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Recent advances in calculation algorithms have led to a new level of image processing for mineral 

identification and mapping. Mineral outcrop mapping has a decade’s history of using conventional 

methods like band combintion, band ratioing and relative absorption band depth (RBD) technique. 

Modification of these algorithms enriches the capabilities of object identification and mapping. 

Band combination and band ratioing help to locate the distribution of a hydrothermal altered zone. 

In the current study, an attempt has been made to modify the RBD approach. Newly introduced 

successive band depth difference (SBDD) measures the difference of reflectance values in 

successive bands by dividing the sum of the two highest successive shoulders by the shoulder of the 

lowest value before the starting shoulder. Band math function has been used in various bands of 

Landsat 8 operational land imager (OLI) data to access the precise distribution of points of the 

hydrothermal altered zone. SBDD method has achieved a kappa coefficient of 0.86 which depicts 

significant levels of accuracy. 
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ADVANCEMENT in spectral remote sensing technologies 

has improved significantly over the past two decades, 

with the use of multispectral remote sensing data, particu-

larly for hydrothermal mineral mapping system1. The re-

mote sensing mineral investigation technique depends on 

surface composition and its absorption of energy. Various 

techniques process multispectral imagery to acquire sur-

face compositional character and information on a pixel 

to pixel basis for the entire image2. 

 The commonly used algorithms include the spectral 

angle mapper (SAM)3, spectral feature fitting (SFF)4, 

principle component analysis (PCA), spectral binary  

encoding (SBE)5, mixture tuned matched filtering 

(MTMF)6, spectral absorption index (SAI)7, absorption 

band-depth8 and RBD analyses9–11. 

 Crowley et al.9 used radiance data to develop the RBD 

method for mineral mapping. A three-point band ratio 

formulation technique was also known as RBD10. The 

RBD image was produced by adding and then dividing 

the ‘absorption-band shoulders’ by adjustment bands of 

the same channel series respectively (RBD = (band 

1 + band 2)/band 3). Therefore, RBD images offer the 

depth of an absorption feature relative to ‘local conti-

nuum correction’12. 

 This study uses modified RBD or newly introduced 

SBDD approach for mineral prospectivity mapping. The 

SBDD approach calculates the depth difference between 

two successive peak channels. Hence, all available Land-

sat 8 Operational Land Imager (OLI) bands have been 

analysed and integrated using these ‘modification of 

RBD’ or ‘SBDD’ methods for porphyry copper mineral 

prospectivity mapping in Singhbhum Shear Zone (SSZ)11. 

Landsat 8 OLI data processing 

Data-driven techniques are used for preliminary identifi-

cation of hydrothermal alteration mineral zones through 

different colour compositions. Band ratio helps to high-

light the target areas. Successive band depth difference 

approach and logical operators are implemented to extract 
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Table 1. Band specifications of ASTER and Landsat 8 sensors 

   Spectral Spatial Swath 

Sensors Subsystem Band number range (μm) resolution (m) width (km) 
 

   1 0.433–0.453  185 

   2 0.450–0.515   

 VNIR  3 0.525–0.600 30  

   4 0.630–0.680   

   5 0.845–0.885   
 

Landsat 8 OLI and TIRS SWIR  6 1.560–1.660 

   7 2.100–2.300   

  8 (Pan) 0.500–0.680 15  

 Cirrus  9 1.360–1.390 30  

 TIRS 10 10.60–11.20 100  

  11 11.5–12.5   

Source: ASTER user handbook and Landsat 8 (l8) data user handbook. 

 

 

 
 

Figure 1. Location and geology of the study area. 
 

 

the alteration zones. Landsat 8 OLI has been used to 

identify clay minerals which are characterized by absorp-

tions features in shortwave infrared channels13. Landsat 8 

covers visual to shortwave infrared spectrum channel in 

nine consecutive bands covering a 185 km swath. Eight 

bands have 30 m spatial resolution except for a 15 m pan-

chromatic band as shown in Table 1 (ref. 14). Landsat 

8 OLI has the greater 12-bit quantization which makes it 

more preferable for mineral mapping14,15. 

