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Abstract We propose a new method to obtain landmark-matching transformations between

n-dimensional Euclidean spaces with large deformations. Given a set of feature corre-

spondences, our algorithm searches for an optimal folding-free mapping that satisfies the

prescribed landmark constraints. The standard conformality distortion defined for mappings

between 2-dimensional spaces is first generalized to the n-dimensional conformality distor-

tion K ( f ) for a mapping f between n-dimensional Euclidean spaces (n ≥ 3). We then pro-

pose a variational model involving K ( f ) to tackle the landmark-matching problem in higher

dimensional spaces. The generalized conformality term K ( f ) enforces the bijectivity of the

optimized mapping and minimizes its local geometric distortions even with large deforma-

tions. Another challenge is the high computational cost of the proposed model. To tackle this,

we have also proposed a numerical method to solve the optimization problem more efficiently.

Alternating direction method with multiplier is applied to split the optimization problem into

two subproblems. Preconditioned conjugate gradient method with multi-grid preconditioner

is applied to solve one of the sub-problems, while a fixed-point iteration is proposed to solve

another subproblem. Experiments have been carried out on both synthetic examples and lung

CT images to compute the diffeomorphic landmark-matching transformation with different

landmark constraints. Results show the efficacy of our proposed model to obtain a folding-free

landmark-matching transformation between n-dimensional spaces with large deformations.
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1 Introduction

Finding an optimal transformation between corresponding data, such as images or geometric

shapes, is an important task in various fields, such as computer vision [61], computer graph-

ics [6,22,24], video processing [38,45,59,60] and medical imaging [1,25,28,29,32,49,55].

Such a process is called registration. For example, in neuroimaging, it is often required to

align medical images from different modalities, such as magnetic resonance (MR), X-ray

computed tomography (CT) images and so on. In computer graphics, registration is necessary

for texture mapping [22,24]. Due to its important applications in different areas, an enormous

amount of research has been carried out to develop effective models for registration.

Registration methods can mainly be divided into three categories, namely, (1) intensity-

based registration, (2) landmark-based registration and (3) hybrid registration using both

intensity and landmark information. Intensity-based registration computes a transformation

between corresponding data by matching intensity functions, such as image intensity for

image registration or surface curvature for surface geometric registration. Different intensity-

based registration algorithms have been recently proposed [61], such as Demons [51,56],

spherical Demons [58], elastic registration [23], Large Deformation diffeomorphic Metric

Mapping (LDDMM) frameworks [9,10] and so on. On the other hand, landmark-based reg-

istration computes a smooth 1-1 dense pointwise correspondence between corresponding

data that matches important features [2,14–16,28,39–41,52,54,57]. Such a feature-based

registration approach usually comprises of two steps, namely, (1) the extraction of corre-

sponding feature landmarks and (2) the computation of a transformation between the data

that matches corresponding features. The main advantage of the landmark-based method is

that intuitive user-interaction can be incorporated to guide the registration process. Recently,

hybrid registration that combines landmark-based and intensity-based methods have also

gained increased attention. Hybrid approaches use both the landmark and intensity infor-

mation to guide the registration. This type of approaches can usually obtain more accurate

registration results, since the advantages of landmark-based and intensity-based registration

can be combined. Different hybrid registration models have also been proposed recently

[7,17,26,27,44].

In this work, we will focus on the landmark-based registration. Landmark-based registra-

tion has found important applications. One typical example is the brain cortical surface

registration for which sulcal landmarks are usually extracted to guide the registration

[41,52,57]. Landmark-based registration has also been applied to register gene expression

data to a neuroanatomical mouse atlas [36]. Feature-matching image registration can also

be used as an initial guess for intensity-based registration between images with large defor-

mations [27,33]. Over the past few decades, numerous landmark-based registration models

have been proposed [2,21,28,31,47]. One of the first and most important landmark-based

registration algorithm is the Thin-Plate Spline (TPS) method proposed by Bookstein [2].

TPS minimizes the bending energy together with the landmark mismatching term. A unique

and closed-form solution is guaranteed in this model. TPS is efficient and works well under

small deformations. However, under larger deformations, TPS generally cannot preserve the

bijectivity of the mapping [11].

In some situations like medical image registration or constrained texture mapping of sur-

faces, a bijective and topology-preserving mapping is desirable for the registration problem
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[49]. For example, Christensen et al. [9] proposed a regridding algorithm to restrict the trans-

formation of the image deformation to have a globally positive definite Jacobian. Statistically,

Leow et al. [35] studied the statistical properties of Jacobian maps (the determinant of the

Jacobian matrix of a deformation field) and proposed a framework for constructing unbiased

deformation fields. Modat et al. [43] also proposed a variational model with the joint bending

energy and the squared Jacobian determinant penalty terms to obtain a transformation for

lung registration.

Recently, quasi-conformal (QC) theory has been introduced to handle large deforma-

tion landmark-matching registration problem [30,33,37,59]. The Beltrami coefficient, which

measures the conformality distortion, can be effectively used to enforce the bijectivity of

the mapping. By optimizing an energy functional involving the L p-norm of the Beltrami

coefficient, large deformation diffeomorphic registration can be accurately computed. Sev-

eral works have also been proposed to deal with surface-based landmark-matching problem

with different genus [32,42]. QC theory has provided an effective framework to handle

registration problem with large deformations for 2-dimensional spaces. However, for gen-

eral n-dimensional spaces, the conformality distortion is not defined. Motivated by this,

it is our goal in this paper to extend the concept of 2D quasi-conformality to general n-

dimensional spaces. In particular, a notion of conformality distortion of a diffeomorphism

in the n-dimensional Euclidean space will be formulated. With the definition of confor-

mality distortion, we can extend the 2D quasi-conformal registration algorithm to general

n-dimensional Euclidean spaces.

In short, the main contributions in this paper are threefolded:

1. We give a definition of n-dimensional conformality distortion K ( f ) (n ≥ 3) for mapping

f between n-dimensional Euclidean spaces. The standard conformality distortion is

defined for 2-dimensional space. Our definition aims to generalize this concept to n-

dimensional spaces.

2. With the definition of K ( f ), we extend our previous model [33] for computing 2-

dimensional landmark-matching bijective mapping with large deformations to higher

dimensional spaces. This allows us to compute bijective landmark-matching mapping of

higher dimensional spaces with large deformations.

3. One challenge of the proposed model is the high computational cost for higher-

dimensional spaces. In this paper, we propose a numerical method to solve the

optimization problem more efficiently. This is based on applying the alternating direction

method with multiplier (ADMM) to split the problem into two subproblems. Precondi-

tioned conjugate gradient method with multi-grid V-cycle preconditioner is applied to

solve one of the subproblems. A fixed-point iteration is proposed to solve another sub-

problem, whose convergence to the minimizer is theoretically shown.

This paper is organized as follows. In Sect. 2, basic mathematical background will be

explained. In Sect. 3, we describe our proposed model to obtain the landmark-matching

transformation with large deformation between n-dimensional Euclidean spaces in details.

The numerical algorithm will be discussed in Sect. 4. Experimental results will be demon-

strated in Sect. 5. Conclusion and future work will be discussed in Sect. 6.

2 Mathematical Background

In this section, we describe some basic mathematical concepts related to our algorithms. For

details, we refer the readers to [12,34].
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A surface S with a conformal structure is called a Riemann surface. Given two Riemann

surfaces M and N , a map f : M → N is conformal if it preserves the surface metric up to

a scalar multiplicative factor called the conformal factor. An immediate consequence is that

every conformal map preserves angles. With the angle-preserving property, a conformal map

effectively preserves the local geometry of the surface structure.

A generalization of conformal maps is the quasi-conformal maps, which are orientation

preserving homeomorphisms between Riemann surfaces with bounded conformality distor-

tion, in the sense that their first order approximations takes small circles to small ellipses of

bounded eccentricity [12]. Surface registrations and parameterizations, which are orientation-

preserving homeomorphisms, can be considered as quasi-conformal maps. Mathematically,

f : C → C is quasi-conformal provided that it satisfies the Beltrami equation:

∂ f

∂z
= μ(z)

∂ f

∂z
. (1)

for some complex valued Lebesgue measurable μ satisfying ‖μ‖∞ < 1. μ is called the

Beltrami coefficient, which is a measure of non-conformality. In particular, the map f is

conformal around a small neighborhood of p when μ(p) = 0. Infinitesimally, around a point

p, f may be expressed with respect to its local parameter as follows:

f (z) ≈ f (p) + fz(p)z + fz(p)z

= f (p) + fz(p)(z + μ(p)z). (2)

Obviously, f is not conformal if and only if μ(p) �= 0. Inside the local parameter domain,

f may be considered as a map composed of a translation to f (p) together with a stretch map

S(z) = z +μ(p)z, which is postcomposed by a multiplication of fz(p), which is conformal.

