. The darker paths are the replication routes followed by
the information producer. The lighter path is the path that the query
travels to retrieve the desired data. In this example, the information
consumer finds (where the two path cross) the desired data before it
reaches the hashed tile (located in the upper right end of the path).

III. GLIDER NAMING AND ROUTING INFRASTRUCTURE

GLIDER is a landmark-based location-free naming and rout-

ing scheme for sensor networks. It computes in a preprocessing

stage the landmark Voronoi complex (LVC), and its dual,

the combinatorial Delaunay Graph (CDG) that captures the

global topology of the sensor field. Voronoi diagram and

Delaunay triangulation were originally defined on points in

Euclidean space [6]. Recently they have been extended to a

graph setting [4], [8]. Formally, for a connected unweighted

graph G = (V, E) and a subset of landmarks L ⊂ V , define

the Voronoi cell T (v) of a landmark v ∈ L to be the set

of nodes whose nearest landmark measured in the minimum

number of hops on G is v (ties are allowed). See Figure 2 as an

example. The combinatorial Delaunay graph is the dual graph

of the complex Voronoi diagram that represents the adjacency

relationship of the Voronoi cells. There is an edge between two

landmarks v1, v2 if there is either a node w in both Voronoi

cells T (v1), T (v2), or two nodes w1, w2 in each Voronoi cell

(w1 ∈ T (v1), w2 ∈ T (v2)) that are neighbors on G. Such

nodes wi are referred to as witnesses to the edge v1v2. The

collection of witnesses to the edge v1v2 is called the Voronoi

boundary of v1, v2. The combinatorial Delaunay graph D(L)
can be thought of an abstract of the original graph G. It

was proved in [8] that D(L) is connected if G is connected.

Further, every path in G can be lifted to a path in D(L).
Conversely, every path in D(L) can be realized as a path in

G. Under reasonable conditions (a dense distribution of nodes,

reasonably simple topology, a good selection of well-separated

landmarks), the Voronoi cells of a set of landmarks provide

a natural partitioning of the sensor field into connected tiles

with trivial topology in all dimensions.

The CDG, as an abstraction of the global topology of the

sensor field, usually has a size proportional to the number of

large topological features of the sensor field (such as holes),

which is much smaller than the total number of sensors.

Increasing the total number of sensors without increasing the

number of topological features will increase the tile size given

the same number of landmarks. While tile size may affect

individual routes, it does not affect the overall route distribu-

tion and the success of GLIDER. If the sensor distribution is

dense and uniform, three landmarks are sufficient for routing

purposes. How exactly the number and distribution of the

landmarks should be determined is an active ongoing research

project. In our simulations, 23 landmarks (randomly selected

plus a few on sensor field boundaries) are used out of 2000

nodes, which is shown through experimental studies to have

good performance in terms of route length and load balancing.

In addition, the CDG is also robust to network dynamics.

Unless a large portion of geographically correlated sensors die,

the global topology, thus the CDG, does not change. Therefore

the CDG is a compact, stable and descriptive abstraction of

the global topological information of the sensor field, and can

be made available to every sensor in the network.

In GLIDER, each sensor p is given a name with respect to

a subset of landmarks. For a sensor p, its closest landmark is

denoted as p’s home landmark, denoted as h(p). The Voronoi

tile of p’s home landmark is denoted as p’s resident tile. For

the nodes in the Voronoi cell T (v) of a landmark v, the

reference landmarks are v itself and the neighbors of v in

the CDG D(L). Each sensor node knows the minimum hop

counts to its local reference landmarks. The name of a node

is then expressed by a vector based on hop count distances to

its reference landmarks. Effectively, node names are thereby

determined by global topology of the field layout and local

connectivity. Such an approach to naming in GLIDER allows

three kinds of efficiencies.

• Global network names for nodes can be constructed

locally after the initial topology discovery phase. Global

naming is important to support context-based storage that

requires an unambiguous node or region of the network

given a network address and any-to-any routing with low

stretch factors.

• Mapped references (the landmarks) can be bound to node

names, enabling node names with a meaning relevant to

the applications. For example, in a building monitoring

scenario, a valid node name might be: 2 hops from the

first-floor printer room, 5 hops to the building exit, 4

hops from the stairs, etc. This naming scheme not only

gives nodes addresses, but also relations to well-known

reference points that can be useful in designing locality-

aware services for a range of sensor network applications.

