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Abstract— A comparison of several approaches that use graph 
matching and cascade filtering for landmark localisation in 3D 
face data is presented. For the first method, we apply the 
structural graph matching algorithm “relaxation by 
elimination” using a simple “distance to local plane” node 
property and a “Euclidean distance” arc property. After the 
graph matching process has eliminated unlikely candidates, the 
most likely triplet is selected, by exhaustive search, as the 
minimum Mahalanobis distance over a six dimensional space, 
corresponding to three node variables and three arc variables. 
A second method uses state-of-the-art pose-invariant feature 
descriptors embedded into a cascade filter to localise the nose 
tip. After that, local graph matching is applied to localise the 
inner eye corners. We evaluate our systems by computing root 
mean square errors of  estimated landmark locations against 
ground truth landmark localisations within the 3D Face 
Recognition Grand Challenge database. Our best system, 
which uses a novel pose-invariant shape descriptor, scores 
99.77% successful localisation of the nose and 96.82% 
successful localisation of the eyes. 

Keywords – 3D feature descriptors; facial landmark 
localisation; cascade filter; relaxation by elimination; SSR 
histograms. 

I. INTRODUCTION

Many face processing applications, such as face tracking, 
identification and verification require automatic landmark 
localisation. In the context of 3D face data, the nose is often 
quoted as the most distinctive feature [5], [6], [9] and, in 
addition, it is visible over a wide range of head poses. These 
facts make it an obvious landmark to include in a minimal 
set of three rigid features, which allow facial pose to be 
established and, if necessary, normalised [17]. One can noted 
that the inner eye corners are highly concave areas and so we 
use these additional two features to complete a minimal 
landmark triplet.  

A further reason that we have selected this landmark 
triplet is that it has been shown that this particular facial area 
is more distinctive for recognition using 3D data [13], and it 
has been proved robust in presence of facial expressions 
[10], [19]. 

In this paper, we compare two approaches for facial 
landmark localisation. In the first approach, we localise the 
triplet of landmarks simultaneously, using simple descriptors 
embedded in a structural matching algorithm. We compare 
this approach, with an approach that first localises the nose 
tip (the easiest landmark to localise) using a cascaded filter 

of more sophisticated descriptors [17], and then localises the 
eyes relative to the nose tip. In total, we have generated a 
manual mark up of eleven facial landmarks across the entire 
Grand Challenge 3D data-set, for all images where there is 
an accurate registration between 2D and 3D data [18]. Our 
future aim is to extend the landmark localisation processes 
described here to the full set of eleven features. 

A. Related work 
There are relatively few techniques proposed in the 

literature to automatically locate facial landmarks using 3D 
data only. Conde et al. [2] use spin images and support 
vector machine SVM classifier to locate the nose and the 
eyes. Xu et al. [5] present a 3D nose tip hierarchical filtering 
approach constructed with an effective energy sphere and 
SVM classifier. Colbry et al. [8] use shape index for anchor 
point localisation. Segundo et al. [6] report a successful 
localisation result experimenting with the FRGC database, 
although it is a technique constrained to a facial frontal 
pose. Different pose-dependent and multimodal approaches 
to localise facial landmarks using the FRGC database have 
been reported [10]-[12], and still some problems are noted 
due to shirt collars and hair styles present in the dataset. Lu 
and Jain [7] propose a feature extractor based on the 
directional maximum to estimate the nose tip location and 
pose angle simultaneously.  

We are presenting an approach robust to pose, clothing 
and facial expression variations which uses distinctive shape 
features. Our final objective is a landmark localisation 
approach robust to extreme pose and facial expression 
variations, which is relevant to unconstrained face 
recognition [1], [4] and the 3D face recognition challenge 
[14]. Results presented here are motivating and guiding our 
future work towards that final objective. 

B. Preliminaries 
Our complete experiment is outlined in figure 1. Firstly, 

we establish visually that 2D and 3D datasets are correctly 
registered. For those that are, we collect eleven ground-truth 
landmarks [18] by manually clicking 2D features on enlarged 
bitmaps, and mapping them to 3D (note that only three of 
these 3D landmarks are currently used). We down-sample 
the data by a factor of 4, mapping 3D landmarks to the 
nearest down-sample. We then process this data in order to 
establish a variety of feature descriptors, to be used for 
training purposes. 
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Figure 1. Block diagram of our complete experimentation. 

