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Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear med-
ical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks
on the source (image to be transformed) and target (reference image). Point landmarks are placed at regular intervals on contours
of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity
and displacements of the homologous landmarks. The method was evaluated in two cases (n = 5 each). In one, MRI was registered
to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target
registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks.
Results. Statistical analyses demonstrated significant improvement (P < 0.05) in registration accuracy by landmark optimization
in most data sets and trends towards improvement (P < 0.1) in others as compared to manual landmark selection.

1. Introduction

In rodent brains images may become distorted due to instru-
ment imperfections or, in the case of histology, tissue pro-
cessing. For example, magnetic field inhomogeneity causes
geometric distortions in echo planar imaging (EPI) MRI;
mechanical forces acting on a harvested brain during slicing
may cause tissue tearing. And chemical preparation for
histological analysis may cause deformation of tissue, evident
in histological micrographs. Correcting (or “rectifying,”
“warping”) the distorted images is required to adequately
represent rodent brains (in the case of EPI distortion in
MRI), or to compare different acquisition modalities (e.g.,
comparison of in vivo images and histological micrographs).
Normally, affine (linear + translation) transformation can-
not reconcile severe distortions making nonlinear transfor-
mation necessary.

Among the nonlinear transformation techniques, point-
based interpolating transformation techniques are widely

employed because they are easy to implement and flexible
for different applications [1–3]. A typical point-based inter-
polating approach is comprised of three steps: (1) placing
homologous point landmarks on the source image (image
to be transformed) and the target image (image used as
the reference), respectively, (2) computing the interpolating
transformation (e.g., polynomial splines, B splines and thin-
plate splines [4, 5]) between the source and target images,
and (3) aligning the landmarks exactly and mapping other
parts of image using the computed transformation.

Accurate interpolating transformation requires an exact
match of homologous landmarks. Manual identification of
landmark points is time consuming and prone to intra-
and interobserver variations. A number of investigators have
attempted to automate the landmark definition process by
exploiting the geometry of anatomical or biological struc-
tures. Typical geometrical features include line intersections
[6, 7], local curvature maxima [8–10], and centroid of closed
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Table 1: Pseudocode of the landmark generation and optimization technique.

(1) Identify homologous contours on the source and target images either by manually drawing or using image processing techniques.

(2) Split the homologous contours into C pairs of corresponding source and target curves.

(3) For c = 1 to C

For i = 3 to n

Add the ith landmark on the middle of the longest segment of the cth source curve and the homologous landmark on

the corresponding target segment.

Optimize landmarks by minimizing the cost function in (1).

End

(4) End

boundary region [11]. Employing the anatomical and bio-
logical features has greatly simplified the landmark gener-
ation. However, some biomedical images do not contain
well-distributed features to generate reliable landmarks for
accurate registration. More importantly, noise, artifacts, and
other factors can cause errors when identifying the features
using either automated or manual selection. A few studies
have taken landmark location errors into account. Rohr et al.
developed a method to relax the exact landmark matching
(i.e., allowing the algorithm to relocate the landmarks) using
thin-plate splines [12] by minimizing the bending energy
functional [13, 14]. This method can cope with isotropic as
well as anisotropic landmark errors. Bookstein [15, 16] used
a linear regression model and a technique called “curve
décolletage” to relax the interpolation condition. Image
properties such as edges of objects [13] have been used to
relax the exact landmark matching. However, the effect of
the landmark relaxation on the registration accuracy was
unknown in prior studies.

In the current investigation, we developed a technique to
automate and optimize the landmark generation using the
local curvature on anatomical contours and validated the
technique. The technique presented here is for two dimen-
sional (2-D) brain image nonlinear registration. Although
the rodent brain is a three dimensional (3-D) object, some
brain imaging studies are essentially carried out on 2-D
planes such as in histological microscopy, and in 2-D MRI
studies. More importantly, nonlinear distortion mostly
occurs on 2-D as well in these imaging studies. For example,
tissue tearing, shearing, shrinkage, and enlargement, during
sectioning and section handling, and eddy current in 2-D EPI
MRI acquisition, mostly cause 2-D in-plane nonlinear dis-
tortions. To guarantee the correspondence of the two brain
images to be registered, some prior process 3-D registra-
tion may be necessary. Detailed description of the process
follows.

2. Materials and Methods

2.1. Algorithm Development. The strategy of this method is
first to generate contours on corresponding anatomical fea-
tures on the source and target images and then generate land-
marks on homologous anatomical contours. The landmarks
are then relaxed from the original locations and allowed
to slide along the contours to achieve optimal matching.