• The overhead of communication required for resolving

name bindings is eliminated, such as the service of

DNS lookups for the Internet or location services for

geographic routing.
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Once the CDG is constructed, every sensor knows its own

name. Notice that the preprocessing stage of using landmarks

to discover the global topology is done only once for the entire

lifetime of the sensor network. After the preprocessing stage,

landmarks are just virtual references and take the same role

as other sensors in the routing protocol. With the help of this

proactive infrastructure, routing can be performed in a reactive

manner.

Intra-tile routing is done by gradient descent using the local

virtual coordinates. Namely, the next hop is selected as the one

whose virtual distance to the destination is the smallest.

Inter-tile routing between two sequential tiles Ti and Ti+1 is

implemented by following the shortest path toward landmark

ui+1 by neighborhood distance, which is defined as follows.

For each landmark u ∈ L and its adjacent landmark v on

D(L), we define the neighborhood distance from a point

p ∈ T (u) to v as the number of hops from p to v measured in

the subgraph spanned by T (u)
⋃

T (v)1. By the construction

of the landmark Voronoi complex, any p ∈ Ti has the

neighborhood distance to all its reference landmarks, including

ui+1. Thus inter-tile routing between Ti and Ti+1 sets ui+1 as

the temporary destination. The packet is forwarded to a node

which decreases the distance to ui+1. Eventually the packet

reaches the boundary of tile Ti+1, at which point we switch

the temporary destination to ui+2 (the home landmark of Ti+2,

the tile following Ti+1); and so on until the packet reaches the

destination tile. See Figure 4 for an example.

u1

p

q

u2 u3

Fig. 4. Routing across tiles in GLIDER.

The shortest paths of a node to its reference landmarks are

used for efficient inter-tile routing. In the presence of node

or link failures these shortest paths may be broken. However,

unless a large number of nodes in the same region die together,

efficient routes to reference landmarks can be preserved. Each

node stores the IDs of all of its neighbors that are i hops away

from a reference landmark if this node itself is i+1 hops away

from the same reference landmark. In case that all the parents

of a node die, a local flooding may be needed to get out of

the stuck node.

The novelty of the GLIDER naming and routing scheme is

that it explicitly captures the global topology of the sensor

field, based on which global route planning and local greedy

routing can be smoothly integrated. As the global topology of

the sensor field captures where holes are and how to route

1The definition for neighborhood distance is slightly different from the
one defined in [8]. We made this modification to guarantee that the shortest
path from p ∈ T (u) to one neighboring landmark v will cross the Voronoi
boundary between u and v.

around them, GLIDER gets around many of the pitfalls of

location-based routing schemes, such as the requirement of

accurate location information, the unit-disk graph model and

the correct construction of a planar subgraph of the link con-

nectivity graph to get around local minima in greedy routing.

It was also observed in [8], that the topology-based routing

achieves better local balancing compared with geographic

routing, such as GPSR and GFG [12], [2], in that sensors

near hole boundaries are not as severely over-loaded.

IV. LANDMARK-BASED DATA-CENTRIC STORAGE AND

RETRIEVAL

Utilizing the two level structure adopted in GLIDER, our

information storage and retrieval scheme works as follows: at

the tile adjacency graph (i.e. CDG) level, we use a modified

content-based distributed hash table on the CDG; within each

tile, we use the double-ruling idea. We explain the algorithm

in detail in the following subsections.

A. Content-based distributed hashing on CDG

For a piece of data produced by the information producer,

a hash function f takes the content of the data as input and

outputs a landmark node ID, i.e., f : C 7→ L, with C being the

set of possible values of a specific attribute of the information

content and L the set of landmark IDs. For example, C may

be the name space for different species of animals, in which

case, different event records concerning the same species will

all be hashed to the same tile in the network, no matter where

the data was originated. Every sensor stores the hash function

f , and therefore can compute the hash result locally. On the

other hand, the CDG, usually of a small size, is also known

to every sensor in the network. Given the CDG, each node

can compute locally the shortest path tree on the CDG rooted

at any landmark (there might be multiple shortest path trees

rooted at the same landmark — ties are broken arbitrarily).