All the conformality distortion of S(z) is caused by μ(p). S(z) is the map that causes f to

map a small circle to a small ellipse. From μ(p), we can determine the angles of the directions

of maximal magnification and shrinking and the amount of them as well. Specifically, the

angle of maximal magnification is arg(μ(p))/2 with magnifying factor 1 + |μ(p)|; The

angle of maximal shrinking is the orthogonal angle (arg(μ(p))−π)/2 with shrinking factor

1 − |μ(p)|. The distortion or dilation is given by:

K = (1 + |μ(p)|) / (1 − |μ(p)|) . (3)

Thus, the Beltrami coefficient μ gives us all the information about the properties of the

map (See Fig. 1a).

Given a Beltrami coefficient μ : C → C with ‖μ‖∞ < 1. There is always a quasi-

conformal mapping from C onto itself which satisfies the Beltrami equation in the distribution

sense [12].

However, the above quasi-conformal theories only apply to two dimensional spaces or

surfaces. In this work, our goal is to extend the idea of 2-dimensional quasi-conformal theories

to general n-dimensional spaces. We will introduce a notion of conformality distortion of a

diffeomorphism of the n-dimensional Euclidean space. The conformality distortion measures

the distortion of an infinitesimal ball to an infinitesimal ellipsoid under the diffeomorphism

(See Fig. 1b).

3 Proposed Model

In this section, we will explain in details our proposed model to obtain the landmark-matching

transformation between n-dimensional Euclidean spaces. The basic idea is to formulate the
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Fig. 1 Illustration of the conformality distortion. a Shows how a small circle is deformed to an ellipse under

a 2D quasi-conformal map. The conformality distortion is measured by the Beltrami coefficient, b Shows how

a small ball is deformed to a small ellipsoid under a 3D diffeomorphism. The conformality distortion can be

measured by K ( f ) defined in this paper

notion of conformality distortion of a diffeomorphism of the n-dimensional Euclidean space.

The conformality distortion measures the distortion of an infinitesimal ball to an infinitesimal

ellipsoid under the diffeomorphism. The landmark-matching problem can then be modelled

as minimizing an energy functional involving a conformality term and a smoothness term

under the prescribed landmark constraints. We first introduce the conformality distortion

of a diffeomorphism of the n-dimensional Euclidean space. In Sect. 3.2, we describe the

continuous model of the proposed energy functional. Finally, we explain the discretization

of the model in Sect. 3.3.

3.1 Conformality Distortion

Let Ω1,Ω2 ⊂ R
n be the domain and the image of the diffeomorphism f = ( f1, f2, . . . , fn) :

Ω1 → Ω2 respectively. For any p = (p1, p2, . . . , pn) ∈ Ω1, let q = (q1, q2, . . . , qn) =
f (p). Then, for any x = (x1, . . . , xn) in a neighbourhood of p, we have

y = f (x) ≈ f (p) + D f (x − p), (4)

where D f = (
∂ fi

∂x j
)1≤i, j≤n ∈ Mn×n(R).

Under a general diffeomorphism f , f distorts an infinitesimal ball Bǫ(p) := {x ∈ Ω1 :
‖x − p‖ ≤ ǫ} to an infinitesimal ellipsoid E f (see Fig. 1b). More precisely,

E f = {q + D f (x − p) : x ∈ Bǫ(p)}
= {q + w : wT Cw ≤ ǫ}, (5)

where C = ((D f )−1)T (D f )−1 is a symmetric positive definite matrix. Obviously, since C is

symmetric positive definite, E f is an ellipsoid centered at q. Moreover, E f is a infinitesimal

ball if all eigenvalues of C are equal. This can be observed easily as follows. Suppose

C = QT DQ, where Q is an orthogonal matrix and D is a diagonal matrix consisting of

the eigenvalues of A. If D = μI (μ > 0), C = μI. It follows that for any y ∈ E f ,

(y − q)T C(y − q) = μ(y − q)T (y − q) ≤ ǫ. This gives (y − q)T (y − q) ≤ ǫ/μ Hence, E f

is an infinitesimal ball with radius ǫ/μ.
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To define the conformality distortion, we define a measurement that quantifies the geo-

metric distortion of the ellipsoid E f from an infinitesimal ball. From the above observation,

it is the same as measuring how far the matrix C is from a symmetric positive definite matrix

with equal eigenvalues. It is related to the Jacobian of the mapping f .

Consider A = (D f )T (D f ). The eigenvalues of C are equal if and only if the eigenvalues

of A = (D f )T (D f ) are equal. Suppose λ1, λ2, . . . , λn are the eigenvalues of A. Using the

AM–GM inequality, we have

(λ1 · · · λn)1/n ≤
λ1 + · · · + λn

n
or,

1

n

(
λ1 + · · · + λn

(λ1 · · · λn)1/n

)
≥ 1 (6)

where the equality sign holds if and only if λ1 = · · · = λn . Hence, we can define the n-D con-

formality distortion as K ( f ) = 1
n

(
λ1+···+λn

(λ1···λn)1/n

)
. Note that the AM-GM inequality states that

the perimeter of the n-dimensional cubes is the smallest amongst all n-dimensional rectangu-

lar boxes with the same volume. In the 2-dimensional case, the perimeter of a square is always

the smallest amongst all rectangles with a given area. Hence, K ( f ) can be interpreted as the

ratio of the perimeter of a n-dimensional rectangular boxes with edges lengths equal to the

eigenvalues of A to the perimeter of the n-cube with the same volume. Let {v1, . . . , vn} be the

orthonormal basis of eigenvectors of A. Then, the minimum is attained if the n-dimensional

boxes spanned by {v1, . . . , vn} is a n-cube. This happens when all eigenvalues are equal.

Now, the arithmetic mean and geometric mean of the eigenvalues of A can be expressed

as the Frobenius norm and determinant of D f respectively. Observe that:

‖D f ‖2
F = Tr(D f T D f ) = Tr(A) = λ1 + · · · + λn;

det(A) = λ1 · · · λn = det(D f T D f ) = det(D f )2, (7)

where ‖D f (x)‖F denotes the Frobenius norm of D f (x). Therefore, we can now introduce

the following definition:

Definition 1 (Conformality distortion) The conformality distortion K f (x) of a mapping f

at point x is defined by

K f (x) :=

⎧
⎨
⎩

1
n

(
‖D f (x)‖2

F

det(D f (x))2/n

)
if det (D f (x)) > 0,

+∞ otherwise

(8)

Note that K f (x) ≥ 1 and K f (x) = 1 if and only if Ex = {x + D f (y − x) : y ∈ Bǫ(x)} is

a n-dimensional ball. Motivated by this observation, we say f is conformal at point x if the

conformality distortion K f (x) attains its minimum value 1. By setting K f (x) = +∞ when

det(D f (x)) ≤ 0, we can ensure the bijectivity of the mapping by minimizing the norm of

K f (x).

For n = 2, denote f (x1, x2) = f1(x1, x2)+
√

−1 f2(x1, x2) and assume det(D f (x)) > 0

for all x . Then,
∂ f
∂z

= (
∂ f1

∂x1
+ ∂ f2

∂x2
)+

√
−1(

∂ f2

∂x1
− ∂ f1

∂x2
) and

∂ f
∂z

= (
∂ f1

∂x1
− ∂ f2

∂x2
)+

√
−1(

∂ f2

∂x1
+ ∂ f1

∂x2
).

We have
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K f (x) =
1

2

‖D f (x)‖2
F

det(D f (x))
=

(
∂ f1

∂x1

)2
+
(

∂ f1

∂x2

)2
+
(

∂ f2

∂x1

)2
+
(

∂ f2

∂x2

)2

2det(D f (x))

=
| fz |2(1 + |μ|2)
| fz |2(1 − |μ|2)

=
1 + |μ|2

1 − |μ|2
(9)

where μ(x) is the Beltrami coefficient defined in Eq. (1).

