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Abstract We consider the problem of computing accurate

point-to-point correspondences among a set of human bod-

ies in varying postures using a landmark-free approach. The

approach learns the locations of the anthropometric land-

marks present in a database of human models in strongly

varying postures and uses this knowledge to automatically

predict the locations of these anthropometric landmarks on

a newly available scan. The predicted landmarks are then

used to compute point-to-point correspondences between a

rigged template model and the newly available scan.

Keywords Shape correspondence · Template fitting

1 Introduction

We aim to compute dense point-to-point correspondences

for human shapes in varying postures. The human shapes

are assumed to be represented by possibly incomplete trian-

gular meshes, which can be acquired by 3D sensing devices

such as laser or structured-light body scanners. This problem

arises from building a statistical model that encodes posture

and shape simultaneously using a database of human scans

[17]. In order to build a statistical model of 3D shapes, the

raw scans have to be parameterized in such a way that like-

wise anatomical parts correspond across the models [13].
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Considering human posture when conducting shape analy-

sis is important since the human body shape depends on the

posture of the human due to local shape changes such as

muscle bulging.

While many approaches have been proposed to compute

point-to-point correspondences [25], only few of them have

been applied to statistical model building and shape analy-

sis. Hasler et al. [17] build a statistical model of human

shape and posture variation. They obtain the correspondence

results by using manually placed markers to guide the com-

putation of the correspondences. Unfortunately, manually

placing the markers is a tedious task, and it is impractical

to use routinely in large surveys where several thousands of

subjects are typically scanned.

The purpose of this paper is to provide a fully automatic

solution to the problem of computing point-to-point corre-

spondences among a set of human shapes in varying pos-

tures. These correspondences can then be used to conduct

shape analysis while taking into account human posture. To

the best of our knowledge, previous methods for analyz-

ing the human body shape use known landmark positions

when computing the correspondences as discussed in detail

in Sect. 2. We integrate an extension of the landmark predic-

tion method [26] and the template fitting method [17]. Our

approach starts by automatically computing a set of land-

mark positions on a human body in arbitrary posture. To

compute these landmarks, we first learn the characteristics

and locations of the landmarks on a human model using a

database of human models in different postures. This infor-

mation is used to predict the landmark positions on a new

human shape in arbitrary posture. Since we aim to compute

the shape correspondence of human shapes, we assume the

knowledge of a human template shape T represented by a

triangular mesh. Furthermore, we assume the knowledge of

the skeleton and rigging weights of T . Our approach fits the
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template T to the new human body shape in arbitrary pos-

ture as follows. First, the predicted landmarks are used to fit

an initial skeleton to the new body shape. Second, the skele-

ton and rigging weights are used to adjust the posture of T

to the posture of the new body shape. Third, the shape of T

is changed to fit to the new body shape. A detailed overview

of the approach is given in Sect. 3.

2 Related work

Correspondence of deformed shapes Computing dense

point-to-point correspondences between two possibly de-

formed surfaces has received considerable attention in re-

cent years [25]. Although many algorithms have been de-

veloped to solve the correspondence problem, only few of

these algorithms are suitable for statistical model building

and shape analysis.

Approaches that solve the correspondence problem by

aligning two shapes using a transformation that is approx-

imately rigid [1, 16, 24] are not suitable to align a set of

human shapes in varying posture due to nonrigid shape

and posture changes. Hence, we focus our attention on ap-

proaches that take nonrigid transformations into account.

Several authors suggested landmark-based methods to

obtain the correspondence and applied them to shape analy-

sis. Blanz and Vetter [9] use a set of landmarks to compute

the correspondence between pairs of human faces. Allen

et al. [2, 3] use a set of landmarks and a template model

to deform a template model to human shapes in similar and

varying postures. Anguelov et al. [4] present an approach

that also works for varying postures. The approach com-

putes the correspondences between a large database of hu-

mans and uses the result to build an animated surface model

of a moving person. The database contains one subject in

multiple postures and the remaining subjects in the stand-

ing posture of the CAESAR database. Hasler et al. [17] im-

prove the approach by using fewer landmark positions and

by using a database containing many subjects in multiple

postures. Pauly et al. [22] compute the correspondences and

the transformation between multiple views of a scan for the

application of scan completion using a small set of landmark

positions.

