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Landmark based localization : LBA refinement using MCMC-optimized

projections of RJMCMC-extracted road marks

Bahman Soheilian, Xiaozhi Qu, Mathieu Brédif

Abstract— Precise localization in dense urban areas is a
challenging task for both mobile mapping and driver assistance
systems. This paper proposes a strategy to use road markings
as localization landmarks for vision based systems. First step
consists in reconstructing a map of road marks. A mobile
mapping system equipped with precise georeferencing devices is
applied to scan the scene in 3D and to generate an ortho-image
of the road surface. A RJMCMC sampler that is coupled with a
simulated annealing method is applied to detect occurrences of
road marking templates instanced from an extensible database
of road mark patterns. The detected objects are reconstructed
in 3D using the height information obtained from 3D points. A
calibrated camera and a low cost GPS receiver are embedded
on a vehicle and used as localization devices. Local bundle
adjustment (LBA) is applied to estimate the trajectory of the
vehicle. In order to reduce the drift of the trajectory, images
are matched with the reconstructed road marks frequently. The
matching is initialized by the initial poses that are estimated
by LBA and optimized by a MCMC algorithm. The matching
provides ground control points that are integrated in the LBA in
order to refine the pose parameters. The method is evaluated on
a set of images acquired in a real urban area and is compared
with a precise ground-truth.

I. INTRODUCTION

Precise localization of mobile vehicles in dense urban

areas constitutes an important component of several sys-

tems such as Mobile Mapping (MMS), Advanced Driver

Assistance (ADAS) and Autonomous Navigation (ANS)

Systems. The most popular localization system is GNSS

(Global Navigation Satellite System). In dense urban areas

GNSS localization however suffers from signal outage and

multi-paths, thus failing to provide sufficient accuracy. More

advanced systems rely on Inertial Navigation Systems (INS)

and/or odometers in order to overcome the lack of reliable

GNSS signals by dead-reckoning [1]. An innate issue of

these systems is drift. The quantity of the drift depends on

the quality of the INS and high precision systems are not

affordable for applications such as low cost map updating

systems and car navigators.

More affordable relative localization systems using vision

sensors were proposed by the computer vision and robotic

communities. Visual odometry approach proposed by Nistér

et al. [2] enables successive computation of relative poses

in a sequence of mono or stereo images in real time. More

optimal pose parameters can be obtained by a local bundle

adjustment technique proposed by [3] in real-time. Like in

any dead-reckoning method, in vision based methods, errors
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are accumulated through the sequence and lead to drifts.

Even though loop closure [4] enables the system to estimate

the drift, on the one hand many trajectories contain no loops

at all and on the other hand adjustment of large loops is

computationally expensive for both SLAM (Simultaneous

Localization and Mapping) and bundle adjustment methods

[5].

An efficient solution for adjusting the drift consists in

integrating external absolute information into the pose

estimation at short intervals. GNSS observations were

integrated with vision based approaches such as visual

odometry [6], bundle adjustment [7], SLAM [8] and bundle

adjustment SLAM [9].

Other approaches used pre-built maps and applied data

association techniques in order to adjust the drift of vision

based localization methods. Various types of maps were

used in different systems.

Some authors pre-build a set of 3D points by structure

from motion or 3D laser scanners in an offline mapping

mode. In order to ensure a sufficient precision for these 3D

points, precise georeferencing techniques such as differential

GPS, precise INS, loop closure and even integration of

ground control points (GCP) were used. Then, online

localization is performed by matching features that are

acquired in real time to the corresponding features in the

georeferenced map. Royer et al. applied this strategy for

localizing a monocular system [10]. A very similar system

used planar patches instead of points [11]. In the work

presented by Bodensteiner et al. a laser scanner was used

for mapping. Then, optical images were aligned to the 3D

mapped points in the navigation mode [12]. Other authors

used laser scanning for both mapping and navigation

modes [13]. Point based maps take large storage capacities

on-board of the vehicle and make partial updates laborious.

More classical maps such as building models [14], digital

elevation models [15], [16], ortho-photos [17], textured

facades and road surfaces [18], [19] were also used as

landmarks for localization. These GIS objects are easily

available since they are produced and updated by national

cartographic agencies. In addition, their compactness

simplifies their embedment on the vehicle. However their

geometric precision is generally rather limited.

Other techniques applied a map containing compact se-



mantic objects such as pole-like objects [20], road markings

[21] and traffic signs [22]. The simple geometric shapes

of these objects make their detection and matching precise

and easy. In addition they take low storage capacity and are

manageable to update.