3.2 The Continuous Model

With the notion of n-D conformality distortion K ( f ), we can now develop a variational model

to compute a landmark-matching transformation between n-dimensional spaces. Given two

domains Ω1 and Ω2 in R
n . Suppose {pi ∈ Ω1}m

i=1 {qi ∈ Ω2}m
i=1 are corresponding feature

landmarks in Ω1 and Ω2 respectively. These corresponding sets of feature landmarks gives

the landmark constraints on the mapping. Our goal is to search for a bijective transformation

f : Ω1 → Ω2 that satisfies f (pi ) = qi for i = 1, 2, . . . , m. In other words, the selected

landmark points pi in Ω1 are required to be mapped to the corresponding qi in Ω2. This

is called the landmark-based registration problem. Most of the existing landmark-based

registration models are variational approaches. They can mainly be written as minimizing:

E( f ) = Reg( f ) subject to: f (pi ) = qi for i = 1, . . . , n (hard landmark constraints),

(10)

where Reg( f ) is the regularization of the mapping f . Sometimes, the hard landmark con-

straints can be relaxed by minimizing

E( f ) = Reg( f ) + λ

n∑

i=1

‖ f (pi ) − qi‖2
2 (soft landmark constraints) (11)

For example, the popular thin-plate spline (TPS) landmark-based registration model uses

the integral of the square of the second derivative as the regularizer [2]. In this work, we

propose to use the L1-norm of the conformality distortion K ( f ) together with a smoothness

term ‖Δ f ‖2
2 as the regularizer. Note that the conformality distortion has also been used

to obtain registration for 2-dimensional spaces (such as 2D images or 2D surfaces) [33].

In this paper, with the notion of n-D conformality distortion K f (x), we extend this idea

to general n-dimensional spaces. This allows us to compute bijective landmark-matching

mappings of higher dimensional spaces with large deformations. Another challenge is the

high computational cost of the proposed model in the high dimensional space. To handle

this, we also propose a numerical method to solve the optimization problem more efficiently

(please refer to Sect. 4).

With conformality distortion K f (x), the bijectivity of the registration can be easily guaran-

teed by enforcing the constraint ‖K f (x)‖∞ < K for some K < ∞. This can be achieved by

minimizing an energy functional involving ‖K f (x)‖∞. In addition, minimizing ‖K f (x)‖∞
also helps to reduce the maximal conformality distortion, and hence reduce the local geo-

metric distortion of the mapping. However, it is computationally expensive to minimize an

energy functional involving the supremum norm. Consequently, we propose to minimize

‖K f (x)‖1. Since K f (x) is set to be +∞ when det(D f (x)) ≤ 0, our variational model can

still prevent folding by minimizing ‖K f (x)‖1.
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Besides, ‖D f ‖F is included in the term K f , which is the commonly used squared

Frobenius regularization term. The smoothness of the mapping can be achieved by merely

minimizing the conformality term. In order to further enhance the smoothness of the map-

ping, an extra smoothness term can be included in the energy functional. We now propose

the minimization model for the landmark-based registration problem as follows:

inf
f ∈F

‖K f (x)‖1 +
σ

2
‖Δ f (x)‖2

2dx (12)

where σ ≥ 0 is a fixed parameter and F = { f : Ω ⊂ R
n → R

n | f (pi ) = qi , i = 1, 2, . . . m}
is the set of functions f : Ω → R

n which satisfies the landmark constraint f (pi ) = qi ,

where pi and qi are the given landmark points (i = 1, 2, . . . , m). The first energy term helps

to obtain a quasi-conformal map with minimal conformality distortion, while satisfying the

landmark constraints. The second energy term aims to further enhance the smoothness of the

mapping, since it involves higher order derivatives. Again, since ‖D f ‖F is included in K f ,

some smoothness can already be achieved by minimizing the first energy term. In practice,

we set σ = 0, which is enough to give smooth landmark-aligned mappings. This improves

the efficiency of the algorithm. In extreme situations (such as a very large deformation),

setting a non-zero σ can help to achieve much smoother registration results.

3.3 The Discrete Model

For general Euclidean space, our model (12) can be discretized by using discrete differential

forms. For the ease of explanation, we will explain the discretization of (12) on a cubic

domain in the 3-D space here. We introduce a regular tetrahedral mesh on the cubic domain

as follows: We first partition the cubic domain into small equal-size cubes. In each small

cube with vertices {x1, x2, x3, x4, x5, x6, x7, x8}, we construct the tetrahedral subdivision of

the cube with 6 tetrahedra such that each tetrahedron in the small cube contains 3 edges, each

one of them is parallel to the one of the three coordinate axis respectively. More precisely,

the information of these 6 tetrahedra are shown in Fig. 2.

Consider the affine map A associated with each tetrahedron. Denote uk = (xk, yk, zk) ∈
R

3, k = 0, 1, 2, 3 be the coordinates of the four vertices of the tetrahedron in Euclidean

space. We also denote the image of the affine map to be A(uk) = vk = (x̃k, ỹk, z̃k) ∈ R
3. In

matrix notation, we have

Fig. 2 The six tetrahedra constructed in each unit cube with vertices {x1, x2, x3, x4, x5, x6, x7, x8}
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⎛
⎜⎜⎝

x̃0 x̃1 x̃2 x̃3

ỹ0 ỹ1 ỹ2 ỹ3

z̃0 z̃1 z̃2 z̃3

1 1 1 1

⎞
⎟⎟⎠ = A

⎛
⎜⎜⎝

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

1 1 1 1

⎞
⎟⎟⎠ , where A =

⎛
⎜⎜⎝

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

⎞
⎟⎟⎠ (13)

We then have

A =

⎛
⎜⎜⎝

x̃0 x̃1 x̃2 x̃3

ỹ0 ỹ1 ỹ2 ỹ3

z̃0 z̃1 z̃2 z̃3

1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

1 1 1 1

⎞
⎟⎟⎠

−1

(14)

Thus the Jacobian matrix of the affine map A is

D(A) =

⎛
⎝

a00 a01 a02

a10 a11 a12

a20 a21 a22

⎞
⎠ (15)

Denote D f (T ) to be the 3 × 3 Jacobian matrix of f for tetrahedron T . The discrete version

of (12) is given by

inf
f ∈F

∑

tetrahedron T

K f (T ) +
σ

2

∑

node x

‖Δ f (x)‖2
2 (16)

where f ∈ F =
{

f : Ω ⊂ R
3 → R

3| f (pi ) = qi , i = 1, 2, . . . , m
}

is the set of functions

defined on nodes of the mesh, seven-point Laplacian stencil with suitable boundary condition

(which will be discussed in Sect. 4 is used for Δ f and K f (T ) is defined by:

K f (T ) =
{ ‖D f (T )‖2

F

det(D f (T ))2/3 if det (D f (T )) > 0,

+∞ otherwise
(17)

4 Algorithm

In this section, we explain the numerical algorithm to optimize the energy functional described

in the last section. For the ease of the explanation, we will demonstrate the numerical algo-

rithms for the 3-D case. The numerical algorithms for general n-D spaces can be done

similarly. We split the optimization problem (16) as follows:

inf
f,R

∑

tetrahedron T

K ( f, R, T ) +
σ

2

∑

node x

‖Δ f (x)‖2
2 given R(T ) = D f (T ) (18)

where:

K ( f, R, T ) =
{ ‖D f (T )‖2

F

det(R(T ))2/3 if det (R(T )) > 0,

+∞ otherwise
(19)

We apply the ADMM to optimize (19). ADMM was firstly proposed in 1975 and has

received lots of attention recently due to its simple implementation and extensive applications

to image processing and compressive sensing. We will briefly describe the idea of ADMM.

For details, we refer the readers to [4,18,19]. For a general optimization problem

inf
x,y

E(x, y) subject to y = Ax (20)
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where A ∈ Mm×n(R). The augmented Lagrangian associated to the problem (20) is given by

L(x, y, λ, η) = E(x, y) +
η

2
‖Ax − y − λ‖2 (21)

The ADMM decouples the optimization process, which can be described as follows:

xk+1 = argmin{L(x, yk, λk, ηk)}
yk+1 = argmin{L(xk+1, y, λk, ηk)}
λk+1 = λk + ηk(Axk+1 − yk+1) (22)

where {λk} is the sequence approximating the Lagrange multiplier of the constraint Ax = y

and {ηk} is a sequence of positive real numbers, called the penalty parameters. Variants of

the choices of {λk} and {ηk} have been proposed. In other words, ADMM firstly solves for

xk+1 by fixing y = yk , and then solves for yk+1 by fixing x = xk+1. This leads to an efficient

and parallelizable optimization algorithm.