An information producer, located at sensor p, proceeds from

its resident tile towards the hashed landmark f(c). In each

Voronoi tile along the (abstract) path from its resident tile

to the hashed tile, data is replicated at a subset of sensors

following a set of rules to be described in the next section.

These tiles serve as ‘data reservoirs’ to store the data produced

by the (possibly many) producers.

B. Data replication (for producers) and retrieval (for con-

sumers) within a Voronoi tile

This section describes in details the rules for data replication

and retrieval within a Voronoi tile, with the help of inter-tile

routing provided by the GLIDER.

1) Data replication for information producers: For an

information producer at sensor x in a tile with home landmark

u, we first find on the CDG the shortest path from u to

the landmark f(c) with the hashed data c. Suppose this

shortest path passes through a sequence of tiles P(u, f(c)) =
S1, S2, · · · , Sk, where Si = T (ui), with ui as the home

landmark of Si, u1 = u, uk = f(c). Routing from the first

tile S1 to the last tile Sk is implemented by inter-tile routing
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in GLIDER. Furthermore, data is replicated at each tile on the

way of P(u, f(c)).
The basic idea of data replication inside a Voronoi cell with

landmark u is to start from a (randomly selected) sensor p in

tile T (u) and replicate data along a path from p to each of

the three guides r1, r2, r3, until the boundary of T (u) is hit.

The collection of paths to three guides is organized by a finger

tree, denoted as F(p). The selection of the guides is described

in the following.

• Replication rule A: If u has at least three neighboring

landmarks on the CDG, the three guides are chosen from

u’s neighboring landmark set. Such selection of guides

is fixed with respect to the same destination landmark

f(c). If the next Voronoi cell on the path P(x, f(c)) is

landmark v. Then we pick v as the first guide r1. The

other two guides can be chosen, e.g., as the neighboring

landmarks of both u and v, as shown in Figure 5.

• Replication rule B: For the rare case when u has two

or less neighboring landmarks on the CDG, u has at

least one neighbor v which is chosen as the first guide

v1. The other two guides are picked on the boundary

between T (u) and T (v) in such a way that they are

distinct and they are not on the shortest path from p to

v in the subgraph spanned by the Voronoi tiles of u, v,

i.e., T (u)
⋃

T (v).

Notice that the selection of guides for a Voronoi cell T (u)
only depends on u and the destination cell T

(

f(c)
)

. Thus it

is fixed and known to all the sensors in T (u). Data replication

is only done inside T (u), on the paths from p to the three

guides.

• If the guide ri is a neighboring landmark of u, by the

construction of GLIDER, each node in T (u) has the hop

count to ri in the Voronoi neighborhood graph spanned

on T (u)
⋃

T (ri). We replicate data on the shortest path

from p to ri in the neighborhood distance metric, namely,

the shortest path in the subgraph spanned on nodes

T (u)
⋃

T (ri), until a boundary node of T (u) is reached.

See Figure 5.

• If the guide ri is a node on the boundary of T (u), we

replicate data on the path routed by the GLIDER intra-tile

routing scheme from p to ri.

F(p)

w2

w3

w4 = r2

w5 = v = r1

w1 = r3

u
p

Fig. 5. Data is replicated on a finger tree F(p) rooted at p towards three
guides ri, i = 1, 2, 3.

In summary, inside a tile with home landmark u, we

replicate data on a finger tree rooted at a random node p. The

finger tree is only determined by u and the content of data.

Each path on the finger tree is produced by either inter-tile or

intra-tile routing in GLIDER.

Data replication on the finger tree inside tile T (u) can

be performed in various ways. In general there is a tradeoff

between the storage cost and the query cost. If the data has a

small size, then we can replicate the whole piece of data on

every sensor on F(p) such that a query gets the data when

it hits any node on the finger tree. To save node storage, on

the trail of F(p) we can save the data on only one or a small

number of sensors, say the sensor p, and save a pointer on

every other sensor indicating where the real data is stored.

If a query gets to a sensor on F(p), it can either follow the

backward pointer stored at each sensor or simply use GLIDER

intra-tile routing to reach the real data. The query may have

to walk a little more once it finds the finger tree.