Recently, several landmark-free approaches have been

proposed. Some of these methods align bending-invariant

canonical forms directly to obtain dense point-to-point cor-

respondences [10, 19]. These methods are currently not ac-

curate enough to perform statistical analysis. When canon-

ical forms are aligned directly, there is no guarantee that

close-by points in one shape match close-by points in the

other shape. Huang et al. [18] proceed by iteratively alter-

nating between a correspondence optimization and a defor-

mation optimization. The approach can be viewed as an ex-

tension of the Iterative Closest Point algorithm (ICP) [8] that

is often used to solve the rigid correspondence problem. The

method is shown to perform well if the two meshes are ini-

tially well aligned. If the initial alignment is poor, however,

the method fails. Huang et al. show that the obtained cor-

respondences yield visually pleasing shape interpolations.

The main drawback of this method is that it relies heav-

ily on nonintuitive user-defined parameters, which makes

the method hard to use. Zhang et al. [27] propose a tech-

nique that solves the correspondence problem by finding a

small set of features and by choosing the best feature cor-

respondence as the one that minimizes a deformation en-

ergy. To improve the efficiency of the algorithm, the tree of

all matching features is pruned if the features are too dis-

similar. Nonetheless, the algorithm is not as efficient as the

algorithm of Huang et al. [18]. Once the feature correspon-

dences are computed, the full correspondence is found by

deforming the full mesh based on the feature points. The

main drawback of this method is its computational ineffi-

ciency. Results are only demonstrated for models with less

than 4000 vertices. Furthermore, like the method of Huang

et al., the tree pruning relies heavily on nonintuitive user-

defined parameters. Chang and Zwicker [12] use a reduced

deformable model to compute the correspondence and the

transformation between two surfaces. Instead of operating

on the surface directly, the approach needs to convert the

surface into a voxel grid. This is computationally expensive.

Furthermore, this step introduces the use of several input pa-

rameters. While all of these methods are landmark-free, they

require a set of nonintuitive user-specified input parameters.

Methods that require neither landmark positions nor user-

specified input parameters have been proposed for motion

capture [11, 15]. The methods assume that the same shape

was captured in several gradually changing poses and use

this information to learn a deformation model. In our appli-

cation, this type of input data is not available. Li et al. [20]

propose an approach to register pairs of range images with-

out using any landmark positions or input parameters. While

the method is shown to perform well, the method makes use

of the fact that each surface is a terrain and can be parame-

terized by projecting each point to a plane. Since our aim

is to register the surface of full human bodies, this method

cannot be applied.

To summarize, existing fully automatic methods are not

accurate enough to produce results that can be used for

shape analysis. Landmark-based methods yield accurate re-

sults but require manually placing the landmarks. In this pa-

per, we aim to automatically predict the landmark positions

and use them to find a correspondence of high quality.

Automatic prediction of landmark positions Ben Azouz

et al. [6] propose to find reliable correspondences by au-

tomatically predicting marker positions and by using these

marker positions to find correspondences. Their method is
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based on statistical learning. This method works for models

in similar postures but fails if the posture variation is large.

Wuhrer et al. [26] extend this method to work for humans in

varying postures by using statistical learning in a bending-

invariant embedding space.

3 Overview

We aim to compute the shape correspondence of human

models. Hence, we can use a template T of a human rep-

resented by a triangular mesh. We manually find the set of

14 landmarks shown in the left of Fig. 1 on T . Let v
(T )
i , i =

0, . . . , n, denote the vertices of T and let l
(T )
i , i = 0, . . . ,13,

denote the landmarks of T . Denote the homogeneous coor-

dinates of v
(T )
i by ṽ

(T )
i . Furthermore, we compute a skeleton

S(T ) consisting of 17 bones and skinning weights W (T ) for

T using the approach by Baran and Popovic [7]. This allows

us to deform the template into an arbitrary posture by de-

forming each vertex as v
∗(T )
i =

∑16
j=0 W

(T )
i,j Tj ṽ

(T )
i , where

W
(T )
i,j is the weight for the j th bone and the ith vertex of T ,

and where Tj is the 3 × 4 transformation matrix applied to

the j th bone. Figure 1 shows the template model. The left of

the figure shows the template with landmarks, and the mid-

dle of the figure shows the template and the fitted skeleton.

The right of the figure shows the rigging weights by assign-

ing a color to every bone of the skeleton and by coloring

each vertex of the template with the color of the bone that

has the largest influence on this vertex.