Separate training and testing sets were defined within the 
FRGC data. After our feature localisation process has 
finished, performance results are collected by comparing the 
localised feature landmarks against our ground-truth data. 
Since the definition of successful landmark localisation is 
dependent on setting a threshold of acceptable error, we 
explore performance over the full range of possible 
thresholds. This allows us to identify both gross errors 
(‘fails’), where the system completely fails to identify the 
correct landmark, and errors of poor localisation, which are 
due to the combined effect of any inaccuracies in the system. 

The rest of this paper is structured as follows. Every 
feature descriptor employed in this paper is described in 
section 2. Our two main methods: the graph matching 
approach and the cascade filter are detailed in section 3. Our 
evaluation procedure, results and a comparison with other 
methods are presented in section 4. Finally, conclusions and 
future work are discussed in section 5. 

II. FEATURE DESCRIPTORS

To localise landmarks in complex 3D data, we must 
extract descriptors that make such landmarks 
distinguishable from other points. A good landmark 
localisation algorithm should use descriptors invariant to 
rigid transformations, and robust to multi-resolution and 
poor quality raw data [5]. In these terms, we have selected a 
range of feature descriptors with various computational 
costs of extraction and powers of discrimination. 

A. Distance to local plane (DLP) 
To compute this feature descriptor, neighbouring points 

nxxxX ,,, 21  in a radius r  to a point p  are used to 
interpolate a local plane  [18]. Thus, the signed distance 
d to local plane  (DLP) is calculated as the inner product 
of the vectors p  and n : nppd )(),(  This 

definition requires a normal which is estimated using the 
third Eigenvector of the covariance matrix 

T
XX , where is the mean vector of X .

Using a simple sign check, the normal n  always points 
toward the origin of the camera system, thus d  indicates 
local convexity or concavity, see figure 2.  
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Figure 2. Distance to local plane, d, is a signed value which could indicate 
convexity or concavity from a common point of view. 

B. Eigenshape descriptors for coarse local shape 
A coarse local shape descriptor is a vector of the form: 

),,,( 321 DLP , containing the three Eigenvalues of the 
local point-cloud covariance matrix and their signed DLP. 
We call this Coarse Eigen-Shape descriptor (or CES feature) 
in reference to the coarse shape information provided, see 
figure 3. 

Figure 3. CES can be used to extract coarse shape information about a 
local surface represented by 3D points, e.g. if the shape encoded is an 

ellipsoid then 
1

,
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 and 
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are associated to its axial lengths. 

C. Spherically sampled RBF (SSR) descriptor 
An SSR shape histogram is a local surface representation 

derived from an implicit radial basis function (RBF) model, 
which is in fact a signed distance to surface function [17]. 

The concept of SSR shape histogram is to sample the 
RBF function in the locality of a candidate facial vertex in a 
pose-invariant way. Thus, a set of n sample points are 
evenly distributed across a unit sphere, centred on the 
origin. The sphere is then scaled by q  radii, ir , to give a set 

FRGC 
database

Illumination and 2D-
3D correspondence 

verification

3D data down-sample

Training and 
testing sets 

Ground-truth collection

Off-line processes

Evaluation

Feature vectors and CSR 
matrices computation 

Graph matching 

Features 
location

1 3

2

p
r

74



of concentric spheres and their common centre is translated 
such that it is coincident with a facial surface point.  

The RBF function, s, is then evaluated at the nqN
sample points on the concentric spheres and these values are 
normalised by dividing by the appropriate sphere radius, ir ,
giving a set of values in the range -1 to 1. A )( qp  SSR 
histogram is constructed by binning the normalised values 

i
n r

s
s over p  bins.  

D. Spin images 
In this representation, each point belonging to a 3D 

surface is linked to an oriented point on the surface working 
as the origin [16]. As observed in equations (1), there is a 
dimension reduction: from 3D coordinates to a 2D 
system ),(  which represents the relative distance between 

the oriented point p and the other points 
i

p  in the surface. 

A spin image is produced by assigning the spin-map 
coordinates ),(  into the appropriate spin-image bins. 

23
0 : RRS
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0
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III. EXPERIMENTAL FRAMEWORK

Each of our two main approaches has two variants, 
giving four systems in all (see table I). In system 1a, we 
localise the inner eye corners and the nose tip 
simultaneously, by applying graph matching to simple 
descriptors (DLP) and 'relaxing' until the best supported 
combination is obtained. System 1b is a variant of the first 
one, in which we integrate a local coarse shape feature 
descriptor (CES) and, like system 1a, we localise the three 
landmarks simultaneously. Systems 2a and 2b initially 
localise the nose tip, using feature descriptors in a cascade 
filter. The inner eye corners are then localised relative to the 
nose tip. 