2) Data retrieval for information consumers: Suppose an

information consumer y stays in a tile v. y routes to the tile

with f(c) as home landmark and check each tile on its way

to see whether it has encountered a tile with data c. If the

sequence of tiles from the y’s resident tile to that of the hashed

landmark f(c) are P(y, f(c)) = T1, T2, · · · , Tk, where Ti =
T (vi), with vi as the home landmark of Ti, v1 = v, vk = f(c).
If the consumer finds the data in an intermediate tile, it returns

to y. Otherwise the consumer can always retrieve the data from

the last tile T (f(c)).
Now we describe how an information consumer finds the

replicated data in a tile with home landmark u. Notice that the

consumer does not know where the producer is, nor the finger

tree F(p) which indicates where data is stored. The goal is to

detect as soon as possible whether this tile has the replicated

data. The motivation for our data retrieval algorithm comes

from an observation as follows.

Theorem 4.1. For a landmark Voronoi complex on a set L

of landmarks, denote by T (u) as the Voronoi tile of u ∈ L.

Suppose ri, i = 1, 2, 3, are neighboring landmarks of u. F(p) is

a finger tree rooted at a point p ∈ T (u). R is a curve in T (u) that

visits points on each boundary between u and ri, i = 1, 2, 3.

Then the polygonal curves F(p) and R must intersect2 inside

T (u).
Proof: See Figure 6 for an example. If ri is a neigh-

boring landmark of u, the path from p to ri on the finger

tree F(p) follows the shortest path in the subgraph spanned

on T (u)
⋃

T (ri). Clearly this path intersects the boundary

between the Voronoi cells T (u) and T (ri). We denote by the

intersection as si and denote the path between p and si on

the finger tree by P (p, si). The three paths P (p, si) partition

T (u) into three pieces. Inside each piece we can not have all

the three boundaries between T (u) and T (ri), for i = 1, 2, 3,

appear. Therefore, any curve inside T (u) that passes through

three nodes, one on each boundary, must intersect F(p). Thus,

F(p) and R intersect. ¤

Motivated by the above theorem, we describe an information

retrieval algorithm for the consumer to fetch data if the desired

data is indeed replicated in T (u). Suppose that the consumer

2By intersection we mean the polygonal curves intersect, i.e., they either
intersect at a common sensor, or two links intersect.
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s3
w2

w3

w4 = r2

w5 = v = r1

w1 = r3

u
p

F(p)R

s2

s1

Fig. 6. For a Voronoi diagram on point set L in the plane, denote by T (u) as
the Voronoi cell of u ∈ L. ri, i = 1, 2, 3 are three neighbors of u. Suppose
F(p) is the finger tree rooted at a point p ∈ T (u), R is a curve in T (u) that
has points on each boundary between u and ri, i = 1, 2, 3. Then F(p) and
R must intersect inside T (u).

enters a Voronoi cell T (u) at a node q (or y, at the consumer’s

resident tile). If the next Voronoi cell on the path P(y, f(c))
is v, then v is taken as guide r1. The path that the consumer

follows is denoted as the retrieval path, which is defined as

follows.

• Retrieval rule A: If u has at least three neighboring

landmarks, then consumer routes by GLIDER inter-tile

routing, i.e., shortest path towards r2 in the neighborhood

graph on T (u)
⋃

T (r2) until it hits a node t2 on the

boundary of T (u). Then the consumer routes from t2
towards the landmark r3 in the same way until it hits a

node t3 on the boundary of T (u). Finally the consumer

routes from t3 towards the landmark r1 until it hits a

node t1 on the boundary of T (u).
• Retrieval rule B: If u has a guide ri which is not a

landmark node, we use the GLIDER intra-tile routing

scheme in replace of the inter-tile routing scheme as

above.