The relocation of the landmarks is governed by a cost
function constituted by the local curvatures of landmarks
and their displacements. The procedure is described using
the pseudocode in Table 1.

The homologous contours on which the landmarks are
generated can be manually drawn on the images or identified
as the borders of objects using border detection methods, or
first identified automatically using border detection methods
and then manually modified to correct errors resulting from
noise and artifacts. Depending on the image properties, ap-
propriate border detection methods such as dynamic pro-
gramming or active contour models [17] can be used. The
homologous contours are manually split into several corre-
sponding source and target curves that are relatively regular
in shape (c.f. Figures 2(a), 2(b), 3(a), and 3(b). The splitting
usually improves the computational stability and efficiency
of the nonlinear transformation in our experience (we used
the thin-plate splines for the transformation calculations).

The next step is landmark generation and optimization
on each curve. An example of this step is illustrated in
Figure 1. The first two landmarks and their homologues are
fixed at the two ends of the corresponding source and target
curves (Figure 1(a)). The remaining landmarks (from the 3rd
to the nth; n is the user-preset number of landmarks on the
curve) are generated and optimized in an iterative fashion
as shown in Table 1. The landmarks split the source and
target curves into homologous curve segments (e.g., i − 1
landmarks split the curve into i − 2 segments). The ith
landmark is placed in the middle of the longest segment of
the source curve (can be on the target curve depending on
the user; the source curve was used in this study), and its
homologue is placed on the corresponding target curve
segment (Figure 1(b)). Before the (i + 1)th landmark is
added, the landmarks are relaxed from their initial locations
and slid on the curve segments to match each other (this
procedure is called landmark optimization, Figures 1(b) and
1(c)) by minimizing the cost function
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where S and T indicate the source and target, respectively,
∆i−1 is the displacement of landmarks on the (i − 1)th curve
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Figure 1: An example of the landmark generation and optimization. The left and right columns show the source and target curves,
respectively. (a) The first two landmarks (1 and 2, circled X) and their homologues (1′ and 2′, circled X) are fixed at the two ends of the
corresponding source and target curves. The 3th landmark (3) is placed in the middle of the longest segment of the source curve, and its
homologue (3′) is placed on the target curve. (b) The landmarks (3 and 3′) are then relaxed from their initial locations and slid to match
each other; and the 4th landmark (4) is placed in the middle of the longest segment of the source curve, and its homologue (4′) is placed on
the target curve. (c) The 4th landmarks (4 and 4′) are then relaxed from their initial locations to match each other.

segment, l is the length of the curve segment, and κ is the
local curvature defined by

κ =

∥

∥γ̇ × γ̈
∥

∥

∥

∥γ̇
∥

∥

3 , (2)

where γ is a curve, “‖‖” represents the Euclidean distance,
and “·” and “··” are the first and second derivatives, respec-
tively. The first term of the cost function is the difference
between the local curvatures (normalized by the maximum
curvatures of the curve segments) of a source landmark and
the homologous target landmark. The second term is the
displacements of the landmarks from their initial locations
normalized by segment length. The cost function is a combi-
nation of the curvature similarity of the source and target
landmarks and the displacements of the landmarks. The
landmarks are relaxed and moved to match their curvatures
(the first term in (1)) to minimize the cost function, and
their displacements are weighed by the second term. The
weighting parameter λ > 0 regulates the sliding distances of
the landmarks along the contours. By increasing λ, landmark
displacement is restricted. Equation (1) is minimized using

the Nelder-Mead algorithm [18]. When the landmarks have
been optimized, any point-based registration method can
be used to warp the source image and register the source
and target images. We utilized the thin-plate splines [12] to
generate the warping field for registering the target images to
the source in this work.

