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Abstract—The presence of buried landmines is a serious threat
in many areas around the World. Despite various techniques have
been proposed in the literature to detect and recognize buried
objects, automatic and easy to use systems providing accurate
performance are still under research. Given the incredible results
achieved by deep learning in many detection tasks, in this paper
we propose a pipeline for buried landmine detection based
on convolutional neural networks (CNNs) applied to ground-
penetrating radar (GPR) images. The proposed algorithm is
capable of recognizing whether a B-scan profile obtained from
GPR acquisitions contains traces of buried mines. Validation of
the presented system is carried out on real GPR acquisitions,
albeit system training can be performed simply relying on
synthetically generated data. Results show that it is possible
to reach 95% of detection accuracy without training in real
acquisition of landmine profiles.

I. INTRODUCTION

Landmines and explosive remnants of war contaminate large

areas in more than 90 countries across the World, representing

a serious and ongoing threat to civilians [1]. The figures

of casualties due to landmines are not precisely known, but

it is estimated that approximately 26.000 people a year are

killed or maimed by landmines. Therefore, the development of

methodologies to localize landmines for clearance of landmine

sites is of paramount importance.

A possible way of solving landmine localization problem is

to proceed in two separate steps: (i) buried object detection

and (ii) object classification. Specifically, object detection

consists in individuating the presence of buried targets that

represent a possible threat. Object classification is the process

of discriminating objects of interest (e.g., landmines) from

other buried targets (e.g., clutter) [2]. In this paper, we focus

on the first step.

As a matter of fact, landmine detection is a challenging

problem since it is compounded by different factors: the large

variety of landmine types, different soils conditions, weather

conditions, presence of human and natural waste to name

a few. Traditional fielded approaches use electromagnetic

induction (EMI) based sensors specifically designed to detect

metal targets. However, many modern landmines are made of

plastic and contain little or no metal. In this context, ground
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penetrating radar (GPR) systems have emerged as a suitable

sensing modality for finding plastic threats [3], [4], [5]. Indeed,

GPR sensors operate by measuring the reflection of an elec-

tromagnetic pulse from discontinuities in subsurface dielectric

properties, thus they are able to detect nonmetal targets from

their dielectric contrast with the soil environment. However,

the sensitivity of GPR sensors to changing subsurface has also

some drawbacks. Indeed, GPRs tend to detect the presence of

clutter and soil distortion.

In this work we address the task of buried object detection

in GPR data. In the literature many GPR signal and image

processing techniques have been proposed for the automated

detection of buried objects. Generally, these methods first

implement a data pre-processing step that performs task as data

normalization, correction for variations in depth and speed,

removal of stationary effects due to the system response,

background subtraction [6], [7], [8]. Then processed data is

analyzed to detect the presence of buried targets. To this

purpose, both model-based detection methods and features-

based techniques have been proposed. Typical model-based

approaches aim to individuate hyperbola in GPR images by

making use of Hough transform [9] or fitting techniques [10].

However, the sensitivity of GPR systems to changes in local

environmental conditions results in highly variable responses

from buried objects that hinders correct hyperbola detection.

In this scenario, detection algorithms based on statistical

feature extraction from GPR images, including edge histogram

descriptors [11], histograms of oriented gradients [12], hidden

Markov models [13] among others, proved to have robust

performance to a wide variety of data.

In this paper we propose an algorithm for landmine de-

tection exploiting convolutional neural networks (CNNs) [14]

for the analysis of GPR B-scans (i.e., 2D images of vertical

underground slices). Our approach belongs to feature-based

techniques category, but reverses the typical used paradigm.