This paper presents an offline localization technique that

is useful for low cost street-level mapping systems. The

system reaches sub-decimetric absolute accuracies using only

affordable sensors (a low cost GNSS receiver and a calibrated

camera) and taking benefit from a pre-built 3D road marking

map.

II. RELATED WORK

Lane marking detection was investigated in many research

works in intelligent transportation community since the 90s

[23]. They were usually used for lane keeping [24]. More

recently road marking objects were also used as landmarks

for localization.

Tournaire et al. used 3D zebra-crossings that were

reconstructed in street-level stereo pairs as matching objects

between ground-level images and multiple georeferenced

aerial images. The method applied GPS localization for

initialization and enabled to compute 6D pose parameters of

the stereo pairs with sub-decimetric precision of the aerial

images’ poses [25].

Pink proposed a two step mapping-localization schema

[26] . Road marking objects are first detected in aerial

images with a semi-automatic approach. They assume

that all objects lie on a plane referred to as the ground

plane. This provides a 2D map of markings. During the

localization step, road mark contours are detected with a set

of image filters in street-level images. The detected objects

are then projected on the ground plane estimated using the

V-disparity method. Initial position of objects are known

using GPS. The matching is performed by ICP (Iterative

Closest Point) algorithm using centroid of markings. A

2D transformation composed of a 2D shift and a heading

angle was computed in order to refine the pose of the image.

In another method [21], road markings were captured

manually as polylines in an aerial image. The polylines

were then projected on the ground surface (supposed to be

a plane). Poses of street level images are initialized by a

GPS. Given an initial pose, an image of map features, like

the camera would see it is simulated. The simulated image

is then compared to the image captured by the camera. Pose

refinement parameters (a 2D shift and a heading angle) were

estimated by maximizing the similarity of the two images.

One of the interests of this technique is in comparing map

features directly with optical image without intermediate

object detection step in ground-level images.

In a system called LaneLoc, road markings were mapped

in an offline mode using georeferenced bird-eye views of

ground-level 3D point clouds and optical images by a semi-

automatic method. In the localization mode, road markings

were detected using a filtering method. GNSS is used for

initializing the pose of the camera. The features of the

map are projected in the current image. A 2D shift and a

heading angle were estimated by matching the map features

(lines) and the detected markings (points) [27]. Another

system following a similar strategy integrated road marking

observations obtained from two lateral cameras with GPS

and IMU for pose estimation [28].

In the aforementioned papers, the pose parameters were

initialized by GNSS and final parameters were obtained by

matching road marking objects between the real-time views

and the map. Following this strategy, there is no merge

of two sources of localization. The localization switches

frequently between the GNSS solution (if no map matching

available) and map matching solution. Ranganathan et al.

used a windowed bundle adjustment as initial pose estimator

[29]. Then every time a pose is corrected by matching road

marks, the refined pose is integrated as a measurement in

the bundle adjustment. The benefit of this method is that

the refined pose contributes to improve the accuracy of its

neighboring images in the sequence as well.

Two main approximations were used by all of the afore-

mentioned methods.

a) Flat road surface: In mapping and localization

phases, the road surface was approximated by a plane.

Moreover the position and orientation of the plane was

supposed to be known in relation to the camera. These two

approximations introduce errors in the coordinates of the

road marking.

b) 2D pose correction: In the pose correction phase,

only three degrees of freedom are taken into account instead

of six. The height of the camera, roll and pitch are supposed

to be exactly known. The corrections were injected to

horizontal shifts and heading angle only.

In order to reach higher localization accuracies that are

required for our mapping system, we propose a method that

is free of these two approximations.

III. OUR STRATEGY

Our system is based on two separate mapping and lo-

calization phases. In the mapping phase we use precise

georeferencing devices (GNSS/INS/odometer) and a 3D laser

scanner embedded on a mobile mapping system such as the

STEREOPOLIS MMS [30] to acquire a precise and dense 3D

description of the environment. We applied an extension of

our previous work on road marking object reconstruction

from a 3D point cloud [31]. It will be briefly explained in

section IV. In the localization phase we use only one GNSS

observation at the start point and one calibrated camera. The

localization is performed by our previous work on extension

of local bundle adjustment to integrate ground control points

(GCP) [32]. This part is summarized in section V. The main

contribution of this paper is in associating 3D georeferenced



road marks in the map to the images during the localization

phase without using any road mark detector. Uncertainty

propagation through the bundle adjustment provides error

ellipsoids that will drive the search space for road mark

matching (section VI). Once a 3D marking is associated

to its corresponding 2D position in an image, it provides

a GCP. The obtained GCP together with its uncertainty adds

a weighted constraint equation to the bundle adjustment

system. The resolution of the system provides refined pose

parameters for the entire image sequence. Results on a real

dataset are presented in section VII.