Given a scan P of a human in arbitrary posture, we aim to

compute the shape correspondence of this scan and the tem-

plate T . To achieve this goal, we first predict the locations of

the 14 landmarks on P using probabilistic inference. We use

a database of humans in varying postures to train a Markov

network and use this network to predict the landmark lo-

cations. This is based on Wuhrer et al.’s approach [26] and

Fig. 1 Template model T with landmarks l
(T )
i , skeleton S(T ), and rig-

ging weights Wi,j

is explained in Sect. 4. The approach proceeds by embed-

ding the intrinsic geometry of the human body shape in R
3

and by predicting the landmarks in this embedding space.

The embedding is invariant with respect to rotations, trans-

lations, and reflections. After centering the embedding and

after aligning it along its principal axes, the embedding is

invariant with respect to flipping the axes. Since there are

three possible axes to be flipped, this results in eight possible

alignments. Hence, the approach by Wuhrer et al. computes

eight possible solutions. We denote the landmark positions

by l
o (P )
i in the following, where i = 0, . . . ,13 is the index

of the landmark, and o = 0, . . . ,8 is the index of the option.

For each of the eight possible options, we solve a shape

deformation problem as follows. We use the locations of the

predicted landmarks l
o (P )
i to find an initial skeleton S(P )

with the same structure as S(T ). We use each learned land-

mark as a vertex of the skeleton. We find the remaining ver-

tices of the skeleton using linear combinations of the learned

landmark positions. This skeleton is then refined to fit the

posture of P using an optimization method similar to the

one used by Hasler et al. [17]. Section 5 outlines this step.

This step aligns the posture of T to the posture of P . After-

wards, we refine the shape of T to match the shape of P us-

ing an optimization method similar to the one used by Allen

et al. [2]. Section 6 outlines this step. Since we perform these

steps for each of the eight possible options, we obtain eight

possible solutions. Finally, we find the correct result as the

one of the eight that minimizes the symmetric shape distance

to P . We compute the shape distance between two models

P0 and P1 as

d(P0,P1) =
1

2|P0|

∑

v
(P0)

i ∈P0

∥

∥v
(P0)
i − NNP1

(

v
(P0)
i

)
∥

∥

+
1

2|P1|

∑

v
(P1)

i ∈P1

∥

∥v
(P1)
i − NNP0

(

v
(P1)
i

)∥

∥,

where |Pi | is the number of vertices in model Pi ,

NNPj (v
(Pk)
i ) is the nearest neighbor of v

(Pk)
i in Pj , and ‖ · ‖

denotes the Euclidean length.

Figure 2 gives an overview of the approach.

4 Landmark prediction

We assume the knowledge of a database of scans of humans

in varying postures represented by triangular meshes. Fur-

thermore, for each scan, we assume the knowledge of the

location of a set of landmarks l0, . . . , l13. The landmarks

are shown as red points in Fig. 3. We use this knowledge

to learn relative locations and local surface properties of the

landmark points using the approach by Wuhrer et al. [26].
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Fig. 2 Overview of the approach. For each of the eight possible land-

mark predictions, the approach fits the posture and the shape. Finally,

the approach selects the best option based on the shape distance.

Predicted landmarks on the front are shown in green, and predicted

landmarks on the back are shown in yellow

Fig. 3 Location of the

landmarks and structure of

landmark graph

The approach is based on statistical learning and models the

structure of the landmarks as a Markov network. The net-

work structure we use is shown in Fig. 3. Each red landmark

point represents a node of the Markov network. Each black

edge connecting two landmark points represents an edge of

the Markov network.

It is difficult to spatially align models of human sub-

jects in different postures due to the large posture variation.

Hence, the approach computes the canonical form [14] of

each of the models in the database. The canonical forms

of all the models have a similar posture and can be spa-

tially aligned using the known landmark positions. This al-

lows one to learn the locations and relative positions of the

landmarks in the space of canonical forms. The approach

uses this information to restrict the search space of the

method and to compute the edge potentials of the Markov

network.

Furthermore, the approach learns a surface property for

each landmark based on the area of a geodesic neighborhood

of the landmark. This information is learned on the origi-

nal surface and not in canonical form space. Note that the

area of a geodesic neighborhood of a landmark is isometry-

invariant. The learned information is used as node potential

in the Markov network. Since all of the information con-

tributing to the Markov network is isometry-invariant, this

approach allows the prediction of landmarks in arbitrary

postures.

When a new scan P becomes available, the approach pre-

dicts the 14 landmark positions by performing probabilistic

inference on the learned Markov network. The search space

of the method is restricted using the learned average loca-

tions of the landmarks in canonical form space as follows.