Indeed, we make use of a data-driven methodology that

learns features characterizing buried targets directly from

GPR images, rather than imposing any model or hand-crafted

feature recipe, as done in [15] for landmine identification. In

particular, we focus on a pipeline that necessitates of minimal

image pre-processing (i.e., only track synchronization and

removal of the direct antennas path) testing also different

CNN architectures. The main advantages of using the proposed
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approach with respect to other state-of-the-art solutions are

highlighted by our experimental campaign carried out on GPR

real data acquired from a test site. More specifically: (i) as

our algorithm does not rely on any analytical modeling, it is

less prone to errors due to simplistic assumptions or model

simplifications (e.g., linearizations, etc.); (ii) the proposed

method is able to work on small image patches with high

accuracy, paving the way to precise target localization; (iii)

the proposed CNN trained only on synthetic target signatures

learns a feature extraction methodology that generalizes well

on real GPR data; (iv) the possibility of embedding also real

acquisitions in the training step enables to improve system

performance up to 95% of accuracy.

II. BACKGROUND

In this section we provide a sufficient background on GPR

data acquisition and CNNs useful to understand the rest of the

paper.

GPR Data Acquisition. For a given spatial position, a

GPR transmit antenna emits an electromagnetic pulse into

the ground and a receiving antenna measures the return

signal’s amplitude as a function of time. This single wave-

form recorded by the GPR with antennas at a given fixed

position is referred to as A-scan. The structure of an A-

scan is strongly affected by the medium through which the

radiation propagates. If the medium contains regions with

different dielectric constants, the A-scan will exhibit complex

reflections at the region interfaces. When moving the GPR

antennas on a line, one can gather a set of A- scans, which

form a two dimensional data set, called a B-scan. In short, a B-

scan is an image representing a vertical slice of the ground in

which pixel intensities represent the amplitude of the received

signal. Therefore, B-scans provide a more effective means

for visualizing and characterizing a subsurface environments.

Typically, two different patterns can be observed in a B-scan:

(i) hyperbola signatures that derive from the reflection of

the electromagnetic signal on small buried targets; (ii) linear

segments due to the change of impedance between soil layers.

Convolutional Neural Networks. Convolutional neural net-

works (CNNs) are complex computational models that consist

of a very high number of interconnected nodes associated to

numeric parameters that can be tuned to learn complex and

non-linear functions [14], [16]. Network nodes are stacked into

multiple layers, each one performing a simple operation on its

input. CNN layers typically comprise:

• Convolution: each convolution layer is a bank of filters

h. Given an input signal x, the output of each filter is the

valid part of the linear convolution.

• Max pooling: this layer downsamples the input x by

sliding a small window over it and keeping the maximum

value for each window position.

• ReLU: Rectified Linear Unit (ReLU) applies the rectifi-

cation function max(0, x) to the input x, thus truncating

negative values to zero [17].

• Inner Product: performs a set of linear combinations of

all samples of the input x.

• SoftMax: normalizes the input values in the range [0, 1]
and guarantees that they sum up to one. This is particu-

larly useful at the end of the network in order to interpret

its outputs as probability values.

By feeding the CNN with a set of labeled data (e.g., images

belonging to different known categories) and minimizing a

cost function at the output of the last layer, CNN weights

(e.g., the values of the filters in the convolutional layers, etc.)

are tuned so that the CNN learns how to automatically extract

distinctive features from data (e.g., image categories).

In image classification scenarios, the first networks layers

usually learn low-level visual concepts such as edges and

simple shapes, whereas deeper layers identify complex visual

patterns. Finally, the last layer consists of a set of data

that are combined using a given cost function that needs to

be minimized. For example, in the context of binary image

classification, the last layer is composed by 2 nodes (i.e., one

per class), which define a probability distribution over the

visual categories. That is, the value of a given node belonging

to the last layer represents the probability of the input image

to belong to that visual class.

To train a CNN model for a specific image classification task

we need: (i) to define the metaparameters of the CNN, i.e., the

sequence of operations to be performed, the number of layers,

the number and shape of the filters in convolutional layers, etc;

(ii) to define a proper cost function to be minimized during

the training process; (iii) to prepare a (possibly large) dataset

of training and test images, annotated with labels according to

the specific tasks (i.e., GPR B-scans in our work).

III. DETECTION SYSTEM

The goal of the proposed system is to detect whether a

B-scan obtained through GPR acquisitions contains traces of

buried objects for landmine detection. Formally, this means

taking as input an image I representing a B-scan, and output

a label l̂ indicating possible absence (i.e., l̂ = 0) or presence

(i.e., l̂ = 1) of objects.