IV. ROAD MARKING MAP GENERATION

We propose to generate a road marking map using an

extension of the method proposed by Hervieu et al. [31]. We

first summarize here this approach, then detail the proposed

extensions, and finally lift the 2D extractions as a 3D road

marking database.

A. Original approach

First, the acquired point cloud by a Mobile Mapping

System is projected vertically onto a horizontal plane in order

to generate an orthophoto-like Lidar image (figure 2) with

two channels (intensity and height) which undergo a hole-

filling filter to cope with the irregular Lidar sampling.

Within the Lidar intensity orthophoto, road mark-

ings are then searched for as occurrences of a trans-

lated/rotated/scaled rectangular road marking template in-

stanced from a library of road markings (figure 3). This

search space is modeled as a set of road marking types and

for each type a fixed aspect ratio, an interval of scale and a

template vector pattern delineating the white road marking

area against a dark background. Thus the extraction of road

markings boils down to finding a set of road markings X =
(ℓi, xi, yi, θi, λi) parameterized by a type ℓ, a translation

(x, y), a rotation by θ and a scaling λ (figure 1). The

marking type defines a pattern Iℓ that may be rasterized into

the intensity orthophoto geometry using the affine transform

Tx,y,θ,λ (denoted TXi
for short).

Hervieu et al. [31] formulate the road marking extrac-

tion as an energy minimization problem over the varying-

dimension search space defined above, with an energy de-

fined over a set of road markings X = (Xi)i=1...n as :

U(X) =

n
∑

i=1

u1(Xi) +
∑

i<j

u2(Xi, Xj) (1)

u1(Xi) = f0 −max(0, ZMNC(Iℓi , T
−1
Xi

(I)))(2)

u2(Xi, Xj) = β
| S(Xi) ∩ S(Xj) |

min(| S(Xi) |, | S(Xj) |)
(3)

where f0 is the cost of adding an object. A low value of

f0 (0.35 as used in [31]) enables the optimization to add

objects with lower correlation scores at lower costs. A high

value, in contrast penalizes the objects with low correlation

scores. It should provide a trade-off between the number

of over-detections and under-detections. In the present work

we chose a higher value f0 = 0.55 in order to reduce the

number of over-detections which comes at a cost of higher

number of under-detection. ZMNC(I, I ′) denotes the zero-

mean normalized correlation between images I and I ′ and

S(X) = TX(IℓX ) is the resampled image of the pattern and

| · | and ∩ denote respectively the area and intersection of

white pixels. The coefficient β tunes the tradeoff between

the energy terms u1 and u2 (β = 100 in [31]).

x

y

θ

Ibike

Tx,y,θ,λ

Tx,y,θ,λ(Ibike)

Fig. 1. The object i with parameters (ℓi =bike,xi, yi, θi, λi).

This energy is minimized using a Reversible-Jump Markov

Chain Monte Carlo (RJMCMC) sampler coupled with a

simulated annealing, which may cope with search spaces of

varying dimensions (the number of road markings to extract

itself being unknown) and arbitrary energy functions (cf. Fig.

4). Hervieu et al. [31] further discusses both standard and

more advanced RJMCMC kernels which may be used to

bias the random sampling toward good solutions, thereby

improving the convergence rate.

B. Proposed extensions

• New patterns have been introduced, leveraging the ex-

tensibility of the original paper (figure 3).

• The data energy term has been scaled by the road-

marking perimeter in order to reduce over-detections.

u′

1(Xi) = u1(Xi) perimeter(Xi) (4)

It enables to favour larger objects that could be replaced

by many smaller objects using previous data energy.

• A new binary orientation energy u′

orient has been in-

troduced in order to penalize incompatible orientations

of neighboring road markings. Road markings follow

usually a same direction and are nearly parallel except

in the intersections where perpendicular markings are

observed. This energy term is computed for neighboring

objects that are situated at a distance lower than 5m.