Theorem 4.1 says that if an information consumer travels

along a path that visits a point on each boundary between T (u)
and T (ri), for i = 1, 2, 3, then the path that the consumer

follows must intersect the finger tree of the producer. Such

an intersection might be a common sensor, in which case the

information consumer finds the data, or a pointer to where the

data is held. In a rare case, it is also possible that there is only

an intersection between two links, one on the retrieval path,

the other one on the finger tree. When two links intersect, it’s

very likely that one node has direct communication links to the

other three nodes3. Since sensors use wireless communication

so that a single broadcasting reaches every node inside the

communication range, the sensor can respond to the broadcast

query if it has the finger tree information. On the other hand,

an algorithmic fix to guarantee that the information consumer

finds out finger tree at a link crossing can be done in two

ways. One scheme is to enhance the storage scheme by storing

pointers on all the one-hop neighbors of the sensors on the

finger tree such that the consumer will always encounter a

sensor within one hop from the finger tree. The other scheme

3As shown in many places before, if the network model resembles the unit
disk graph model and two edges intersect, then one node has edges to the
other three nodes [9].

is to enhance the retrieval scheme by searching not only the

sensors on the retrieval path but also their one-hop neighbors.

By either of the two schemes, it is guaranteed that if the

producer did replicate data in the tile T (u), the consumer

always finds this out.

We also remark that the finger tree is rooted at a random

node inside a tile T (u). In the same tile, multiple producers

create finger trees rooted at different nodes. By the ran-

domness, two finger trees have few nodes in common. For

different information consumers, since they usually enter the

tile at different entry points, the information retrieval paths

they follow are different as well. Thus our scheme is a good

double ruling scheme that not only guarantees the information

retrieval path to hit every information replication finger tree

but also balances the load in doing so.

C. Improvement on query cost

In this section we describe a heuristic to improve the

performance of our scheme, in particular the query cost.

Specifically, the heuristic improves the query cost by using

a shorter retrieval path than the zig-zag path. In particular, we

construct the finger tree more carefully so that the consumer

will hit the finger tree in most cases by just following the

GLIDER routing path to the hashed tile.

1) Find guides for finger trees: We first explain a property

of GLIDER that we will use later. For a landmark x, we can

check whether two neighbors on the combinatorial Delaunay

graph are also adjacent by checking whether they have an edge

in D(L). An easy observation is as follows.

Lemma 4.2. Suppose x, y, z are three adjacent landmarks on

a shortest path on the CDG, then x, z are not adjacent on CDG.

Proof: If x and z are adjacent on CDG, then by deleting

y we can get a shorter path. ¤

Notice that the information producer and consumer use the

same shortest path tree rooted at the hashed tile T (f(c)).
Assume the current tile is T (u) with home landmark u. Denote

by {wj}, j = 1, · · · , k, the set of landmarks adjacent to

u on D(L). t is the next hop on the shortest path towards

the destination tile. By the above Lemma, the information

producer and consumer enter the tile T (u) from the tiles

that are not adjacent with the tile T (t). Intuitively we should

choose the guides as the next-hop landmark t and u, t’s

common neighboring landmarks whenever possible. Thus the

finger tree ‘protects’ the boundary between tiles T (u) and

T (t) so that the consumer will hit the finger tree by just

following the GLIDER routing path towards t. See Figure

8 for an example. In particular, when u has at least three

neighboring landmarks on CDG, we choose the three guides

ri, i = 1, 2, 3, for the information producer as follows.

• Replication rule C: If the current tile T (u) is not the

hashed tile, we denote by t the next landmark on the

shortest path towards f(c). If we can find two landmarks

w1, w2 that are adjacent to both u and t, we choose

r1, w1, w2 as the three guides.

• Replication rule D: If the current tile T (u) is the hashed

tile, we choose the first guide r1 as one neighbor of u on

the CDG which is determined by the content of the data.



8

If we can find two landmarks w1, w2 that are adjacent to

both u and t, we choose r1, w1, w2 as the three guides.

• For the other cases, the guides are chosen as in replication

rule A or B.

It has been observed through simulation that the replication

rule C and D are the typical situations encountered. Repli-

cation rule B is included mainly for the completeness of the

scheme.

(i) (ii)

Fig. 7. Implementation of double-ruling within a tile. The black lines shows
the path on which the producer replicates its data. The line in orange shows
the consumer’s path to retrieve the data. (i) The consumer follows a zigzag
path; (ii) The consumer follows the GLIDER inter-tile routing to the next
landmark.