Applying the ADMM to our problem, our numerical algorithm can now be described

as follows. Suppose ( f k, Rk, λk, ηk) is obtained at the k-th iteration. We first solve the

f-subproblem:

f k+1 = argmin
f

∑

T

K ( f, Rk, T ) +
η

2

∑

T

‖Rk − D f + λk‖2
F +

σ

2

∑

x

‖Δ f ‖2
2

subject to f k+1(pi ) = qi for i = 1, . . . , m. (23)

We then solve the R-subproblem:

Rk+1(T ) = argmin
det(R)>0

K ( f k+1, R, T )+
η

2
‖R − D f k+1 +λk‖2

F for each tetrahedron T . (24)

The Lagrange multiplier λk+1 and the penalty parameter ηk+1 are updated as follows.

λk+1 = λk + Rk+1 − D f k+1; (25)

ηk+1 = max

{
max

T

30

det (R(T ))2/3
, ηk

}
. (26)

Note that we vary the penalty parameter ηk in each iteration. The goal of varying the parameter

is to improve the convergence and robustness of the algorithm in practice. As shown in [46],

super-linear convergence of ADMM can usually be achieved if the penalty parameter is

iteratively increased to infinity. We adopt this idea to vary the penalty parameter. The outer

“max” expression in (26) ensures that ηk is increasing throughout the iterations. On the other

hand, the choice of maxT
30

det(R(T ))2/3 is to ensure that the penalty parameter is not too big

nor too small. Recall that the penalty parameter η in the ADMM aims to drive R to be closer

to D f , so that the optimal solution eventually satisfies the constraint R = D f . If η is too

small, the solution in each ADMM iteration may be far away from the admissible solution

satisfying the constraint R = D f . It may take a long time to converge to the optimizer of

(18) satisfying the constraint R = D f . On the other hand, if η is too big, the solution in each

ADMM iteration better satisfies the constraint R = D f . But again, it may take a long time

to obtain the optimizer minimizing the energy functional of the original problem (18) (since

the minimization is dominated by the penalty term for the constraint). Hence, an optimal

penalty parameter has to be carefully chosen [13]. From our experimental results, we found

that our algorithm with the choice of maxT
30

det(R(T ))2/3 is robust for either small or large

deformations.
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Algorithm 1: Quasi-conformal landmark-matching transformation algorithm

Input: Domain Ω; landmark sets {pi ∈ Ω}m
i=1 and {qi ∈ Ω}m

i=1.

Output: Landmark registration f ∗ : S1 → S2.

Initial f 1 = Identity map I; R1 = D f 1; λ1 = 0;1

repeat2

f k+1 ← argmin
f

∑
T K ( f, Rk , T ) + η

2

∑
T ‖Rk − D f + λk‖2

F
+ σ

2

∑
x ‖Δ f ‖2

2
3

subject to f k+1(pi ) = qi for i = 1, . . . , m;4

Rk+1 ← argmin
det(R)>0

K ( f k+1, R, T ) + η
2 ‖R − D f k+1 + λk‖2

F
for each tetrahedron T ;

5

λk+1 ← λk + Rk+1 − D f k+1;6

Update ηk+1 = max{max
T

30

det(R(T ))2/3 , ηk };
7

k ← k + 1;8

until ‖ f k+1 − f k‖∞ ≤ ǫ;9

The overall algorithm can now be summarized as Algorithm 1.

There are two subproblems in the algorithm, namely, the f-subproblem and the R-

subproblem. In practice, we solve the f -subproblem first. In the following two subsections,

we will explain how the f-subproblem and the R-subproblem can be solved in details.

4.1 f-subproblem

The f-subproblem is to minimize the energy

Ek
f sub( f ) =

∑

T

‖D f (T )‖2
F

det(Rk(T ))2/3
+

η

2

∑

T

‖Rk(T ) − D f (T ) + λk(T )‖2
F +

σ

2

∑

x

‖Δ f ‖2
2.

(27)

Note that f = ( f1, f2, f3) : Ω1 ⊂ R
3 → Ω2 ⊂ R

3 is a vector-valued function. The

energy functional Ek
f sub can be decoupled into E f sub( f ) = Ek

f sub1( f1) + Ek
f sub2( f2) +

Ek
f sub3( f3). The optimization problem can be solved componentwisely. Therefore, we can

regard f as a scalar function only in this section. The corresponding Euler-Lagrange equation

for this problem is of the form
{

σΔ2 f (x) − ∇ · (A(x)∇ f (x)) = g(x);
f (pi ) = qi ,

(28)

where A(x) is a diagonal matrix with diagonal entries

∑

six T touch the corresponding edge

(
1

det(R(T ))2/3
+ η

)
, (29)

and g(x) = −η∇
(
Rk(T ) + λk(T )

)
. To simplify the partial differential equation in (28), we

substitute f (x) = f̃ (x)+ l(x), where l(x) is the identity map I except at the landmark points

such that l(pi ) = qi for i = 1, 2, . . . , m. By this substitution and the modification of the

function g(x), we can simplify the constraints from f (pi ) = qi to f̃ (pi ) = 0. Therefore,

we may assume f (pi ) = 0 in the following discussion.

To solve the linear system obtained from discretization of Eq. (28), we apply the pre-

conditioned conjugate gradient (PCG) method as described in [48] in order to speed up the

computation. The basic idea of preconditioning is to find a preconditioning matrix M such
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that we can transform the original linear system into one with the same solution, but the trans-

formed linear system is easier to solve with an iterative solver. In this work, we apply the

multigrid preconditioning method to construct the transformation M . With the preconditioner

M , the original f -subproblem will be solved exactly using the PCG method.

To further reduce the computation cost in applying the multigrid preconditioning method,

we set η = maxT
30

det(R(T ))2/3 as suggested in the last section and we replace A(x) by A(x) =
6ηI. Hence, Eq. (28) can be approximated by a Poisson equation

{
σΔ2 f (x) − 6ηΔ f (x) = g(x),

f (pi ) = 0.
(30)

We proceed to approximate the solution of the above approximated system to get a pre-

conditioner M . We remark that the above approximated system is introduced to obtain the

preconditioner M . With the preconditioner M , the original f-subproblem (28) will be solved

exactly using the PCG method.

If σ �= 0, the Eq. (30) can be split into two coupled Poisson equations

⎧
⎪⎨
⎪⎩

−h − Δ f = 0,

−σΔh − 6ηΔ f = g,

f (pi ) = 0.

(31)

If σ = 0, the Eq. (30) can be simplified to be the following Poisson equation

{
−6ηΔ f (x) = g(x),

f (pi ) = 0.
(32)

In both cases, the equation can be approximately solved using the multi-grid V-cycle, which

gives us a preconditioner M for solving (28).

We will now explain the multi-grid V-cycle briefly. For details, we refer the readers to

[5,53].

Let us first define a hierarchy of discretization of the unit cube, that is V1 ⊂ V2−1 ⊂
· · · ⊂ V2−J where Vh is a uniform grid on unit cube with spacing h. On Vh , we discretize the

Eq. (31) and (32) respectively as

⎧
⎪⎨
⎪⎩

−
(

I Lh

Lh 6
η
σ

Lh

)(
h

f

)
=
(

0

g

)
,

f (ph
i ) = 0.

(33)

{
−6ηLh f (x) = g,

f (ph
i ) = 0.

(34)

where Lh is the seven-point Laplacian stencil with suitable boundary conditions and ph
i is the

landmark points on the grid Vh . To simplify, let Lh =
(

I Lh

Lh 6
η
σ

Lh

)
if σ �= 0 and Lh = 6ηLh

if σ = 0.