• The raster-based intersection energy proved to be very

time consuming as it required the resampling of the

template pattern and pixel-by-pixel raster comparisons

to get the raster area of intersection. This energy has

been replaced by a simplified version u′

inter, penalizing

the intersection of the road marking oriented bounding

boxes (OBB) instead. This drastically reduced comput-

ing times while the approximation is very reasonable

as road markings are very rarely sufficiently close that



their oriented bounding boxes intersect.

u′

2(Xi, Xj) = u′

orient(Xi, Xj) + u′

inter(Xi, Xj)

u′

orient(Xi, Xj) = max(0,−cos4∆θ) (5)

u′

inter(Xi, Xj) = uinter(OBB(Xi),OBB(Xj))

• Road markings tend to follow a regular layout, thus

we added a birth/death in a neighborhood kernel which

gives the sampler the opportunity to explore more

efficiently the possibility that some road marking might

exist next to an already detected one. The inclusion of

this kernel also resulted in a significant performance

boost [33].

• Finally, another kernel was added to enable a uniform

type switch, which proved to be necessary in order to

help the sampler find the right road marking type.

C. 3D road marking database

Once the 2D rectangles labelled with a road marking type

have been extracted, they are lifted in 3D using the digital

terrain model (DTM) encoded in the height channel of the

Lidar orthophoto. A simple height lookup enables the lifting

of these 2D rectangles as a 4-sided 3D polygon.

Dictated by the targeted application, and due to the abun-

dance of road markings in street view images, the detec-

tion tradeoff has been tuned to minimize false detections

at the cost of under-detecting some road markings. This

results in an extraction with some under-detection but very

limited over-detection. In order to ensure the accuracy of

this database the extracted road markings may be validated

interactively in order to remove the remaining few false

positives. Note that this manual intervention is optional and

very limited as the extracted road markings may be sorted

using their data attachment term u′

1 such that the operator

only has to review the few extracted road markings that have

the worst data evidence.

V. LOCALIZATION SYSTEM

Similar to other works, we use a monocular calibrated

camera embedded on a vehicle as a localization device.

The localization is initialized using a low cost GPS at the

beginning of the trajectory. Except at the starting point, any

GPS observation is used in the localization system. Local

bundle adjustment (LBA) [3] and uncertainty propagation

[34] are applied in order to estimate the pose parameters and

their covariance. Like in any relative positioning algorithm,

accumulation of errors in LBA leads to considerable drifts for

long trajectories. In order to reduce the drift, we proposed to

integrate ground control points (GCP) in the equation system

of LBA [32]. GCPs are points whose coordinates are known

in both world and image coordinate systems. In order to

explain how road markings are integrated as GCPs in the

bundle adjustment, we explain briefly the principal concepts

of a constrained LBA. For more details about the algorithm

the reader is invited to refer to [32].

The principal concept of LBA (cf. Fig. 5) is to compute the

system on a low number of images N since the complexity

(a)

(b)

Fig. 2. (a) 3D point cloud, (b) corresponding orthophoto I (GSD = 2cm)
generated from points’ intensities.

Fig. 3. Library of road marking template patterns (GSD = 2cm).

Fig. 4. Simulated annealing-coupled RJMCMC optimization.

of the system is O(N3). At the very beginning a classical

bundle adjustment is computed on the first N images (step

1 in Fig. 5). Then the bundle adjustment window is slid by

a step n < N (step 2 in Fig. 5). N − n poses of the new

window are already computed by the previous step (Cp) and

n new poses are unknown (Cn). The vector Xt contains the

3D coordinates of all tie points. The re-projection errors are

estimated by equation 6.

vt = F (Cp, Cn, Xt)−mt (6)
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Step 1

Step 2

Step 3
Step 4

N

N
n

New tie points

N

N
N

Cp = [Ct−N−1...Ct−n]
Cn = [Ct−n+1...Ct]

Xt = [...Xi...]

New images

Previous images

Tie points

points
Previous tie

Fig. 5. Schematic flow of local bundle adjustment.

F is the function projecting Xt in poses Cp and Cn and mt

is a vector containing observed coordinates in the images. As

mentioned before, previous poses Cp were already computed

during the previous step. The previously computed values C0
p

are used to constrain new estimation of Cp, denoting this

error as vp:

vp = Cp − C0
p (7)

The system is then resolved by minimizing the weighted

quadratic error:

[Ĉp, Ĉn, X̂t] = argmin
[Cp,Cn,Xt]

1

2
(vTt Q

−1
t vt + vTp Q

−1
Cp

vp) (8)

Where, Qt is the covariance matrix of the 2D tie point

positioning in image space and QCp
is the covariance of

poses that are computed in the previous step.