The rationale behind the proposed technique is that B-

scans present characteristic hyperbolic traces when GPRs

analyze profiles over buried objects, as shown in Section II.

Conversely, if the ground is relatively objects free, B-scans

do not show prominent hyperbolas. It is therefore possible

to leverage an image recognition system based on CNNs to

discriminate between B-scans containing these traces or not.

The pipeline of the proposed detection system is sketched

in Fig. 1. First, a CNN is trained to discriminate image

patches containing object traces (i.e., hyperbolas) or not (i.e.,

background). When the system is trained, in order to detect

whether an object is buried, a B-scan is acquired and split into

patches. Each patch is tested against the CNN model. Votes

associated by the CNN to each patch are aggregated into the

final result. In the following, we present a detailed description

of each step.
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Fig. 1: Detection system pipeline. Training process on top, system
deployment on bottom.

System Training Given a CNN architecture N we need

to determine its set of weights W (i.e., filters coefficients,

inner product weights, etc.) for the specific task. This is

done training the CNN as in a standard supervised two-class

problem. We make use of a database of B × B size patches

Pn, n ∈ [1, Ntrain] divided into two categories, i.e., object

vs. background (see Fig. 1). Each patch is associated with

a label ln depending on its category: background patches Pn

containing only background noise are labeled with ln = 0;

object patches Pn containing portions of hyperbola are labeled

with ln = 1. The CNN is fed with all available pairs

{Pn, ln}, n ∈ [1, Ntrain] and learns to associate labels to

patches.

Once the CNN is trained, it can be used to classify (i.e.,

associate to a label) new patches never used in the training

step. Specifically, it is possible to feed the CNN with an

unlabeled patch Pn, and obtain a vote wn proportional to the

likelihood of Pn to belong to class object. The higher wn, the

more likely Pn contains a portion of hyperbola.

System Deployment In order to detect whether a B-scan

image I contains traces of objects, we first split I into NI

overlapping patches Pn, n ∈ [1, NI ] of size B × B. Each

patch Pn is fed to the CNN, which associate a vote wn to each

one of them. The idea is that patches extracted from portions

of I depicting only background are associated to low wn

values. Conversely, patches containing portions of hyperbola

are associated to high wn values. An example is provided in

Fig. 1, which shows that patches located over the hyperbola

location are associated by the CNN to a high vote (i.e., yellow

in the figure).

After all patches of I are evaluated, we detect the presence

of objects by thresholding wn values. Formally, we associate

a label l̂ indicating background (l̂ = 0) or object (l̂ = 1) with

the following rule:

l̂ =

{

0, if maxn(wn) < Γ

1, otherwise
, (1)

where maxn(wn) extracts the maximum value among all

wn, n ∈ [1, NI ], and Γ is a threshold that can be decided

upon a small training set of images.

IV. EXPERIMENTAL SETUP

In this section, we provide details about the considered

network architectures, used datasets and experimental method-

ology.

Network Architectures In order to verify the possibility

of using CNNs for buried landmine detection, we tested the

proposed pipeline using 3 different network architectures.

Architecture N1 is inspired by the well known LeNet [16],

which is composed by 2 convolutional layers with 20 kernels

of size 5 × 5, ReLU activation and 2 × 2 max-pooling,

followed by two fully connected layers of 500 and 2 neurons,

respectively. Architecture N2 is a smaller version of N1, in

which convolutional kernels have been reduced to 3 × 3 and

the number of neurons of the first fully connected layer has

been decreased to 250. Finally, N3 is a version of N1 with a

single convolutional layer, rather than two.

Theoretically, all tested networks accept input patches of

small size B × B. In practice, we tested patches for B ∈
{32, 64, 128}, corresponding to approximately 8, 16, and

32 cm, respectively. Network training has been performed

using stochastic gradient descent with learning rate 0.01 on

batches of 64 patches exploiting log-loss activation function

for classification. Trained network models have been selected

as those minimizing loss on a small validation in the first 10
epochs (i.e., complete passes through all the training images).