2.2. Algorithm Evaluation. The landmark generation and
optimization technique was evaluated using two types of
mouse brain imaging studies. In the first study, mouse brain
MRI was nonlinearly registered with histological sections.
The second study examined the ability of the algorithm to
correct geometric distortion of EPI—a fast MRI acquisition
technique. The convergence criterion of the cost function
minimization was set as either landmark displacement of
less than 10−4 pixels in subsequent iterations or a maximum
of 500 iterations, and the weighting factor λ was set to
between 0.2 and 0.3 in both of these studies. The thin-
plate splines, which have been extensively used in medical
image registration [7, 19–30], were used for the nonlinear
transformations. The accuracy of registration between the
transformed source image (MRI in the first study, and EPI
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Figure 2: The registration of MRI and histological slices using optimized landmarks on curves (a) and (b), manually selected discrete
landmarks (c) and (d). The colors of homologous landmarks are matched in (c) and (d). The MRI slice transformed using the thin-plate
splines with optimized landmarks in (a) and (b) is shown in (e), and overlaid on the histological section (f). The average NMI and TRE of
transformed MRI and histological slices in five image pairs (I–V) were shown in (g) and (h), respectively. The NMI and TRE were calculated
on the MRI slices transformed using manually selected “discrete landmarks (LMs)” (black columns), landmarks generated on curves but not
optimized (“Nonoptimized LMs on curves”) (white columns), curve landmarks optimized using (1) (“Optimized LMs on curves”) (gray
columns), and curve landmarks manually refined (“Manually adjusted LMs”) (stripped columns) ∗: P < 0.1; ∗∗: P < 0.05.

in the second study) and the reference image was measured
by two methods using the normalized mutual information
(NMI) and target registration error (TRE), respectively. NMI
is defined as

NMI =
(H(St) + H(T))

H(St,T)
, (3)

where H(St) and H(T) are the marginal entropies, respec-
tively, of the transformed source image St and T , and
H(St,T) denotes their joint entropy. TRE [3] is the distance
between a set of target points (PT) and warped correspond-
ing source points (PS). In general,

TRE = T(PS)− PT , (4)

where T is the transformation, which is the thin-plate splines
in this study. Therefore TRE is an array of vectors. In this

study, only the average magnitude of TRE is of interest and
thus reported. The size of the point set was dependent on the
nature of the images, and at least four points were identified
on each pair of images.

2.2.1. Registration of MRI to Histological Sections. Mouse
brains were harvested after 3D T2∗-weighted MRI, fixed
and embedded in paraffin for histological sectioning. The
blockface of the embedded brain was photographed during
sectioning (blockface imaging). Individual blockface images
were stacked to reconstruct the 3D brain volume. Brain slices
were stained with Prussian blue and hematoxylin. The MRI
volume was linearly registered to the blockface volume, and
then computationally resliced in the coronal plane to match
the corresponding histological sections [31, 32]. The MRI
slices and histological sections were then nonlinearly regis-
tered by three experienced technicians using the thin-plate
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Figure 3: The correction of the geometrical distortion on a B0 image (a) in EPI DTI employing the T2-wt image (b) as the reference by
optimized landmarks on curves (a) and (b), and manually selected discrete landmarks (c) and (d). The colors of homologous landmarks are
matched in (c) and (d). The B0 image transformed using the thin-plate splines with optimized landmarks in (a) and (b) is shown in (e), and
overlaid on the T2-wt image plotted in pseudocolor (f). The average NMI and TRE of corrected B0 and T2-wt images in five image pairs
(I–V) were shown in (g) and (h), respectively. NMI and TRE were calculated on the B0 images transformed using manually selected “discrete
landmarks (LMs)” (black columns), landmarks generated on curves but not optimized (“Nonoptimized LMs on curves”) (white columns),
curve landmarks optimized using (1) (“Optimized LMs on curves”) (gray columns), and curve landmarks manually refined (“Manually
adjusted LMs”) (stripped columns) ∗: P < 0.1; ∗∗: P < 0.05.

splines with the landmarks generated and optimized by the
presented technique. The technicians were instructed to draw
the source and target contours and generate curves according
to their knowledge of anatomy. The automatic landmark
optimization technique was evaluated by comparing two
registration results: the first was from landmarks generated
on the user defined contours but adjusted manually by
the technicians, and the other registration was conducted
using discrete landmarks manually selected by the techni-
cians.

2.2.2. Correction of EPI Distortion. Five mice were scanned
with T2-weighted (T2-wt) spin-echo imaging and diffusion
tensor imaging (DTI) with EPI acquisition. The MRI slices
were prescribed at the same anatomical locations in these
scans. In the DTI EPI scan, a baseline image without diffu-
sion weighting (B0) was also acquired. The B0 images were
used as the source images, and the T2-wt images were used
as the target images for registration. Since the B0 image
and all diffusion-weighted images undergo same geometric
distortion, the transformation procured from the T2-wt/B0
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registration is applied to correct the diffusion-weighted
images. The B0 images were registered to the T2-wt images
by the same three technicians in the MRI/histology regis-
tration using manually selected landmarks, landmarks man-
ually adjusted on anatomical contours, and automatically
generated and optimized on contours, respectively.