2) Simplified retrieval scheme: With the help of the im-

proved information storage scheme as described in the previ-

ous section, we can simplify the data retrieval scheme in this

case. Namely, if data is replicated by replication rule C or

D, the information consumer just follows the GLIDER routing

path towards the first guide r1, which is either the landmark

on the next hop on the shortest path towards the destination

tile T (f(c)), or a neighboring landmark determined by the

content of data in replication rule D. See Figure 8.

q

w2

w3

w4 = r2

w5 = v = r1

w1 = r3

u
p

F(p)

Fig. 8. The consumer’s entry node is q. The path from q towards the landmark
v via the shortest path on the neighborhood distance metric on T (u)

S

T (v)
intersects the finger tree F(p), for any p ∈ T (u).

Suppose the information consumer enters the Voronoi cell

T (u) from the Voronoi cell T (wj), i.e., u is wj’s next hop

on the shortest path from wj to f(c). By Lemma 4.2, wj is

not adjacent to the landmark t two hops on the shortest path

to f(c) on the CDG. Suppose the entry node of the consumer

to T (u) is q. The producer’s finger tree with three guides

as the next hop t and two common neighbors of t and u

on the CDG blocks the boundary between T (u) and T (v)
from the point q. Thus the path from q towards the landmark

t via the shortest path on the neighborhood distance metric

on T (u)
⋃

T (v) must intersect the finger tree F(p), for any

p ∈ T (u). This simplification replaces the zig-zag curve by

the natural GLIDER route towards the hashed destination tile.

Please see Figure 7 for a comparison.

D. Structured data organization and query

For many applications of sensor networks such as tracking

and event detection, data produced by sensors have natural

structures and thus can be categorized in a more structured

way. For example, a network for tracking produces data related

to different moving targets such as cars, trucks, giraffes, ele-

phants, people, etc. These data can be organized by categories

at a coarser level, such as vehicle, animals and people. Within

the hashed tile with all the data of the same category, the

double ruling scheme guarantees that a single query along the

data retrieval path will intersect all the finger trees on which

different data are replicated. Also notice that since each finger

tree starts at a random node inside the tile, those collections

of finger trees are nicely spread out across the nodes, without

overloading any particular one. Thus data generated in the

sensor network are distributed not only evenly in the network,

but also in a nicely organized way.

V. SIMULATIONS

We simulated the proposed information storage and retrieval

scheme at the network layer for the purpose of validation.

The simulator is written in C++ and runs the distributed

algorithm presented. We focused on designing an algorithm

that is both effective and lightweight enough for real system

deployment. In this section, we study some practical work-

around to further lower the query cost and evaluate the network

level performance of our scheme vs. that of Geographic Hash

Tables [16].

The simulated network has 2000 nodes distributed on a

perturbed grid in a 316m by 316m field. The perturbation

follows a zero mean Gaussian random distribution with a

standard deviation of 4 meters. The radio range is 11 meters.

Each node can communicate with a set of neighbors nearby.

The average number of neighbors for each sensor is 6.2, which

is sensible in a practical sensor networks setting. Among 2000

nodes, 23 are chosen as landmarks. Of the landmarks 18 are

chosen randomly, with another 5 nodes added near the network

boundary, after the random selection. In all the figures, sensors

are shown as small circles and landmarks are shown as larger

triangles. Blue circles represent nodes on the boundaries of

Voronoi tiles. A typical scenario is shown in Figure 9 (i).

Unless specified, all averages are taken on 50 simulations runs.

A. Data structure and storage requirement

Except for the CDG on the landmarks and the global hash

function, each node stores only local information. Since the

number of landmarks is small (23 landmarks out of 2000 nodes

in our simulations), the total memory required for each node is

manageable. Each node stores the following local information.
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• the combinatorial Delaunay graph (CDG) on the land-

marks;

• neighborhood distances to its reference landmarks;

• a global hash function;

• a bit to record if the node is on the boundary of a tile;

• the IDs of its neighboring sensors.

B. Enroute data aggregation

As discussed in section IV-A, for a specific category of

data, for example the sighting of giraffes, the content-based

hash function determines a tile, g, where all giraffe related

information will be stored. The shortest path tree rooted at

g (Figure 9 (i) ), denoted by T , provides the guidelines at

the CDG level for the information producers to reach g. On

the way to reaching tile g, information producers replicate

their data. In T , if two leaf nodes are near each other and

far away from the root, it is very likely that they share a

common ancestor before reaching the root. As the actual paths

are local realizations of the CDG level paths, the replication

paths of producers that disseminate giraffe information may

merge before they reach the final tile g. When this happens

data aggregation can be performed enroute. Figure 9 (i) shows

a shortest path tree on landmark CDG. Figure 9 (ii) shows a

possible enroute data aggregation scenario.