The boundary conditions depends on the setting of the original problem (16). Either

Dirchlet, Neumann or the combination of both can be enforced. For example, suppose the

unit cube is mapped to a unit cube, the boundary conditions can be set as follows. Let

f = ( f1, f2, f3). Then:
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f1(0, y, z) = 0 and f1(1, y, z) = 1,

f2(x, 0, z) = 0 and f2(x, 1, z) = 1,

f3(x, y, 0) = 0 and f3(x, y, 1) = 1. (35)

Therefore, for f1, we impose the Dirichlet boundary condition on {0, 1} × [0, 1] × [0, 1]
and Neumann boundary condition on other boundaries. For f2 and f3, we do it similarly.

The next question is how we set the landmark constraints on coarser levels. In other words,

we need to choose vertices {pi }m
i=1 such that f (pi ) = 0. On the finest grid, these points are

chosen to be the original landmark points from the input. On the next coarser grid, these

points are chosen to be the set of points belonging to the neighbourhood of landmark points

at the previous finer level. For example, if we have a landmark point (0.375, 0.375, 0.375)

on V2−2 , then on V2−1 , the set of points in the neighbourhood of it are (0.25, 0.25, 0.25),

(0.25, 0.25, 0.5), (0.25, 0.5, 0.25), (0.25, 0.5, 0.5) and so on. All these points will be selected

as landmark points on V2−1 . Although this scheme would probably make the coarsest level

having many landmark points, it does not cause either convergence or complexity problem

because more landmark points means less free variables and faster convergence.

Algorithm 2: f = Vcycleh( f, g)

If h = 2−k for some k ≥ 1, return L
−1
h

g;1

f ← S( f, g);2

f ← f + I h
2h

Vcycle2h

(
0, I 2h

h
(g − Lh f )

)
;3

f ← S( f, g);4

The multi-grid V-cycle can now be described as follows. At level h (the grid with spacing

h), (33) and (34) can both be regarded as a linear system of the form Lh f = c. We first

relax Lh f = c using certain iterative scheme, such as Jacobi, Gauss-Seidel or Successive

over-relaxation methods. We denote the approximated solution f̃h after the relaxation by

f̃h = S( f, c). We then compute the residual rh = c − Lh f̃h . To improve the solution, we

relax L2he = r2h on a coarser grid V2h , where r2h = I 2h
h (rh) is the projection of rh from

level h to level 2h and I 2h
h is the linear projection operator. Denote the approximated solution

of L2he = r2h by e2h . Then, the approximated solution of Lh f = c can be improved by f̃h

by f̃h ← f̃h + I h
2he2h . This completes a V-cycle at level h. Note that when computing the

approximated solution of L2he = r2h , we can again apply a multi-grid V-cycle on level 2h.

The detailed multi-grid V-cycle algorithm can now be described as in Algorithm 3.

The relaxation S in Algorithm 3 removes the high frequency component in the residual

for rh = c −Lh f̃h . In this paper, the relaxation S is chosen to be the Red-black Gauss-Seidel

(RBGS) iterations. We will briefly describe the RBGS iteration. For details, we refer the

readers to [48]. The red-black Gauss-Seidel modifies the standard Gauss-Seidel method by

reordering different equations. The basic idea is to group the grid points into two groups,

identified as black and red nodes, such that black nodes are surrounded by red nodes only

and vice versa. The red-black grouping of grid points in 3-dimensional space is as shown in

Fig. 3. The Laplace operator Lh under the red-black ordering of grid points can be rewritten

as: Lh =
(

Dr U

L Db

)
, where Dr and Db are diagonal matrices associated to the red nodes and

black nodes respectively. The Gauss-Seidel iteration can now be written as:

f̃
r,n+1
h = D−1

r (−U f̃
b,n
h + cr ),

f̃
b,n+1
h = D−1

b (−L f̃
r,n+1
h + cb) (36)
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Fig. 3 Illustration of red–black ordering of grid points for 3-dimensional space (Color figure online)

where f̃
r,n
h and f̃

b,n
h are the components of f̃h associated to the red and black nodes respec-

tively at the n-th iterations. cr and cb are the components of c̃ associated to the red and

black nodes respectively. As a result, instead of solving a triangular system as in the standard

Gauss-Seidel iterations, we perform matrix-vector products and vector scaling operations

with half as many variables in each iteration.

In our implementation, we have chosen S to be four iterations of Red-Black Gauss-

Seidel method. The red-black ordering for step 2 in Algorithm 3 is the opposite to the

red-black ordering for step 4. This reverse ordering ensure the obtained multi-grid V-cycle

preconditioner M to be symmetric positive definite for applying PCG [50].

For the restriction and interpolation operator, the full weighting restriction and bilinear

interpolation operator are used. Note that the result of the interpolation operator satisfies the

landmark points condition because of our choices of landmark points on the coarse grid.

The overall Vcycleh(0, g) is a linear operator on f̃ . We simply write it as M f̃ . M is our

desired preconditioner. With M , we apply the PCG method with the preconditioner matrix

M to solve the original f-subproblem (28) [53]. This can be described as follows.

Algorithm 3: Solving (28)

Denote Mg = Vcycleh(0, g);1

Apply the preconditioned conjugate gradient method on (28) with the preconditioner matrix M ;2

4.2 R-subproblem

The R-subproblem in Algorithm 1 is a tetrahedron-wise problem. Therefore, parallel com-

puting can be adopted in this subproblem. More explicitly, we want to find R(T ) on each

tetrahedron T which minimizes the following energy
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min
R(T )∈R3×3,det(R(T ))>0

(
‖D f k‖2

F

det(R(T ))2/3
+

η

2
‖R(T ) − B‖2

F

)
(37)

where B = D f k − λk .

Let the SVD of B be UΣV ∗. In the case when R can be written as UΣ̃V ∗, where Σ̃ is an

unknown diagonal matrix. Problem (37) can be much simplified. Since we want det(R(T )) >

0, Σ̃ must satisfy sgn(det(Σ̃)) = sgn(det(U V ∗)). Denote Γ = {Σ̃ | sgn(det(Σ̃)) =
sgn(det(U V ∗))}. By substituting these representations and constraint to problem (37), we

have the following optimization problem with three variables:

min
Σ̃∈Γ

(
‖D f k‖2

det(Σ̃)2/3
+

η

2
‖Σ̃ − Σ‖2

F

)
(38)

In other words, by making the assumption that R can be written as UΣ̃V ∗, we can simply

the original R-subprobem as (38). A natural question is the relationship between the problem

(38) and our original R-subproblem (37). The following theorem gives the answer.

Theorem 1 Suppose Σ is the minimizer of (38). Then, R = UΣV ∗ is the minimizer of (37),

where B = UΣV ∗ is the SVD of B.

Proof This is related to the general two-sided Procrustes problem. Suppose X1 and X2 are

n × n matrices. Define:

EP (Q1, Q2) = ‖Q∗
1 X1 Q2 − X2‖2

F (39)

where Q1 and Q2 are n × n orthogonal matrices. Let X1 = P1Σ1 R∗
1 and X2 = P2Σ2 R∗

2 be

the SVDs of X1 and X2 respectively. Then, the minimizer of EP satisfies:

P1 = Q1 P2Π; R1 = Q2 R2Π, (40)

where Π is the permutation matrix that maximizes Tr(Σ∗
2 Π∗Σ1Π) (see p. 89–90 in [20]).

Let B = UΣV ∗ be the SVD of B and let PΣ̃ Q be the SVD of U∗ RV . Our R-subproblem

(37) is equivalent to minimizing:

Enew
R (P̃, Σ̃, Q̃) :=

{
‖P̃Σ̃ Q̃∗ − Σ‖2

F +
c

det(Σ̃)2/3

}
, (41)

for some positive constant c.

Let Σ be the minimizer of:

min
Σ

{
‖Σ − Σ‖2

F +
c

det(Σ̃)2/3

}
. (42)

Fixing a diagonal matrix D, we consider the minimization problem over (P̃, Q̃) of

Enew
R (P̃, D, Q̃). According to (40), the minimizer must satisfy I = P̃Π and I = Q̃Π .