A. Structural graph matching algorithm 
The graph model we fit in systems 1a and 1b is very 

simple and consists of three nodes and three arcs. Obviously, 
exhaustively testing every possible vertex triplet against 
training data is too computationally expensive and we seek 
to significantly reduce the number of vertex triplets that we 
have to test, first by checking for appropriate nodal 
attributes, and then by checking pair-wise relationships 
between a couple of nodes. 

To do this we use a structural graph matching algorithm 
known as ‘relaxation by elimination’ [4], and in our 
implementation [18], we divide this into four steps: First, 
initial candidate lists for each of the three nodes are 
populated, using the appropriated mean and variance values 
from training data. Next, binary arrays are created which 
represent mutual support between two candidate nodes. 
Then, every least supported candidate is iteratively 

eliminated, until a stop condition is obtained, i.e. either a 
minimum number of candidates remain or a maximum 
number of iterations is reached. Finally, the best combination 
is selected by computing the Mahalanobis distance in our 6-
DOF training feature space. The candidate triplet with the 
minimum distance is considered to represent the estimated 
landmark locations and is stored. 

B. Cascade filtering 
Our second localisation method, used in systems 2a and 

2b, first localises the nose-tip, and then the inner-eye-
corners, again using the trained Euclidean separation of 
features employed in systems 1a and 1b. 

To localise the nose over all vertices is computationally 
expensive, thus we identify the raw nose tip vertex via a 
cascade filtering process, as illustrated in figure 4. 
Essentially this is a decision tree where progressively more 
expensive operations are employed to eliminate vertices. The 
constraints (thresholds) employed at each filtering stage are 
designed to be weak, by examining trained nose feature 
value distributions, so that the nose tip itself is never 
eliminated. Conceptually, this amounts to considering every 
vertex as a candidate nose position, where all but one vertex 
are ‘false positives’. Then, at each stage, we apply a filter to 
reduce the number of false positives, until we have a small 
number of candidates at the final stage, at which point our 
most expensive and discriminating test (spin images and SSR 
histograms) is used to find the correct vertex. 

The feature that we use in filter 1 is distance to local 
plane (DLP). The filter uses weak thresholding, so that 
candidates need to be within four standard deviations of the 
average DLP value for trained noses in order to survive.  
Local CES features are calculated in filter 2 using a 20 mm 
radius sphere and, all vertices not within four standard 
deviations are eliminated. In filter 3, we compute SSR 
convexity values [17] using a single sphere of radius 20 mm 
and, again, we set similar weak thresholds. At this stage, we 
have multiple local maxima in SSR convexity value [18]. We 
expect the nose to be situated at some local maximum in 
convexity value, so we find these local maxima and 
eliminate all other vertices. (This filter, filter 4, will not be 
useful when we expand to all eleven landmarks in our 
dataset, but we can adapt the filter stages and thresholds, as 
necessary for each landmark). Finally we use spin-images 
(system 2a) or SSR shape histograms (system 2b), by finding 

TABLE I. IMPLEMENTATIONS FOR LANDMARK LOCALISATION

 Feature descriptors Method 
System 1a DLP and Euclidean 

distances. 
Simultaneous localisation using 
graph matching 

System 1b DLP, Euclidean 
lengths and CES. 

Simultaneous localisation using 
graph matching 

System 2a DLP, CES, SSR 
values, spin-
images. 

Cascade filtering w/spin-images 
to localise the nose tip. Local 
graph matching to localise the 
inner-eye-corners. 

System 2b DLP, CES, SSR 
features. 

Cascade filtering w/SSR 
histograms to localise the nose 
tip. Local graph matching to 
localise the inner-eye-corners. 
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the minimum Mahalanobis distance in the feature space, to 
select the correct nose vertex from the set of local maxima in 
SSR convexity value. 

Figure 4. Cascade filter for nose tip detection. 

IV. EVALUATION

We have evaluated our landmark localisation systems on 
the FRGC database [15]. The FRGC database contains the 
largest 3D face dataset that is widely available to the 
research community. In it, there are 4,950 shape images and 
each of this has an associated intensity image. The files are 
divided into three subsets, named after their collection 
periods: Spring-2003, Fall-2003 and Spring-2004. 