The canonical form of P is computed and spatially aligned

with the training data. Note that since the canonical form

is invariant with respect to flipping, there are eight possible

alignments. For each possible alignment, only vertices in the

neighborhood of the learned average location of a landmark

are considered as candidates for this landmark.

Since the canonical form of a shape is invariant with re-

spect to flipping, this approach produces eight results l
o (P )
i .

In the original approach, it is up to the user to pick the in-

dex o that yields the best result. In this work, we use each

of the eight results to compute a shape deformation of the

template, and we report the result that minimizes the shape

distance between the deformed template and the scan.

We execute the steps outlined in the following sections

for each option o. As we consider o to be fixed during these

steps, we denote the landmarks by l
(P )
i in the following.

5 Posture fitting

This section describes how to change the posture of the tem-

plate model to fit the posture of the scan P . Posture fitting

starts with the initial skeleton S(P ) of P computed based on

the predicted landmarks and aims to optimize the location

of S(P ) to optimally fit the posture of the model in scan P .

The skeleton S(T ) has a tree structure. Hence, by picking

one arbitrary but fixed bone as the root, we can order the

bones using a depth first order. We model the deformation

of the skeleton S(T ) as follows. We express the transforma-

tion of the root using a rigid transformation consisting of a

quaternion rotation, a scale factor, and a translation vector.
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The relative transformation of every other bone with respect

to its parent is expressed as a quaternion rotation. Hence, the

deformation is defined using 8 + 4 · 16 = 72 parameters bi .

This deformation restricts the deformation of the skeleton

to deform using a single uniform scale factor and a single

translation vector. Furthermore, each bone can only rotate

with respect to its parent. If we know the parameters bi , it is

straightforward to compute the global transformations Ti of

each bone of S(T ) using composite transformations.

Given the initial skeleton S(P ) and S(T ), we compute the

parameters bi that deform S(T ) close to S(P ) as follows. The

global scale factor is computed as the average scale factor

between S(T ) and S(P ) of the bones of the torso. The global

translation and rotation are computed to align the bone of the

torso. Every other rotation is computed based on the relative

positions of adjacent bones.

In a first step, we optimize the location of S(P ) using the

predicted landmark positions by minimizing the energy

Elnd =

13
∑

i=0

((

16
∑

j=0

W
(T )
i,j Tj l̃

(T )
i

)

− l
(P )
i

)2

with respect to the parameters bi , where Wi,j is the weight

for the j th bone and the ith landmark of T , and l̃
(T )
i contains

the homogeneous coordinates of l
(T )
i . During this optimiza-

tion we restrict the scaling so that the height of the person

is between 1.40 m and 2.10 m. Furthermore, we restrict the

angle of the rotation of the head so that the head cannot face

backwards. Note that the transformations Ti depend on the

parameters bi .

In a second step, we optimize the location of S(P ) using

all vertex positions by minimizing the energy

Enn =

n
∑

i=0

((

16
∑

j=0

W
(T )
i,j Tj ṽ

(T )
i

)

− NN (P )

(

16
∑

j=0

W
(T )
i,j Tj ṽ

(T )
i

))2

with respect to the parameters bi , where Wi,j (T ) is the

weight for the j th bone and the ith vertex of T , and where

NN (P )(
∑16

j=0 W
(T )
i,j Tj ṽ

(T )
i ) is the nearest neighbor of the

transformed vertex
∑16

j=0 W
(T )
i,j Tj ṽ

(T )
i in P . Note that we

only consider the term corresponding to v
(T )
i if the angle

between the outer normal vectors of the transformed ver-

tex on the template and its nearest neighbor in the scan is

at most 110 degrees. We use k-d trees [5] to speed up the

nearest neighbor search and minimize Elnd and Enn using a

quasi-Newton approach [21].

6 Shape fitting

This section describes how to change the body shape of the

template model to fit the shape of the scan P . We first de-

form the template T to match the posture S(P ) computed in

the previous section. Denote this deformed skeleton model

by T ∗.