In order to integrate GCPs in the equation system, let us

suppose that their world coordinates are coded in vector XG

and their 2D coordinates in image spaces in vector mg . The

re-projection error of these points (vg) is expressed as:

vg = Fg(Cp, Cn, XG)−mg (9)

Since the 3D world coordinates of these points are known

(X0
G) the following constraint may be added to the equation

system:

vG = XG −X0
G (10)

After adding GCPs the system is resolved by equation 11.

[Ĉp, Ĉn, X̂t, X̂G] =

argmin
[Cp,Cn,Xt,XG]

1

2
(vTt Q

−1
t vt + vTp Q

−1
Cp

vp

+ vTg Q
−1
g vg + vTGQ

−1
G vG) (11)

QG is the covariance matrix of 3D GCPs and is related to the

precision of 3D reconstruction of road marks (section IV).

Qg is the covariance of position of road marks in image

space. It is related to the precision of road mark matching

(section VI). After resolution of the system the covariance

of the parameters can be estimated by partial inversion of

normal matrix [32]. In this paper we used SIFT points for

feature detecting and matching. Features of every image are

matched to the previous three images. The size of the sliding

window is seven (N = 7) and sliding step is one (n =
1). The output of this step is 6D pose parameters of image

sequence together with their covariance.

VI. ROAD MARK MATCHING

This section tackles the problem of providing new GCPs

to the LBA by leveraging the LBA-estimated pose with

uncertainty by matching the projection of a 3D road marking

database into the current image.

A. Initialization using the LBA estimates

Given a LBA-estimated pose with uncertainties for the

current pose (C,QC), the nearest 3D road markings (XG)

may easily be selected from the database and projected into

the current image. Due to the perspective projection (F ), this

yields for each marking in the database a 4-sided polygon

which may be used to resample the road marking template

pattern through the homography defined by these 4 points.

Furthermore, the pose and road mark uncertainties (QC

and QG) translate directly into a 2D Gaussian re-projection

uncertainty (Qx̄G
) for each of the 4 points following equation

12.

Qx̄G
=

[

∂F
∂C

∂F
∂XG

]

[

QC 0
0 QG

]

[

∂F
∂C
∂F
∂XG

]

(12)

B. Search space definition

These four 2D points together with their 2D Gaussian

uncertainties allow us to define a sufficiently tight search

space: We consider for each 2D point a search space

for the refined position as the 2D bounding box of the

99%-confidence region of the Gaussian uncertainty centered

around its estimated 2D position (figure 6). This conservative

search space definition is both able to cope with small error

underestimation, and is convenient to deal with.

Fig. 6. LBA-based search space definition, initialization and MCMC
optimization.

C. Objective function

Given four image points defining the homographic projec-

tion of a road marking template into the current view, we can

assess the quality of this projection by computing the ZMNC

of this homographic projection with the image content. We

can then formulate our problem as finding the four road



marking corner projections within their uncertainty-based

bounding boxes such that they maximize this ZMNC score.

In order to rule out degenerate set ups, we further impose

that the four points define a convex polygon.

D. MCMC Optimisation

Contrary to the offline road marking extraction step, this

optimization is defined in a fixed dimension setup: the 8

coordinates of the four 2D points. Given the nature of the

objective function, a more specific optimizer is not trivially

available, thus we propose to perform a (regular) MCMC

optimization.

Given the strong correlation between the errors of the 4

projected points, we propose the following transformation

kernels for the MCMC modification proposal step:

• An overall rigid translation of the 4 points

• A translation of one point leaving the three other points

fixed with a lower amplitude

Similar to the database generation optimization, the

MCMC sampler is coupled with a simulated annealing in

order to optimize the ZMNC objective function, rejecting all

modifications that produce a concave polygon. The initial-

ization is provided by the road marking projection using the

estimated pose.

VII. RESULTS AND EVALUATION

In order to evaluate the proposed mapping/localization

algorithm, it is applied to a 500m trajectory in an urban

area (cf. Fig. 7(a)). STEREOPOLIS mobile mapping system

[30] was applied to scan the area. It provides point clouds

of 5cm resolution on the road surface. Thanks to an

integrated georeferencing system (GPS/INS/odometer),

the acquired data are precisely georeferenced. A full HD

camera is embedded on the system. The focal length is

quite high and the horizontal angle of view is about 70◦.