A. Methodology 
We have created four localisation systems for the inner 

eye corners and the nose tip, each of which uses the same 
training and testing data. However, they use different 
feature descriptors (with particular training sets) and apply 
graph matching in different stages as follows: (1a) Graph 
matching applied directly. (1b) A graph matching variant 
which eliminates unlikely features using the CES descriptor 
before relaxation. (2a) & (2b) localise the nose-tip by 
cascade filtering followed by local graph matching to 
localise the eye-corners relative to the nose tip. Our 
experimental methodology was as follows: 

1. For each record in the FRGC database, eleven 
landmarks (we only use three here) were collected by 
very carefully manually clicking on enlarged intensity 
images and then computing the corresponding 3D point 
using the registered 3D shape information. We use a 
dual (2D and 3D) view to verify 2D-3D landmark 
correspondences [18].  

2. We selected the first 200 subjects from the Spring-2003 
subset, which have more than one image in this specific 
data subset. For each of these persons, we randomly 

selected a capture to give 200 training 3D images. 
3. For each of these 200 training 3D images, SSR shape 

histograms at the ground-truth nose vertex were 
constructed, using 8 radii of 10 mm to 45 mm in steps 
of 5 mm and 23 bins for normalised RBF values. This 
gave SSR shape histograms of dimension )238( .

4. For the same 200 training set above, spin-images at the 

ground-truth nose vertex were calculated: 45max ,

45max  and a mesh resolution of  3 mm where used.  
These  and  parameters, cover an equivalent 
surface area to the SSR histograms. 

5. We evaluated our localisation systems in two scenarios, 
considering variations in depth and facial expressions. 
The FRGC database is already divided in this way and 
we adopted them as they are (see table II). Naturally, 
there are variations in illumination and small variations 
in pose. 

6. We applied principal component analysis (PCA) to 
reduce the spin-images and SSR histograms feature 
space dimensionalities.  

7. For all nose candidates (filter 4 outputs in the cascade 
filter) on all test images, we calculated the Mahalanobis 
distance to the mean of the trained spin-images/SSR-
histograms data. For each test image, the vertex with 
the minimum Mahalanobis distance was identified as 
the nose and stored. 

8. We gather results by computing the root mean square 
(RMS) error of the automatically localised landmarks 
with respect to the landmarks manually labelled in our 
ground truth. Remember that localisation is done at the 
3D vertex level and we are using a down-sample factor 
of four on the FRGC dataset, which gives a typical 
distance between vertices of around 3-5 mm. This has 
implications on the achievable localisation accuracy. 
We set a distance threshold (specified in millimetres) 
and if the RMS error is below this threshold, then we 
label our result as a successful localisation. This allows 
us to present a performance curve indicating the 
percentage of successful feature localisations against 
the RMS distance metric threshold used to indicate a 
successful location. These results have the nice property 
that they are not dependent on a single threshold and, in 
general, these performance curves show two distinct 
phases: (i) a rising phase where an increased RMS 
distance threshold masks small localisation errors, and 

TABLE II. TESTING SETS FOR EVALUATION PERFORMANCE ANALYSIS

Scenarios Subset Size 
1. Depth variations, neutral expressions. Spring2003 509 

Fall2003 1,5072. Facial expression variations and few 
depth variations. Spring2004 1,764 

Distance to local plane 

Locally maximum SSR 

SSR value 

EigenShape 

Filter 1 

Spin/Balloon images 

Filter 2 

Filter 3 

Filter 4 

Filter 5 

CES < thresh 

SSR > thresh 

Non_max 

Non_min Junk

Nose tip 
vertex 

Junk

Junk

Junk

min 

Junk

DLP < thresh 

All vertices 
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(ii) a plateau in the success rate, where an increased 
RMS threshold does not give a significant increase in 
the success rate of localisation.  If the plateau is not at 
100% success rate, this indicates the presence of some 
gross errors in landmark localisation. Of course, it is 
useful to choose some RMS threshold values and quote 
performance figures (e.g. categorisation in table III). A 
sensible place to choose the threshold is close to where 
the graph switches from the rising region to the plateau 
region.  