Thus, for any orthogonal matrices P and Q and diagonal matrix D,

Enew
P (P, D, Q) = ‖P DQ∗ − Σ‖2

F +
c

(det(D))2/3

≥ ‖Π∗ DΠ − Σ‖2
F +

c

(det(Π∗ DΠ))2/3

≥ ‖Σ − Σ‖2
F +

c

(det(Σ)2/3

= Enew
R (I,Σ, I ). (43)
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Thus, (I,Σ, I ) is a minimizer of (41). We conclude that: R = U IΣ I V ∗ = UΣV ∗ is a

minimizer of (37). ⊓⊔

Theorem 2 The Euler Lagrange equation of (38) is:

Σ̃ −
a

(det(Σ̃))2/3
Σ̃−1 = Σ, where a =

2‖D f k‖2

3η
. (44)

Proof Let xi be the diagonal of Σ and yi be the diagonal of Σ̃ . Denote ỹ1 = y1 + ǫλ1 to be

the variation of y1. Consider the derivative of energy with respective to ǫ, we have

d

dǫ

‖D f k‖2

(ỹ1 y2 y3)
2/3

+
η

2

[
(ỹ1 − x1)

2 + (y2 − x2)
2 + (y3 − x3)

2
]∣∣∣∣

ǫ=0

= 0

⇒ λ1

(
−a

(y1 y2 y3)
2/3

(
1

y1

)
+ y1 − x1

)
= 0. (45)

Since λ1 is arbitrary, we have

−a

(y1 y2 y3)
2/3

(
1

y1

)
+ y1 − x1 = 0 (46)

Similar equations can be obtained for the variations of y2 and y3. By combining the results,

we have the same formula as in (44). ⊓⊔

To tackle with the nonlinear recurrence Eq. (44), we propose Algorithm 4 below that gives

the solution of (47) to obtain a minimizer of the optimization problem (38). More specifically,

since the system (44) is coupled by the term det(Σ̃), we can solve the equation iteratively by

Σ̃n −
a

(
det(Σ̃n−1)

)2/3
Σ̃−1

n = Σ (47)

where Σ̃n is the Σ̃ in step n. Define Dn = det(Σ̃n−1)
2/3. By element-wise decoupling the

nonlinear recurrence Eq. (47), we have the quadratic equations yn
i − a

D
(yn

i )−1 = xi for

i = 1, 2, 3, where Σ̃n = diag(yn
1 , yn

2 , yn
3 ). Solving the quadratic equations, we have

yn
i (Dn) =

xi ±
√

x2
i + 4a

Dn

2
, i = 1, 2, 3 (48)

where the sign is chosen according to Algorithm 4. The motivation and the convergence

analysis of the proposed iteration scheme is explained in Theorem 3.

Before introducing Theorem 3, the following lemma is necessary.

Lemma 1 Let σ ∈ R
n
+ be a vector with positive values. The function

f (σ ) =
c

∏n
i=1 σ

2/n
i

+ η

n∑

i=1

(σi − ai )
2, c > 0 and η > 0 (49)

is convex.

Proof Recall that the log barrier function B(u) = − log(det(u)), where u is a symmetric

positive definite matrix, is convex [3]. This implies that 2
n

B(D), where D is a diagonal matrix

with positive diagonal elements {di i }n
i=1, is also a convex in D. Note that
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Algorithm 4: Solving (47)

Compute the SVD of B = UΣV ∗ where the diagonal of Σ is xi ≥ 0;1

Set D1 = (det(R(last))2/3. Denote Dn+1 = (yn
1 yn

2 yn
3 )2/3;2

repeat3

Set yn
i

= 1
2

(
xi +

√
x2

i
+ 4a

Dn

)
for i = 1, 2, 3;

4

If det(U V ∗) < 0, set yn
i

= 1
2

(
xi −

√
x2

i
+ 4a

Dn

)
for i = argmini xi ;5

Dn+1 ← 1
2

(
Dn +

(
yn

1 yn
2 yn

3

)2/3
)

;6

n ← n + 1;7

until ‖Dn+1 − Dn‖∞ < ε;8

R = UΣ̃V ∗ where the diagonal entries of Σ̃ are yi ;9

exp

(
−

2

n
B(D)

)
= exp

(
−

2

n
log(det(u))

)
= exp

(
log

(
n∏

i=1

1

d
2/n
ii

))
=

1
∏n

i=1 d
2/n
ii

.

(50)

As the exponential of a convex function is also convex and c > 0, we have shown that
c∏n

ii=1 σ
2/n
i

is convex.

Define g(σ ) =
∑n

i=1(σi − ai )
2. We have

∂2g

∂σ jσi

=
{

2 if i = j,

0 otherwise
(51)

Therefore, the Hessian matrix of g is equal to 2In , where In is the n-dimensional identity

matrix. Therefore g is also convex in σ . By combining both results, we can conclude that

f (σ ) is a convex function. ⊓⊔

The above lemma states that the simplified optimization problem (38) is convex in the

positive octant region. In fact, using the same argument, we can show that the optimization

problem (38) is convex in any one of the octant regions. Hence, the optimization is a global

minimizer in each octant region.

Now, we will explain the convergence of Algorithm 4 to the minimizer of the optimization

problem (38).

Theorem 3 Given any 3 × 3 matrix B, a > 0. Algorithm 4 converges linearly to a solution

of the nonlinear recurrence Eq. (44) with the rate 1
2

, which is a minimizer of (38).

Proof Recall that yn
i at the nth iteration is defined as follows:

yk
i (Dn) =

xi ±
√

x2
i + 4a

Dn

2
. (52)

The sign of yn
i is chosen as to minimize the energy functional (38), which is given by the

following:

min
Σ̃∈Γ

(
‖D f k‖2

det(Σ̃)2/3
+

η

2
‖Σ̃ − Σ‖2

F

)
= ηmin

Σ̃∈Γ

(
a

2
3

det(Σ̃)2/3
+

1

2
‖Σ̃ − Σ‖2

F

)

= ηmin
Σ̃∈Γ

(
3a

2(y1 y2 y3)2/3
+

1

2

∑
(xi − yi )

2

)
. (53)
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Our goal is to make D = (y1 y2 y3)
2/3 larger and yi closer to xi . Therefore, the sign appears

in Eq. (48) can be determined according to the magnitude of the energy. If det(U V ∗) > 0,

we can either set + sign in Eq. (48) for all i or we set − sign for only two of yi . However,

we can eliminate the second case by the following argument. Note that the second term in

the energy functional dominates the overall energy and xi ≥ 0 for all i , we have

⎛
⎝xi −

xi +
√

x2
i + 4a

D

2

⎞
⎠

2

≤

⎛
⎝xi −

xi −
√

x2
i + 4a

D

2

⎞
⎠

2

∀i. (54)

Therefore, the minimizer should satisfy the + sign in Eq. (48) for all i . If det(U V ∗) < 0, we

can either set − sign in Eq. (48) for all i or we set − sign for one of the yi . Similar argument

can be made and the minimizer should satisfy the + sign in Eq. (48) for all i �= argmini xi .

This explains the purpose of step 5. Without loss of generality, we assume argmini xi = 1.

Let F(D) = (y1(D)y2(D)y3(D))2/3 and G(D) = D+F(D)
2

. We have

F ′(D) =
−2a

3D2
F(D)

3∑

i=1

sgn(yi )

yi

1√
x2

i + 4a
D

(55)

Note that each term
sgn(yi )

yi

1√
x2

i + 4a
D

in the sum is positive. Hence F ′(D) < 0.

For the case det(U V ∗) > 0, we have

− F ′(D) =
2a

3D2
F(D)

3∑

i=1

1

yi

1√
x2

i + 4a
D

<
2a

3D2
F(D)

3∑

i=1

D

2a
=

F(D)

D
. (56)

For the case det(U V ∗) < 0, we have

sgn(y1)

y1

√
x2

1 + 4a
D

=
2√

x2
1 + 4a

D
− x1

1√
x2

1 + 4a
D

=
D

2a

x1 +
√

x2
1 + 4a

D√
x2

1 + 4a
D

(57)

when i = 1. For i = 2, 3, we have

1

yi

√
x2

i + 4a
D

=
2

x2
i + 4a

D

√
x2

i + 4a
D

xi +
√

x2
i + 4a

D

≤
D

2a

√
x2

1 + 4a
D

x1 +
√

x2
1 + 4a

D

. (58)

Hence we have

−F ′(D) ≤
2a

3D2
F(D)

D

2a

⎛
⎝

x1 +
√

x2
1 + 4a

D√
x2

1 + 4a
D

+ 2

√
x2

1 + 4a
D

x1 +
√

x2
1 + 4a

D

⎞
⎠ . (59)

Since 1
2

<

√
x2

1 + 4a
D

x1+
√

x2
1 + 4a

D

< 1, by considering the function 1
x

+ 2x on the interval
(

1
2
, 1
)
, we

conclude that the last term inside the parenthesis is less than 3. Hence, in both cases, we have

−F ′(D) ≤ F(D)
D

.