Intrinsic parameters of the camera and its position and

orientation in relation to the system are known. It provides

our ground-truth for vision based localization. Fig. 7(c)

depicts an example of image acquired by the system. The

road mark mapping algorithm presented in section IV was

applied to detect the road marks in the orthophoto. The

detected objects were projected in 3D using the height value

of Laser points at the corners of the road marking. The 3D

map was edited manually for removing false objects. Fig.

7(b) depicts the provided 3D map on the test area.

The first image of the sequence was initialized using GPS

localization and LBA (cf. section V) was launched using

a sliding window containing seven images (N = 7) and

progressing step of one image (n = 1). From the very

beginning of the trajectory road marks were matched to the

images and provided GCPs. Fig. 8 shows the interest of road

marking at the beginning of the trajectory. The green poly-

line shows the ground-truth trajectory. The red trajectory in

Fig. 8(a) was obtained by LBA without using road marks and

the blue one in Fig. 8(b) was computed by LBA integrating

road marks as GCPs. The error ellipsoids were exaggerated

ten times. The larger size of error ellipsoids as well as larger

difference with ground-truth is noticeable when road marking

were not integrated in the LBA.

(a) Without using road markings.

(b) Using road markings.

Fig. 8. Vision based pose estimation at the first 20m of the trajectory.
Ground-truth trajectory is drawn in green.

The results of localization with and without using road

marks on the entire trajectory are shown in Fig. 9. The

maximum of error if no road mark is integrated in the system

is 4m. This error is reduced to 0.4m if road marks are

integrated in the system. The accuracy along the trajectory is

correlated to the density of road marks. For a large part of the

sequence the error is around 0.1m. This error increased to

0.4m at the end of the trajectory since the density decreased.

We noticed that in the case where no road marking is used

(Fig. 9(a)) the positioning error decreased near image number

130. We would expect the error to increase continuously. The

decrease of error starts to happen at a very sharp turning. At

this position only about 20 tie points are available between

successive images whereas this number is about 100 for

normal conditions. We guess that relative pose estimation

at this area is erroneous. It seems that this error happens

coincidently in the opposite direction to the accumulated

error and leads to a decrease of final error to 0.5m at the
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Fig. 7. (a) Our 500m test trajectory. (b) Approximately 200 road mark objects are reconstructed by the mapping step and 150 were kept after manually
editing. (c) An example of image acquired by the embedded camera on the system.

end of the trajectory. This problem was not happened for the

localization mode using road marks. Only a few numbers of

observed GCPs can resolve such degenerate pose estimation

cases.

Most of the computation time goes into road mark matching.

The number of needed iterations for convergence in the

MCMC algorithm depends on the initial estimation and the

size of the uncertainty region. Due to some non Gaussian

errors, our estimated uncertainty is sometimes underesti-

mated. This is why in practice we enlarge the search area to

guarantee the convergence and it slows down the algorithm.

In addition the computation time for each iteration is pro-

portional to the number of the pixels of the pattern (50×200
pixels). It takes 10− 40s for each object.

VIII. CONCLUSIONS AND TRENDS

This paper presents a solution to the problem of precise

localization for low cost mobile mapping systems equipped

only with low cost sensors (camera and GPS). The method

is particularly careful about the uncertainties and does few

approximations. It enables a real 6D pose estimation using

precise landmarks. Evaluation on a test trajectory revealed

an accuracy of 10 cm in areas with high density of road

marks and 40 cm in areas with low densities. More tests

are required in order to compare the presented method using

road marks with our previous work using traffic signs as

landmarks. Fusion of both methods should obviously provide

better result. Actually, the system assumes that the landmark

map contains no false object and that the uncertainty of initial

pose is sufficiently low to avoid ambiguities in landmark

matching step. The robustness of landmark association phase

would be improved if all the visible landmarks in a view

undergo the matching at the same time (instead of matching

every object separately). The high computation time of the

matching part constitutes the main barrier for using the

proposed localization method in real-time applications. One

interesting idea for accelerating this part would be to use

image gradient to match the contours and/or corners of

objects instead of using all the pixels inside the road marking

for costly correlation score computation. Moreover, a smarter

adaptation of MCMC parameters (number of the iterations,

starting temperature and temperature decrease rate) for each

object can also help to avoid useless iterations and save

computation time. Finally, we believe that the real-time Jurie-

Dhome [35] tracker can be adapted to the problem of road

mark matching.
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