3. Results

3.1. Registration of MRI to Histological Sections. Figures 2(a)
and 2(b) demonstrate a pair of MRI and histological slices
before coregistration. The curves drawn by a technician and
landmarks generated and optimized on the curves are also
shown on these figures. The transformed MRI and its overlay
on the histological section are shown on Figures 2(e) and
2(f). Figures 2(c) and 2(d) show the discrete manually
selected landmarks by a technician. The landmarks that were
manually adjusted on curves are not shown.

Registration results with landmarks generated using
different methods in five pairs of MRI and histological slices
(from Pair I to V) were compared. The mean and standard
error of the NMI and TRE of each pair of images by the three
technicians is presented in Figures 2(g) and 2(h), respectively.
NMI and TRE are shown from the manually selected discrete
landmarks (“discrete landmarks (LMs)” in Figures 2(g)
and 2(h)), landmarks generated on anatomical curves and
optimized using (1) (“Optimized LMs on curves” in Figures
2(g) and 2(h)). The NMI and TRE of landmarks on curves
but not optimized (“Nonoptimized LMs on curves”) and of
landmarks manually adjusted on curves (“Manually adjusted
LMs”) are also presented to investigate the improvement in
registration accuracy resulting from landmark optimization.
The number of optimized, manually adjusted and nonopti-
mized landmarks, was the same on each curve. The nonop-
timized landmarks were obtained by simply generating the
landmarks on the curves without performing optimization
using (1), keeping each landmark at its initial position.

As demonstrated in Figure 2(g) (NMI results) and Fig-
ure 2(h) (TRE results), generating landmarks on anatomical
curves (no matter the landmarks were optimized or not)
either significantly improved registration accuracy (P < 0.05,
paired t-test) or showed a trend towards improvement (0.05
≤ P < 0.10) in all image pairs compared to manually selecting
discreet landmarks. The automatic landmark optimization
using (1) resulted in a trend towards registration accuracy
improvement (0.05 ≤ P < 0.10) in one image pair by NMI
calculations (Figure 2(g)) compared to nonoptimized land-
marks, and a trend towards improvement (0.05 ≤ P <
0.10) in two image pairs by TRE calculations (Figure 2(h)).
Compared to nonoptimized landmarks, manually adjusted
landmarks showed a trend toward improvement in registra-
tion accuracy (0.05 ≤ P < 0.10) on two image pairs by NMI
(Figure 2(g)). The TRE results showed a significant accuracy
improvement (P < 0.05) or a trend towards improvement
(0.05≤ P < 0.10) on three image pairs by manually adjusting
the landmarks (Figure 2(h)). No difference was found
between automatically optimized and manually adjusted
landmarks.

3.2. Correction of EPI Distortion. A typical pair of B0 and T2-
wt images is shown in Figures 3(a) and 3(b). The geometrical
distortion is evident on the B0 by visual comparison to the
T2-wt images. Figures 3(a) and 3(b) show the anatomical
curves and optimized landmarks on a pair of T2-wt/B0
images, and the discrete landmarks manually selected by
the same technician are shown in Figures 3(c) and 3(d).
The result of distortion correction using the optimized land-
marks is shown in Figure 3(e). For an improved visualization,
the corrected B0 (in grayscale) is overlaid on the T2-wt image
plotted in pseudocolor in Figure 3(f).

The same statistical analysis was performed in the EPI
distortion correction as for the MRI/histology registration,
allowing a direct comparison of the results (Figures 3(g)
and 3(h)). Generating landmarks on anatomical curves (irre-
spective of whether or not the landmarks were optimized)
either significantly improved registration accuracy (P < 0.05)
or showed a trend towards improvement (0.05 ≤ P < 0.10)
in all image pairs compared to manually selecting discreet
landmarks except in one image pair (in Figure 3(g), by NMI
calculations). The automatic landmark optimization using
(1) resulted in significant accuracy improvement (P < 0.05)
in one image pair and a trend towards registration accuracy
improvement (0.05 ≤ P < 0.10) in two image pairs by NMI
calculations (Figure 3(g)) compared to nonoptimized land-
marks, and a trend towards improvement (0.05 ≤ P < 0.10)
in one image pair by TRE calculations (Figure 3(h)). Com-
pared to nonoptimized landmarks, manually adjusted land-
marks showed a significant improvement (P < 0.05) in reg-
istration accuracy on two image pairs by NMI, and a trend
toward improvement (0.05 ≤ P < 0.10) on one image pair
(Figure 3(g)). The TRE results showed a trend towards im-
provement (0.05 ≤ P < 0.10) on one image pair by man-
ually adjusting the landmarks (Figure 3(h)). No difference
was found between automatically optimized and manually
adjusted landmarks.