C. Reducing consumer query cost

The zigzag path ( as shown in Figure 7 (i) ) as introduced in

section IV-B.2 guarantees that the consumer will find the data

in a tile if the data is replicated in that tile. However, when

data is not hashed in that tile, zigzag paths roughly double the

communication cost compared with that of simply travelling

towards the destination tile. The zigzag path is necessary only

when replication rule C and D (Section IV-C) are not satisfied,

which does not occur frequently in a reasonably designed

network. If we opt to let the consumer follow the shortest

path to the landmark of the next tile(figure 7(ii)), it will cross

the replication path of the producers if the data is replicated

in that tile by replication rule C and D. On the other hand,

as both the producers and consumers follow the same shortest

path tree at the CDG level, once they reach the same tile, they

will head for the same next tile. Therefore, if a query misses

the data replication tree in one tile, there is a big chance that

it can meet the data in the next tile. Our simulation results

have shown that, on the average, this practical work-around is

about twice as energy-efficient when compared with using the

zigzag path if tile adjacency conditions are nice. In the case

that tiles are separated by holes, using the zigzag path helps

the consumers to retrieve data early on.

D. Performance comparisons with GHT

As discussed in details in [8], routes generated using

GLIDER are of comparable length to those by geographic

routing, such as GPSR [12], in networks with densely, evenly

distributed nodes. In case of nodes not densely and evenly

distributed, i.e. with the existence of holes, geographic routing

yields paths that ‘hug’ the boundaries of holes. As a conse-

quence, not only the boundary nodes are excessively burdened

number of producers per tile 1 2 3 4
cost ratio to GHT 1.63 1.24 1.04 0.98

TABLE I. The cost ratio of the proposed scheme to that of the GHT as the
number of producers per tile varies.

with network traffic, but also longer paths (in terms of number

of hops) are generated in comparison with the paths given

by GLIDER. Because our information storage and retrieval

scheme is built on top of GLIDER, this advantage helps the

performance of our scheme vs. GHT in terms of load balancing

and the path lengths of the producers as well as the consumers.

We discuss performance issues such as average path length,

locality awareness and load balancing in comparison with

GHT in the following subsections.

1) The cost for producers: Compared to GHT, our scheme

has its advantages and drawbacks:

1) Advantages: The enroute producer data aggregation

made possible by the high-level topological information

and the CDG reduces the total cost for producers that

send the same type of data to the hashed tile. The biggest

saving comes from the case when multiple producers

reside in the same tile. They will meet with one another

within the tile. They can then share one data replication

path to the hashed tile and at that time data aggregation

can be performed.

2) Disadvantages: Although the producers travel about the

same distance as compared to that in GHT to reach the

hashed tile, the additional two finger paths along each

title they travel incur extra communication costs.

To evaluate these tradeoffs, we randomly pick one producer

in each tile. We then count the number of transmission needed

to build the data replication paths and compare it to that

required by GHT. Our simulation shows that our scheme

gives a cost on average about 1.63 as expensive as that by

GHT. However, if we double the number of producers in

each tile, the cost ratio reduces to 1.24. In fact, the more the

producers per tile, the better cost ratio of our scheme to that

of GHT is achieved. This this due to the fact that in GHT,

each information producer follows its own path to the hashed

node using geographic forwarding. In our scheme, because

of the use of hierarchy and the double ruling, we guarantee

that producers residing in the same tile will have their data

replication paths meet with one another before exiting their

residence tile. From that point on, they can aggregate their data

and share the same replication path. Of course, such saving

is only possible when multiple producers send their data at

about the same time. Table I shows more simulation results.

These results are affected by the network scenario used in the

simulation. More specifically, they are affected by factors such

as the total number of tiles, the location of the hashed tile, etc.

However, the trend that the cost ratio decreases with increasing

number of producers within each tile remains apparent.