Now, let D̃ be the solution of G(D) = D. We proceed to show that {Dn}∞n=1 converges

to D̃.
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Consider the case when Dn ≥ D̃. Since G ′(D) = 1
2

+ F ′(D)
2

, we have

1

2
≥ G ′(D) ≥

1

2
−

F(D)

2D
≥

1

2
−

F(D̃)

2D
=

1

2
−

D̃

2D
≥ 0. (60)

This suggests G is an increasing function in D. Also, D̃ = G(D̃) = D̃+F(D̃)
2

implies

D̃ = F(D̃). Hence, D+F(D̃)
2

= D+D̃
2

≥ D+F(D)
2

= G(D) ≥ D̃ for D ≥ D̃. We get that

Dn ≥
Dn + D̃

2
≥ G(Dn) = Dn+1 ≥ D̃. (61)

{Dn}∞n=1 is thus a decreasing sequence converging to some D∗ ≥ D̃. Also, from the previous

inequalities, we observe that D∗+D̃
2

≥ D∗ ≥ D̃, which gives D̃ ≥ D∗ ≥ D̃. We conclude

that D∗ = D̃.

For the case Dn ≤ D̃, we have G(D) = D+F(D)
2

≥ D+D̃
2

. Thus,

G(Dn) = Dn+1 ≥
Dn + D̃

2
≥ Dn . (62)

Suppose Dk ≤ D̃ for all k > n. Using a similar argument as before, we conclude that

{Dn}∞n=1 is an increasing sequence converging to D̃. Suppose Dk > D̃ for some k > n. From

the previous conclusion, we can also get the same convergence result. That is, Dn → D̃.

In both cases, we can show that
|Dn+1−Dn |
|Dn−Dn−1| ≤ 1

2
. As a result, the sequence {Dn}∞n=1

converges at a rate 1
2

. Also, since Σ̃n = diag(yn
1 (Dn), yn

2 (Dn), yn
3 (Dn)) depends on Dn , Σ̃n

converges to a solution of the nonlinear recurrence Eq. (44) with a rate 1
2

.

In other words, algorithm 4 converges to a solution of the Euler-Lagrange equation of (38).

Depending on the sign of det(U V ∗), our algorithm search for a critical point at the first octant

region if det(U V ∗) > 0 and at the other octant (with xi < 0) if det(U V ∗) < 0. According to

Lemma 1, the critical point must be the global minimizer of (38) in the corresponding octant

region. Hence, algorithm 4 converges to the minimizer of (38). ⊓⊔

5 Experimental Result

To validate the effectiveness of our proposed algorithm, experiments on synthetic examples

have been carried out to compute 3-dimensional quasi-conformal landmark-matching trans-

formation. We have also applied our proposed algorithm on lung CT images with respiratory

deformations. Experimental results are reported in this section.

5.1 Synthetic Examples

We first test our algorithm to compute the landmark-matching transformation with one land-

mark. Figure 5a shows how the landmark point is deformed. The deformation of the landmark

point is large. The point p1 = [0.6, 0.6, 0.6] is moved to q1 = f (p1) = [0.3, 0.3, 0.3]. Using

the proposed algorithm, we obtain a diffeomorphic transformation that satisfies the landmark

constraint exactly. Figure 5b shows the obtained transformation. It is visualized by the defor-

mation of the original reference mesh as shown in Fig. 4a under the obtained transformation.

The reference mesh is a regular grid of a cube discretizing the source domain. Figure 5c

shows the visualization of the obtained transformation with a sparser view (to better demon-

strate the transformation). Note that we set Ω1 = Ω2 = Ω = [0, 1]3 in all our synthetic
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Fig. 4 The regular reference mesh of the cube and the 3 dimensional lung CT image. a Regular mesh on a

cube, b CT image of a lung

Fig. 5 One-point landmark-matching experiment. a Landmark, b QC deformation, c sparse view

experiments. By the boundary setting as discussed in Sect. 4.1, the image of the resultant

map is restricted to be the cube Ω , even though the landmark moves towards the boundary.

Secondly, we test the algorithm to compute the landmark-matching transformation with

two landmarks moving towards different directions. Deformations of both landmark points

are large, as shown in Fig. 6a. More specifically, two points pi are moved to qi = f (pi ) as

follows:

[
p1(x) p1(y) p1(z)

p2(x) p2(y) p2(z)

]
=
[

0.6 0.7 0.7

0.4 0.6 0.3

]
→
[

0.3 0.2 0.9

0.2 0.9 0.2

]
=
[

q1(x) q1(y) q1(z)

q2(x) q2(y) q2(z)

]

(63)

Figure 6b shows the obtained transformation. Figure 6c shows the visualization of the

obtained transformation with a sparser view.

We also test the algorithm to compute the landmark-matching transformation with an

inner ball being chosen as landmarks. Points pi = (pi (x), pi (y), pi (z)) inside the inner ball

are moved by the following transformation:
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Fig. 6 Two-point landmark-matching experiment. a Landmark, b QC deformation, c sparse view

Fig. 7 Landmark-matching experiment to register rotating ball. a Landmark, b QC deformation, c sparse

view

⎡
⎣

qi (x)

qi (y)

qi (z)

⎤
⎦ =

⎡
⎣

f1(pi )

f2(pi )

f3(pi )

⎤
⎦ =

⎡
⎣

0 −1 0

1 0 0

0 0 0

⎤
⎦
⎡
⎣

pi (x) − 0.5

pi (y) − 0.5

pi (z) − 0.5

⎤
⎦ (64)

In other words, points inside the sphere are chosen as landmarks and they are rotated anti-

clockwisely, as shown in Fig. 7a. The obtained landmark-matching transformation, which is

visualized as the deformation of the standard grid by the transformation, is shown in Fig. 7b.

Figure 7c visualizes the obtained transformation with a sparser view. Note that the obtained

transformation is folding-free (Please refer to Table 1 which will be described later).

Next, we test the algorithm on an example of which all the points on a plane

pi = [0.5, pi (y), pi (z)] ∀(pi (y), pi (z)) ∈ [0, 1] × [0, 1]

are chosen as landmarks (grey plane in Fig. 8a). The landmarks are deformed to a wave-shape

surface (red surface in Fig. 8b) by the following transformation:

⎡
⎣

qi (x)

qi (y)

qi (z)

⎤
⎦ =

⎡
⎣

f1(pi )

f2(pi )

f3(pi )

⎤
⎦ =

⎡
⎣

0.5 + 1
5

sin (4π(pi (y) + pi (z)))

pi (y)

pi (z)

⎤
⎦ . (65)
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Table 1 Quantitative measures of the registration experiment

Proposed Thin plate spline

LMmax max K min Det emax/emean max K min Det emax/emean

LMmean #LM Time (s) #Fold #LM Time (s) #Fold

One-point 0.5196 8.9756 0.2519 0 / 0 ∞ −0.0033 0.0017 / 0.0017

0.5196 1 11.3644 s 0 1 0.08727 s 2

Two-point 0.6164 2.9295 0.0989 0 / 0 ∞ −0.0722 0.0383 / 0.0352

0.4953 2 11.7554 s 0 2 0.0134 s 213

Twist 0.5194 4.1488 0.1753 0 / 0 ∞ −0.0848 0.0007 / 0.0004

0.3383 50 18.2556 s 0 50 0.0810 s 131

Rotate 0.5097 3.1939 0.4006 0 / 0 ∞ −0.0755 0.0008 / 0.0004

0.3071 3743 28.7540 s 0 3743 61.0223 s 35337

Wave-shape 0.2000 3.3007 0.3642 0 / 0 ∞ −0.0682 0.0007 / 0.0005

0.1256 1089 30.0948 s 0 1089 2.7450 s 4603

CT1 0.0631 2.2204 0.1606 0 / 0 1.0640 0.0085 0.0121/0.0074

0.0153 300 112.3901 s 0 300 1.3031 s 0

CT2 0.0624 2.3331 0.1406 0 / 0 1.0740 0.0843 0.0136/0.0077

0.0263 300 103.3852 s 0 300 1.1630 s 0

CT3 0.0891 1.7137 0.3973 0 / 0 1.1763 0.0593 0.0123 / 0.0077

0.0314 300 90.1452 s 0 300 1.1706 s 0

CT4 0.0816 6.1340 0.0312 0 / 0 1.3528 0.0639 0.0138 / 0.0079

0.0393 300 81.7555 s 0 300 1.2033 s 0

CT5 0.0920 6.5297 0.0229 0 / 0 1.3226 0.0384 0.0159 / 0.0073

0.0232 300 228.0194 s 0 300 1.5251 s 0

Fig. 8 Landmark-matching experiment to register wave deformation. a Landmark, b QC deformation,

c sparse view

Using our proposed algorithm, we obtain a transformation that satisfies the landmark con-

straints. Figure 8b shows the obtained transformation, which is bijective (Refer to Table 1).