4. Discussion

In this study, we developed a landmark generation and opti-
mization technique for point-based nonlinear image regis-
tration methods. This technique extracts landmarks from
the anatomical contours and optimizes the landmark posi-
tions by minimizing the cost function constituted by the
displacements and the local curvatures of the landmarks.
The technique was evaluated in two distinct applications: the
registration of MRI and histological slices and distortion cor-
rection of EPI MRI images. Statistical analyses have shown
that the automation of landmark selection resulted in signif-
icant accuracy improvement in image registration compared
to manually selected landmarks. Although in most exper-
iments the improvement in NMI and TRE resulting from
the landmark optimization was not statistically significant
compared to the results using nonoptimized landmarks, the
trends towards improvement in registration accuracy was
demonstrated in several experiments. Manually adjusting the
landmarks on curves could improve registration accuracy on
several experiments and show a trend towards improvement
in some other experiments. We found no difference in regis-
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tration accuracy between landmark automatic optimization
and manual adjustment. However, automated landmark se-
lection provides increased efficiency by minimizing the re-
quired user intervention.

We used two methods including NMI to validate our
technique. NMI has been intensively used as an image sim-
ilarity measure. It is not a monotonic function of the image
similarity and, thus, may be trapped at local minima when
used as a driving force for image registration. In this study,
the image pairs to compare have all been already registered;
thus, NMI was only calculated on a small interval on which it
is reasonable to think that NMI is monotonic. TRE was also
calculated for the registration evaluation in this study. TRE
is a measure of the registration accuracy of a set of points
on the images. The points for TRE calculation are usually
identified on anatomical features; thereby, the evaluation
may be more meaningful than NMI with regard to the ana-
tomical accuracy of registration.

The anatomical contours were manually drawn in this
study. Border detection methods can be used to automati-
cally identify the contours. It is reasonable to think that auto-
matically generating contours can minimize inter- and intra-
user variance. But on the other hand, some automatic border
detection techniques are more susceptible to noise and
artifacts compared to manual delineation. We are currently
investigating the registration accuracy using different border
detection methods.

Not only can this method be used in imaging studies
similar to those presented here, but also can be used for
multiple brain registration, or similarly, for registration to an
atlas with minimum modification. Before using this method,
a 3-D affine transformation is likely necessary to first align
the brain volumes together, or to the atlas, and then each
brain volume needs to be resliced to match individual brain
slices, or to the atlas slices.

Overall, this method results in improved registration
accuracy and efficiency. However, this technique still requires
user intervention and thus suffers inter- and intra-investi-
gator inconsistencies. We are currently improving this tech-
nique by including the image intensity and more geometrical
information in addition to displacement and curvature to
fully automate the landmark generation process. In this
study, the number of landmarks either manually selected or
automatically generated on curves was determined by the
technicians according to their experience. It is desirable to
precalculate the necessary landmark number for different
landmark generation methods to improve registration accu-
racy. Investigations using previously published methods to
accomplish this automation are underway [33].
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[2] B. Zitová and J. Flusser, “Image registration methods: a sur-
vey,” Image and Vision Computing, vol. 21, no. 11, pp. 977–
1000, 2003.

[3] J. M. Fitzpatrick, D. L. G. Hill, and C. R. Maurer Jr., “Image
registration,” in Handbook of Medical Imaging, M. Sonka and
J. M. Fitzpatrick, Eds., vol. 2, pp. 447–513, SPIE Press,
Bellingham, Wash, USA, 2004.

[4] W. R. Crum, L. D. Griffin, D. L. G. Hill, and D. J. Hawkes, “Zen
and the art of medical image registration: correspondence,
homology, and quality,” NeuroImage, vol. 20, no. 3, pp. 1425–
1437, 2003.

[5] Y. Liu, H. D’Arceuil, J. He et al., “A nonlinear mesh-warping
technique for correcting brain deformation after stroke,”
Magnetic Resonance Imaging, vol. 24, no. 8, pp. 1069–1075,
2006.

[6] G. C. Stockman, S. Kopstein, and S. Benett, “Matching images
to models for registration and object detection via clustering
( RST),” IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol. 4, no. 3, pp. 229–241, 1982.