The problem that remains to be solved is to fit a template

model T ∗ to a scan P , where T ∗ and P are in approximately

the same posture. We solve this problem using an optimiza-

tion method similar to the one by Allen et al. [2]. That is,

we allow each vertex v
(T ∗)
i of T ∗ to deform using a 3 × 4

transformation matrix Ai . The goal is to fit T ∗ to the scan

P while preserving the overall shape of the surface. This is

achieved by minimizing the energy

Eshape = α

n
∑

i=0

(

Ai ṽ
(T ∗)
i − NN (P )

(

Ai ṽ
(T ∗)
i

))2

+ β
∑

(i,j)∈E(T ∗)

(Ai − Aj )
2

with respect to the transformations Ai , where

NN (P )(Ai ṽ
(T ∗)
i ) is the nearest neighbor of the transformed

vertex Ai ṽ
(T ∗)
i in P , E(T ∗) is the set of edges of T ∗, and α

and β are weights. As before, we only consider the nearest

neighbor term if the angle between the outer normal vec-

tors of the transformed vertex and its nearest neighbor is

at most 110 degrees. We minimize Eshape using a quasi-

Newton approach [21]. We initially set α0 = 1 and β0 = 10,

and we relax β t as β t = 0.5β t−1 whenever the energy does

not change much. This relaxation scheme ensures that the

details of the target mesh are fitted.

7 Results

This section evaluates the proposed method using the MPI

database [17]. This database contains the surface scans of

different subjects in up to 35 different postures. We man-

ually placed the fourteen landmarks on 300 of the models.

First, we evaluate the impact of the training data set on the

correspondence performance. Second, we conduct an evalu-

ation of the correspondence performance.

7.1 Influence of training data

We use a subset of the 300 models with manually placed

landmarks to learn the properties and relative locations of

the landmarks. We then compute the correspondences for

a different subset of the 300 models with manually placed

landmarks. This experiment evaluates the influence of the

data set picked for training on the performance of the corre-

spondence computation. We choose three training sets; one
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that contains primarily shape variation, one that contains pri-

marily posture variation, and one that contains both shape

and posture variation. This allows us to evaluate the relative

importance of the presence of shape and posture variations

in the training set.

The data set used to compute the correspondences con-

sists of 50 models of 7 subjects and 28 different postures.

The first training set Ts consists of 50 models of 43 subjects

in similar postures. Hence, Ts covers the shape variability

well, while the posture variability is not well represented.

The second training set Tp consists of 50 models of seven

subjects in mostly different postures. The data set contains

at least one model in all of the 35 postures present in the

MPI database. Hence, Tp covers the posture variability well,

while the shape variability is not well represented. The third

training set Tp+s consists of 200 models of 43 different sub-

jects and 35 different postures. Hence, Tp+s covers both the

posture variability and the shape variability well.

When using Ts for training, the algorithm produces vi-

sually pleasing results for 72% of the models. When using

Tp for training, the algorithm produces visually pleasing re-

sults for 74% of the models. When using Tp+s for training,

the algorithm produces visually pleasing results for 78% of

the models. This shows the importance of both pose and

shape variations in the training set. Note that pose variation

appears to be slightly more important than shape variation

since the local surface area close a landmark varies more for

subjects in different postures than for different subjects in

the same posture.

7.2 Evaluation

In the following, we use the aforementioned set of 200 mod-

els to learn the properties and relative locations of the land-

marks. We compute the correspondences for the remaining

100 models of the MPI database to evaluate the accuracy of

the predicted landmarks with respect to the manually picked

landmarks. We first evaluate the accuracy of the predicted

landmarks. In the best case, our automatic algorithm always

picks the best of the eight available options. To demonstrate

the accuracy in this case, we manually pick the best of the

eight results for landmark prediction. The accuracy obtained

in this case is summarized in Table 1. We measure the er-

ror as Euclidean distance between the predicted landmarks

and the ground truth landmarks. Note that most of the aver-

age errors are under 10 cm. The predicted landmarks at the

shoulders, the elbows, and the knees have the largest aver-

age errors. This is a result of the nonisometric deformations

of the human body in these areas.

Note that for the remaining experiments, the landmarks

are picked automatically. Hence, we can expect the pre-

dicted landmarks to be at most as accurate as the ones in

Table 1.