Training was performed on GeForce GTX 980 GPU, requiring

a less than one minute per epoch.

Test Dataset In order to fully validate the proposed system,

we strongly believe that real-data from GPR acquisitions must

be considered. For this reason, the proposed pipeline has been

tested only on real-data. Specifically, real data used in this

work were collected using a GPR equipment consisting in

an IDS Aladdin (IDS Georadar srl) radar, a shielded ground

coupled dipole antenna (spaced 9 cm), with a central frequency

and a bandwidth of 2 GHz. A soft pad, the PSG [18], was

placed between the radar equipment and the soil to ensure

accurate measurements and fixed antenna orientation from

trace to trace.

In our setup, we used 9 different targets representing inert

landmine models and battlefield debris buried in a sand pit

characterized by a very low clay content and a gritty texture,

at a depth of approximately 10 cm. We then scanned the area

so that each A-scan corresponds to a time window of 20 ns
and contains 384 time samples. We obtained 114 B-scans of

180 cm, considering inline sampling of 0.4 cm and crossline

sampling of 0.8 cm. By knowing the position of each target, we

manually labeled B-scans containing or not object traces. The

only processing operations applied to B-scans were automatic

resize to match the pixel/cm ratio used by the CNN, and

removal of the first few image rows containing the direct path

from transmitter to receiver.

Training Dataset An important aspect of the proposed

system is the adopted training strategy. As a matter of fact, to

effectively train a CNN, datasets of thousands or even millions



(a) Training N1 on different datasets DR. (b) Training N1 with different patch size B. (c) Training different CNN architectures.

Fig. 2: ROC curves obtained with the proposed solutions: (a) network N1 for different numbers R of training B-scans from real acquisitions;
(b) network N1 for different patch sizes B; (c) different network configurations N1, N2 and N3, fixing B = 64 and R = 5.

of images are typically used [14]. This might seem a big issue

for the proposed pipeline, as such a huge number of labeled

GPR B-scans might not be easily available. However, one of

the strong aspects of the proposed architecture is the possibility

of being trained on synthetically generated images, still being

able to work when deployed on real GPR acquisitions.

To verify this characteristic, we generated 4 different train-

ing datasets DR, where R ∈ {0, 1, 3, 5} indicates the number

of real-data B-scans used for training. Specifically, D0 contains

only synthetic patches generated using gprMax simulation

software [19]. We generated 50.000 background patches and

50.000 patches containing hyperbola portions segmenting sim-

ulated B-scans of different ground compositions (i.e., different

sands, clays, and compositions) containing or not objects

of different shapes (i.e., boxes, spheres and cylinders) with

diverse dielectric constants.

Starting from D0, we then built D1, D3 and D5 by adding to

D0 only background patches from one, three or five B-scans

from the real-acquisitions. It is important to notice that the

network never uses patches containing real-data hyperbola dur-

ing training. Therefore, we assume that no information about

the target to be detected is available, apart from synthetically

generated images.

V. EXPERIMENTAL RESULTS

In this section we present the used evaluation metrics and

the achieved results.

Evaluation Metrics As the proposed strategy depends on

threshold Γ, we evaluated our method by means of receiver

operating characteristic (ROC) curves. These curves represent

detection probability and false alarm rate for different values

of Γ. Detection probability represents the percentage of B-

scans containing an objects correctly detected as such. False

alarm rate represents the probability of detecting an object

into a B-scan that does not contain it. Good detectors are

characterized by ROCs whose area under the curve (AUC)

tends to 1. Random guess is characterized by AUC equal to

0.5. As additional metrics we also provide detector accuracy

for the best selected Γ.

In order to measure the difficulty of the considered task, we

also implemented a simple baseline solution inspired by the

pre-screening method used in [12]. Specifically, we computed

the average A-scan for each B-scan, and took its maximum

value as indicator of high energy returned to the GPR. By

thresholding this value we detect the presence of an object.