[7] M. A. Jacobs, J. P. Windham, H. Soltanian-Zadeh, D. J. Peck,
and R. A. Knight, “Registration and warping of magnetic reso-
nance images to histological sections,” Medical Physics, vol. 26,
no. 8, pp. 1568–1578, 1999.

[8] L. N. Kanal, B. A. Lambird, D. Lavine, and G. C. Stockman,
“Digital registration of images from similar and dissimilar
sensors,” in Proceedings of the International Conference on
Cybernetics and Society, vol. 4, pp. 347–351, 1981.

[9] P. Putjarupong, C. Pintavirooj, W. Withayachumnankul, and
M. Sangworasil, “Image registration exploiting five-point
coplanar perspective invariant and maximum-curvature
point,” in Proceedings of the 12th International Conference in
Central Europe on Computer Graphics, Visualization and Com-
puter Vision (WSCG ’04), vol. 12, pp. 341–348, Plzen, Czech
Republic, 2004.

[10] D. C. Van Essen, H. A. Drury, S. Joshi, and M. I. Miller, “Func-
tional and structural mapping of human cerebral cortex: solu-
tions are in the surfaces,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 95, no. 3, pp.
788–795, 1998.

[11] A. Goshtasby, “Piecewise linear mapping functions for image
registration,” Pattern Recognition, vol. 19, no. 6, pp. 459–466,
1986.

[12] F. L. Bookstein, “Principal warps: thin-plate splines and the
decomposition of deformations,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 6, pp. 567–585,
1989.

[13] K. Rohr, H. S. Stiehl, R Sprengel et al., “Nonrigid registration
of medical images based on anatomical point landmarks and
approximating thin-plate splines,” in Proceedings of the Aach-
ener Workshop, pp. 41–46, Aachen, Germany, 1996.

[14] K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese,
and M. H. Kuhn, “Landmark-based elastic registration using
approximating thin-plate splines,” IEEE Transactions on Medi-
cal Imaging, vol. 20, no. 6, pp. 526–534, 2001.

[15] F. L. Bookstein, “Four metrics for image variation,” Progress in
Clinical and Biological Research, vol. 363, pp. 227–240, 1991.

[16] F. L. Bookstein, “Landmark methods for forms without land-
marks: morphometrics of group differences in outline shape,”
Medical Image Analysis, vol. 1, no. 3, pp. 225–243, 1997.



8 International Journal of Biomedical Imaging

[17] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis,
and Machine Vision, PWS Publishing Company, Boston, Mass,
USA, 1998.

[18] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the Nelder-Mead simplex method
in low dimensions,” SIAM Journal on Optimization, vol. 9, no.
1, pp. 112–147, 1998.

[19] M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms,
“A physics-based coordinate transformation for 3-D image
matching,” IEEE Transactions on Medical Imaging, vol. 16, no.
3, pp. 317–328, 1997.

[20] B. Kim, J. L. Boes, K. A. Frey, and C. R. Meyer, “Mutual infor-
mation for automated unwarping of rat brain autoradio-
graphs,” NeuroImage, vol. 5, no. 1, pp. 31–40, 1997.

[21] C. R. Meyer, J. L. Boes, B. Kim et al., “Demonstration of
accuracy and clinical versatility of mutual information for
automatic multimodality image fusion using affine and thin-
plate spline warped geometric deformations,” Medical Image
Analysis, vol. 1, no. 3, pp. 195–206, 1997.

[22] M. S. Buchsbaum, J. H. Fallon, T. C. Wei et al., “A method of
basal forebrain anatomical standardization for functional
image analysis,” Psychiatry Research, vol. 84, no. 2-3, pp. 113–
125, 1998.

[23] J. R. DeQuardo, M. S. Keshavan, F. L. Bookstein et al.,
“Landmark-based morphometric analysis of first-episode sch-
izophrenia,” Biological Psychiatry, vol. 45, no. 10, pp. 1321–
1328, 1999.

[24] J. E. Downhill Jr., M. S. Buchsbaum, T. Wei et al., “Shape and
size of the corpus callosum in schizophrenia and schizotypal
personality disorder,” Schizophrenia Research, vol. 42, no. 3,
pp. 193–208, 2000.

[25] K. Rohr, Landmark-Based Image Analysis: Using Geometric and
Intensity Models, vol. 21 of Computational Imaging and Vision
Series, Kluwer Academic Publishers, Dodrecht, The Nether-
lands, 2001.
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