Table 1 Error of landmark prediction computed over 100 test human

scans

Landmark Average Standard Maximum

(mm) deviation (mm)

(mm)

1 Head 60.18 6.018 140.8

2 Crotch 75.77 4.908 205.6

3 Right shoulder 122.3 5.652 286.9

4 Right elbow 76.78 5.6 147.2

5 Right hand 12.89 1.289 66.7

6 Left shoulder 127.6 2.678 273.9

7 Left elbow 79.43 3.94 155.1

8 Left hand 10.24 1.024 57.06

9 Right knee 97 3.04 179.8

10 Right heel 20.85 0.8441 102.1

11 Right toe 0.4487 0.04487 39.46

12 Left knee 98 0.4846 185.8

13 Left heel 24.24 2.424 103.8

14 Left toe 0.8894 0.08894 39.81

The algorithm produces visually pleasing results for 76 of

the models. For these 76 models, we compute the shape dis-

tance between the deformed template mesh and the original

model. The mean of the shape distance over all 76 models is

5.94 mm, and its standard deviation is 0.20. We consider an

average error of under 6 mm as sufficient since slight move-

ments of the person during the acquisition of the scan caused

by breathing or slight posture changes can lead to an error

of the same magnitude in the acquired data.

Figure 4 shows some of the results. The first column

shows the model with both the predicted landmarks and the

ground truth landmarks. Ground truth landmarks are shown

in red, and predicted landmarks are shown in green. When

the prediction and the ground truth are identical, only the

green point is shown. The second column shows the result

after posture fitting, and the third column shows the result

after shape fitting. The algorithm finds visually pleasing re-

sults in spite of noise in the original models (see neck of sec-

ond row) and inaccuracies of the predicted landmarks (see

shoulder of fourth row). The difference in shape of the hands

(fists versus extended hands) comes from the shape of the

hands in the template model.

The quality of the correspondences is visualized in Fig. 5.

We manually applied a texture to the template model (left

of Fig. 5) and transferred the texture to the bodies shown

in Fig. 4 using the correspondences obtained with our al-

gorithm. We can see that the texture map is preserved for

models with different body postures and body shapes. Fur-

thermore, we manually selected a set of feature points on

the template model and assigned a unique color to each fea-

ture point. The features were then transferred to the bodies

shown in Fig. 4 using the correspondences obtained with our
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Fig. 4 The first column shows the model with both the predicted landmarks (in green) and the ground truth landmarks (in red). The second column

shows the result after posture fitting, and the third column shows the result after shape fitting

algorithm. Note that the locations of the features are on cor-

responding anatomical parts of the bodies.

Next, we analyze the cases for which our algorithm fails

to find visually pleasing correspondences. In 17 of the cases,

the algorithm picked the wrong landmark option. In this

case, body parts are erroneously corresponded to symmet-

ric body parts, which results in a globally erroneous regis-

tration. An example of this case is shown in the first row of
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Fig. 5 Texture mapping of the

corresponded models. The

template mesh with feature

points and a texture map is

shown on the left. The feature

points and the texture map are

transferred to the four models

shown on the right using the

computed correspondences

Fig. 6 Two cases where the proposed algorithm fails to find a visually

pleasing correspondence. From left to right: original model, result after

posture fitting, and result after shape fitting

Fig. 7 Left: incomplete model of the CAESAR database with holes

shown in blue. Right: result of our algorithm

Fig. 6. Here, the front of the body is matched to the back of

the template mesh. In the remaining seven cases, the algo-

rithm picked the correct landmark option, but the landmarks

are inaccurate. In this case, the result after fitting the posture

using linear blending is too far from the true surface for the

nearest neighbor energy to work. An example of this case is

shown in the second row of Fig. 6.

Finally, we demonstrate the performance of the algorithm

when the input model is incomplete. Note that since our ap-

proach is based on canonical forms, it is not suitable for

shapes with missing body parts or large holes. However, the

approach is robust with respect to relatively small holes that

do not alter the global shape of the canonical form. We use

a model of the Civilian American and European Anthropo-

metric Resource (CAESAR) database [23] that was acquired

using a laser-range scanner and that contains a number of

small holes. Figure 7 shows that a globally satisfactory re-

sult is obtained for this incomplete model. The local artifact

on the left foot of the model is due to missing data at the

back of the foot, which results in an erroneously estimated

location of the landmark point at the heel.

8 Conclusions

We proposed an automatic method to compute accurate

point-to-point correspondences between a set of human

models in varying postures. We showed that in most cases,

accurate correspondences were found. This method elimi-

nates the tedious task of manually placing markers on the

models to guide the correspondence computation.

Since the presented approach is based on numerical so-

lutions of optimization problems, there is no guarantee that

a satisfactory result is obtained. In our experiments, we ob-

tained satisfactory results for 76% of all cases. We leave it

for future work to find a formulation of solving the posture
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invariant correspondence problem for human shapes that is

guaranteed to converge.
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