All results are compared to this baseline.

Numerical Results First, we validated the possibility of our

system to be trained on synthetic data only, also showing that

it is possible to further increase system performance by using

some background real-data in the training set. To this purpose,

Fig. 2a shows ROC curves obtained using N1 trained on

patches with B = 64 from D0, D1, D3 and D5, respectively.

From this figure and numerical results reported in Table I, it

is possible to notice that, when only synthetic data are used

for training (i.e., D0), the pipeline still detects buried objects

with 83% of accuracy. Moreover, if we add 1 to 5 background

B-scans from real-data to the training set, detection accuracy

increases up to 95%. Notice that, no matter what dataset is

used, the CNN has been never trained using real-data depicting

hyperbolic traces. The simple screening baseline only detects

objects with 62% of accuracy.

Fig. 3 provides some better insights on the role of using

different datasets on landmine detection. Specifically, given

a reference B-scan with three targets (Fig. 3(a)), using D0

for training, the system only detects one target. By increasing

the number of real background patches seen during training

(Fig. 3(b-e)), the system learns to detect all targets.

After assessing the validity of the training strategy, we tested

the effect of using input patches of different size B. Fig. 2b

shows results obtained with N1 architecture trained on D5

for B ∈ {32, 64, 128}. It is possible to notice that results for

B = 32 and B = 64 are barely different. On the other hand,

by increasing patch size to B = 128, the system experiences

a small performance drop. Indeed, big patches capture big

portions of hyperbola, thus the CNN does not generalize well

enough to hyperbola of slightly different shapes.

Finally, we evaluated the impact of using different network

architectures. Fig. 2c show ROC curves obtained using N1,

N2, and N3 fixing B = 64 and using dataset D5 for training.

As a matter of fact, by decreasing CNN size (i.e., N2 and N3)

a small accuracy decrement is observed.

Table I reports numeric results in terms of accuracy and

AUC for all the presented experiments.
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(a) B-scan (b) D0 (c) D1 (d) D3 (e) D5

Fig. 3: Examples of detection masks obtained thresholding weights wn according to Γ. White areas indicate patches detected as containing
hyperbolic traces. (a) reference B-scan with three targets (dashed rectangles) and example of patches for B ∈ {32, 64, 128}; (b) mask
obtained for R = 0; (c) mask obtained for R = 1; (d) mask obtained for R = 3; (e) mask obtained for R = 5.

TABLE I: Numerical results for different proposed strategies. Best
results in bold, worst in italics.

Algorithm Patch Size (B) Dataset (R) Accuracy AUC

baseline - - 0.62 0.63

N1 64 0 0.83 0.88
64 1 0.85 0.90
64 3 0.90 0.92
64 5 0.95 0.97

32 5 0.92 0.97

128 5 0.94 0.96

N2 64 5 0.90 0.96

N3 64 5 0.88 0.93

VI. CONCLUSIONS

In this paper we presented a pipeline for landmine detection

based on the analysis of GPR B-scan images. The proposed

approach is based on the use of convolutional neural networks

and is fully automated. Validation on real GPR acquisitions

show that the system provides up to 95% of accuracy and

necessitates of minimal image pre-processing.

Experimental results validated the idea that the CNN can

in principle be trained starting from purely synthetic data.

However, by adding some background GPR acquisitions to

the pool of training images, it is possible to strongly increase

detection accuracy. Nonetheless, the system does not need to

be trained on images depicting the specific objects of interests

from real acquisitions. This characteristic proves paramount

for landmine detection scenario. With our approach it is pos-

sible to acquire some B-scans of controlled mine-free fields,

and deploy the system to detect objects never seen before.

Despite the reported promising performance, the proposed

pipeline does not exploit the full capability of the considered

GPR system. To further increase accuracy, future work will

be devoted to study the effect of using different antenna

polarizations. Moreover, we will investigate the possibility of

working directly in a 3-dimensional domain, rather than just

using B-scans. Finally, we will perform more thorough GPR

data acquisition campaigns to study system generalization

capability to different kinds of targets.
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