2) Locality awareness and the cost for consumers: Locality

awareness is realized by the introduction of hierarchy and the

shared shortest path tree at the tile level for both the producers

and consumers of the same data. For consumers, our proposed
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(i) (ii)

Fig. 9. Landmarks are shown by triangles. Sensor nodes are shown as small circles. Circles in blue are sensors on the boundaries of adjacent tiles. The dark
nodes are the boundaries of the tiles. (i) A shortest path tree on landmark CDG; Each straight line denotes a branch in the tree with the arrow pointing to the
parent of the node at the other end; (ii) A possible enroute data aggregation scenario.

scheme always yields shorter data retrieval paths. First, for

consumers that reside in the same tile with the producer, our

scheme guarantees that the consumers can retrieve the data

within that tile. Second, as discussed in the previous sections,

because the producers and consumers of the same type of

data follow the same shortest path tree at the CDG level the

consumers may get the data before they reach the hashed tile.

The worst case for the consumers is that they have to travel to

the hashed tile to fetch the data, which is what the consumers

have to do in GHT.

To verify this, we fix a producer and let each node be a

consumer of that data produced by the producer. We count the

number of hops each consumer has to travel to get the data

and compare it with that required by GHT. Table II shows how

the cost ratio varies as the distance between the consumer and

the producer increases.

Our simulation results show that our scheme to some extent

alleviates the locality insensitivity of GHT. When the producer

and consumer are near each other, our scheme takes advantage

of the locality and gives a shorter data retrieval path. The

numbers in this table will change with different network

setups. For example, 8 hops seems to be a magic number here.

The reason for this is that the tile size is roughly about 8 hops

in radius. Changing the size of the tiles will alter the threshold

numbers for the cost ratio to change significantly in that table.

However, the trend that the cost ratio decreases with decreased

distance between the producer and the consumer remains.

We also randomly picked 100 pairs of producer and con-

sumer in the sensor field and simulated the data retrieval

processes for the consumers. On average, the consumers travel

about 70.2% of the path length compared to that using GHT

disposition (hops) ≤ 4 8 12 16 20 24
cost ratio to GHT 0.17 0.16 0.44 0.47 0.91 0.95

TABLE II. The cost ratio of the proposed scheme to that of the GHT as the
hop count distance of the consumer from the producer increases.

before they retrieve the data.

3) Load balancing: The fact that information is hashed to

a curve brings about other nice properties to our scheme in

terms of load balancing and fault tolerance. To show this, we

picked one information producer. We then let each node to

be a consumer of the data from that producer. Each consumer

retrieves the data using the proposed scheme. We record the

network traffic load at each node and compare it with that by

using GHT. Figure 10 shows the comparison.

The figures shows two things: first, the network traffic

overtaxes the nodes on the boundary of a big hole in the

network in GHT due to its use of geographic routing; second,

there is a more severe hot spot phenomenon created around

the hashed site of the data in GHT. For GHT, the max load

is 1615. For the proposed scheme, the max load is 793. In

addition, because data is hashed along a elongated curve in

the proposed scheme, it has better fault tolerance.

VI. CONCLUSION

In this paper we proposed a data-centric, location-free,

landmark-based information brokerage scheme for sensor net-

works. The efficiency of our scheme is fully manifested

when there are multiple consumers and/or producers appearing

throughout the network. Such advantages are attributed to the
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Fig. 10. Comparison of network traffic load at each node. (i) load distribution using the proposed scheme; (ii) load distribution using GHT. Notice that the
maximum load value for graph (i) is 793, while the maximum load value for graph (ii) is 1615.

fact that we aggregate producer data before they reach the

hashed tile when multiple producers of the same data are in

close proximity of one another, as well as to the fact that a

consumers can potentially retrieve data on their way to the

hashed tile. This is possible because the shortest path tree

shared by both the producers and the consumers (of the same

content type), which is determined by the content-based hash-

ing and the CDG on the landmarks. In addition, the double-

ruling scheme implemented at the tile level not only provides

means for the consumers to retrieve the desired data but also

provides a fine-grained load-balanced distributed data storage

for producers within each tile. We established guaranteed data

retrieval for the consumers through an analytical study and

demonstarted performance improvements over GHT through

simulations.
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