Figure 8c shows the transformation with a sparser view.
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Fig. 9 Landmark-matching experiment of random points with twisting deformation. a Landmark, b QC

deformation, c sparse view

Finally, we test the algorithm to compute the landmark-matching transformation with

random points being chosen as landmarks. These random landmark points are twisted by the

following transformation (See Fig. 9a):

qi (x) = f1(pi ) = pi (x) − pi (x) · A (pi (x), pi (y)) ,

qi (y) = f2(pi ) = ρ − pi (z) · A (ρ, pi (z)) ,

qi (z) = f3(pi ) = pi (z) + qi (y) · A (ρ, pi (z)) . (66)

where

ρ = pi (y) + qi (x) · A (pi (x), pi (y))

A(x, y) =
1

100

(
(cos(πx) + 1) (cos(πy) + 1)

4
+ cos

(πx

2

)
cos
(πy

2

))
(67)

The twisting deformation is large and complicated. Using our algorithm, we are able to

obtain a diffeomorphic landmark-matching transformation. Figure 9b shows the obtained

transformation. Figure 9c shows the registration with a sparser view.

The upper row of Fig. 10a–e shows the overall energy (See 12 versus iterations for the

“one point landmark”, “two-point landmark”, “wave-shape deformation”, “rotate sphere”

and “twist point sets” examples respectively). Note that the overall energy of each mapping

is iteratively reduced with a trend of converging to an optimal map with respect to our

proposed model 12. The second row shows the corresponding log-log plot of the overall

energy versus iterations. The negative slope appear in all five examples indicates that our

proposed algorithm successfully minimizes the generalized conformality distortion K ( f )

while matching the prescribed landmark correspondences.

The above examples demonstrate that our proposed algorithm is effective for computing

landmark-matching folding-free transformation with larger deformations. It works well even

with large number of landmarks or large deformations.

5.2 Lung CT Landmark-Based Image Registration

We have also applied our algorithm to compute landmark-matching transformation of real

four dimensional lung CT data with prescribed landmark correspondences at different times.

Five sets of lung CT images are registered using our proposed algorithm. We choose the

maximum inhalation phase image (at time t = 00) and the maximum exhalation phase
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Fig. 10 The overall energy versus iterations. a One-point, b two-point, c wave, d rotate, e twist

Fig. 11 Lung CT image registration (CT 1). a Lung at time = 00, b lung at time = 50. c registration result

image (at time t = 50) as the moving image and the reference image respectively. This

provides the maximum displacement of the landmarks located within the lung CT images.

To demonstrate the independence of our algorithm to the number of landmark points, 300

prescribed feature correspondences are enforced. Figure 11a, b show the lung CT images at

time t = 00 and t = 50. The image dimension of this dataset is 256 × 256 × 112. Since the

multi-grid method is applied to obtain a preconditioner to solve the f-subproblem, a linear

interpolation on the image is firstly done to get the position of the landmarks corresponding

to the dimension 256 × 256 × 128, in which every dimensions has grid spacing equals to the

power of 2. The 300 prescribed landmark correspondences between the two images are shown
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Fig. 12 Lung CT image registration (CT 5). a Lung at time = 00, b lung at time = 50, c registration result

Fig. 13 Vector field of the registration result (CT1). a X-slide 50. b X-slide 55, c X-slide 60, d X-slide 65,

e X-slide 70, f X-slide 75

as the red and blue dots in the figures. Using the proposed algorithm, the landmark-based

image registration of the lung CT images can be computed, which is shown in Fig. 11c.

Figure 12a, b show another set of lung CT images at time t = 00 and t = 50. The

image dimension of this dataset is 512 × 512 × 128. The 300 prescribed landmark corre-

spondences are shown as the red and blue dots in the figures. The obtained landmark-based

image registration of the lung CT images is shown in Fig. 12c.

Figures 13a–f and 14a–f show the vector fields of the lung deformations obtained

from the registration results. The images are the slides on the X-axis with slide numbers

50, 55, 60, 65, 70 and 75 respectively. The vector fields located inside the lung are projected
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Fig. 14 Vector field of the registration result (CT5). a X-slide 50, b X-slide 55, c X-slide 60, d X-slide 65,

e X-slide 70, f X-slide 75

to the YZ planes and are visualized as green arrows in the figures. The vector fields are smooth,

showing that our proposed algorithm can produce smooth landmark-based registration result.

5.3 Quantitative Measurements

Table 1 lists the quantitative measurements of the landmark-matching transformation

obtained from the proposed algorithm and the TPS method. For a fair comparison, we first

normalize the domain Ω in each example to be the unit cube. The maximum and minimum

displacement of the prescribed landmark correspondences are denoted as LMmax and LMmin

respectively. The quantities emax and emin shows the maximum and minimum landmark

mismatching error in the L-2 sense.

The maximum of the resulting conformality distortion is denoted by max K. Note that

max K obtained from our proposed algorithm are all finite. This implies that the computed

transformations in all examples are orientation-preserving. However, results generated by

the TPS in the five synthetic examples have infinite value of max K, which indicates folding

occurs in the mapping obtained from TPS. For lung registration examples (CT1 - CT5), we

observe that the max K of TPS is relatively smaller than that of the proposed algorithm.

This is mainly due to the inexact alignment of the landmark points by TPS which provides

more freedom for the optimization of the transformation. min Det, which is the minimum of

the Jacobian, is another indicator showing the diffeomorphic property of the mapping [8,9].

#Fold counts the number of tetrahedra in which the obtained transformation has negative

Jacobian. We observe that foldings occur in TPS method when the landmark displacement is

large. For our proposed algorithm, no foldings are observed for both synthetic and the lung

registration examples. This shows the capability of the generalized conformality distortion

K ( f ) in enforcing the bijectivity of the transformation.
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The computation time for both algorithms is also reported in the table. With the proposed

numerical method applied in the algorithm, the time required for large deformation is quite

reasonable (less than 30 s for sparse grids and less than four minutes for dense grid size).

6 Conclusion

This paper present a new method to obtain folding-free landmark-matching transformationn

between general n-dimensional Euclidean spaces with large deformations. The basic idea is

to extend the 2-dimensional quasi-conformal theories to general n-dimensional spaces. Given

a set of landmark constraints, our goal is to look for an optimal transformation that matches

landmarks. In this paper, we introduce a notion of conformality distortion of a diffeomorphism

of the n-dimensional Euclidean space. The conformality distortion measures the distortion

of an infinitesimal ball to an infinitesimal ellipsoid under the diffeomorphism. Our problem

can then be modelled as a minimization problem of an energy functional involving the

conformality term and a smoothness term. The conformality term allows the algorithm to

produce folding-free transformation with minimized local geometric distortions, even with

very large deformations. Alternating direction method of multipliers (ADMM) is applied in

this paper to solve the optimization problem. The algorithm only involves solving an elliptic

problem and a tetrahedron-wise minimization problem. Preconditioned conjugate gradient

method with multi-grid V-cycle preconditioner is applied to one of the subproblem, while

a fixed-point iteration is used for another subproblem. The time complexity and robustness

of the algorithm is independent of the number of landmark constraints. Experimental results

show that our proposed algorithm is effective for computing folding-free landmark-matching

transformation, even with large number of landmarks or large deformations. In the future,

we will test the algorithm on other real medical data, such as 3D MRI scan with DTI fibre

tracks as the interior landmark constraints.
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