B. Results
The graphs on the top row of figure 5 show eye 

localisation performance (left and right averaged), and the 
bottom row shows nose localisation performance. These 
results were generated by averaging the results from the 
three data sets presented in table II. Table IV summarises 
localisation performance, where success is defined 
according to an RMS error threshold of 12 mm (see table 
III). System 2b clearly gives the most successful localisation 
performance.  

We know that vertex-based spin-images are mesh 
resolution dependent, also, that the FRGC database was 
populated using different depths varying the number of 
vertices of the shape images. These facts could affect the 
performance if adequate training is not considered. Thus, in 
order to verify this assumption, we select 66 representative 
3D shape files from different people (from the Spring-03 
subset and different to the testing set) counting 33 scans for 
both middle and far focus. After that, training spin-images 
and SSR histograms were computed and they were used in 
filter 5 of the cascade filter. This modification produces new 
systems which we call: system 2a* and system 2b*. An 
improvement in spin-images’ performance was obtained, 
but it is still lower than SSR histograms’ performance (see 
table V). 

C. Comparison with other methods 
Although a quantitative comparison with other methods 

in the literature is out of the scope of this paper, it is clear 
(from table VI) that SSR descriptors (system 2b) give an 
excellent performance, considering that this landmark 
localisation approach uses only 3D pose invariant feature 
descriptors in extensive experimentation with the FRGC 
database. 

V. CONCLUSIONS

We have compared our graph matching and cascade filter 
approaches to localise the inner-eye corners and the nose-
tip.  Four systems have been implemented and evaluated for 
that purpose. System 1a presents a poor performance, 
because our graph matching approach is looking for the 
global maxima (the best supported triplet) and only simple 
descriptors (DLP and Euclidean lengths) are been used. An 
increase in performance is observed in system 1b when the 
coarse eigenshape (CES) descriptor is applied before 
relaxation. A significant improvement is achieved when the 
nose-tip is located robustly; and this is possible using a set 
of pose-invariant feature descriptors embedded in a 
cascaded filter. The inner-eye-corners’ localisation 
performance is lower than that of the nose-tip, because they 
are located using only simple features and graph matching. 

We found that SSR histograms outperformed spin-images 
even with a more representative training set designed to 
improve spin-image classification performance. SSR 
histograms appear to be more immune to mesh resolution. 

Our future work includes extending not only the 
application of our feature descriptors, but also our 
localisation approaches to the eleven facial landmarks that 
exist in our ground truth of the 3D FRGC database. 
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TABLE VI. PERFORMANCE COMPARISON

Approach Database Size Eye corners Nose tip 
Xu et al. [5] 3DPEF 280 n/a 99.30% 
Conde et al. [2] FRAV3D 714 98.00% 99.50% 
Mian et al. [12] FRGC 4,950 n/a 98.30% 
Segundo et al. [6] FRGC 4,007 99.83% 99.95% 
SSR features FRGC 4,013 96.82% 99.77% 

TABLE V. SUCCESSFUL LOCALISATION USING A REPRESENTATIVE 
TRAINING SET

  Scenario #1 Scenario #2 
Descriptor Landmark Spring03 Fall03 Spring04 

Eyes 91.94 % 91.04 % 90.02 % Spin images 
(System 2a*) Nose 97.83 % 94.82 % 93.87 % 

Eyes 91.94 % 94.35 % 95.80 % SSR histograms 
(System 2b*) Nose 98.82 % 99.27 % 99.65 % 

TABLE IV. SUCCESSFUL LOCALISATION SUMMARY

  Scenario #1 Scenario #2 
  Spring-03 Fall-03 Spring-04 

Eyes 77.99 % 90.04 % 90.02 %System 1a 
Nose 62.47 % 74.19 % 74.26 % 
Eyes 87.03 % 96.08 % 95.91%System 1b 
Nose 73.47 % 86.39 % 86.22 % 
Eyes 92.33 % 75.77 % 72.67 %System 2a 
Nose 97.64 % 78.63 % 76.98 % 
Eyes  93.90 % 96.15 % 96.82 %System 2b 
Nose 99.41 % 99.60 % 99.77 % 

TABLE III. THRESHOLDS TO EVALUATE ESTIMATED LOCATIONS

Success mmRMS 12
Poor mmRMSmm 2012
Fail mmRMS 20
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Figure 5. Averaged eye localisation performance (top row) and nose localisation performance (bottom row) using the four systems in table I. A randomly 
selected training set of 200 images of different people was used. The bar charts show categorisation of performance according to table III. 
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