Geological history of the study area 

The study area is located at Singhbhum Copper Belt of 

Jharkhand which is one of the mineral-bearing stretches 

of India with high potential (Figure 1). The arcuate belt 

stretches for over 200 km between Baharagora in the 

south-east and Duarpuram in the west. Physiographically, 

the area consists of ridge systems underlined by characte-

ristic rock types such as the Dalma lava and its variants, 

quartzites, quartzose phyllites, etc. The area is developed 

on (i) Singhbhum granite in the southwest, (ii) schists on  

either side of the Subarnarekha valley and (iii) raised 

tracts of red soil which may be underlain by tertiary  

gravels16. 

 Major stratigraphic units of ‘Copper Belt Thrust’ sug-

gested by Dunn17, can be separated by Iron Ore Group 

(including the ‘Gorumahisani Group’) on the south and 

the Singhbhum Group on the north. The major copper 

mineral is chalcopyrite which occurs in veins and patches 

associated with chlorite schist. Quartzites and granites are 

the siliceous rocks found in mylonitized equivalents18,19. 

These types of rocks are characterized by soda rich 

feldspars20,21. The sulphides of the shear zone are mainly 

associated with chalcopyrite, pyrite, pyrrhotite and mag-

netite22. Chlorite and sericite quartz and biotites are found 

in multiple forms23,24. 

Preprocessing of data 

Landsat 8 image (LC81390442016317LGN00, path/row 

139/44) was downloaded from the United States Geologi-

cal Survey (USGS) website. This Landsat 8 OLI data was 

captured on 12 November 2016, which covers the entire 

East Singhbhum district along with the study area. The 

satellite image information is provided in Table 2. Pre-

and post-processing of Landsat 8 OLI satellite data was 

carried out using environment for visualizing images 

(ENVI) version 4.8 software (Figure 2)25. Fast Line-of-

Sight Atmospheric Analysis of Hypercubes (FLAASH) 

atmospheric correction module was used for atmospheric 

correction. All the bands of Landsat 8 data were layer 

stacked and the central wavelength value was assigned to 

each band for further analysis. 
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Image processing 

Band combinations 

True colour images are the composite result of three  

visual primary grey images. Colour images are composed 

of three primary colours, i.e. blue, green and red. False 

colour images, mainly colour infrared images, have spe-

cific advantages over true colour. While it is easy to rec-

ognize different geological units using true colour images 

colour infrared images also present geology quite well26. 

Band combinations eliminate most atmospheric attenua-

tion like haze, back scattering, etc. Different combina-

tions of false colour band scan highlight many features 

ranging from mineralogical changes to moisture changes, 

etc.27. The main advantage of true colour images is that it 

is easy to recognize units in areas where the stratigraphy 

 

 

Table 2. Landsat 8 OLI image metadata information 

Scene center time 04 : 37 : 30.6183250 

Cloud cover 2.98% 

Sun azimuth 153.52916597 

Sun elevation 44.92756117 

Pixel size 9 (m) 30 

Earth sun distance 0.9897199 

Map projection UTM 

Datum WGS84 

UTM zone 45 

Source: USGS website. available at: https://glovis. 

usgs.gov/. 

 

 

 
 

Figure 2. Methodology flow chart of Landsat 8 data analysis. 

is known and increase the ability of the interpreter in the 

identification of rock units where the geologic section is 

unknown26. Historical studies are the evidence of Landsat 

8 OLI image capabilities, which utilize some set of band 

numbers for rock discrimination of alteration zones based 

on colour intensity variations, such as RGB of B7, B6, 

B4 or RGB of B5, B6, B7 (Figures 3 and 4)28. However  

 

 
 

Figure 3. RGB colour combination of bands 5, 6 and 7 of Landsat 8 
satellite image. 

 

 
 

Figure 4. RGB colour combination of bands 7, 6 and 4 of Landsat 8 
satellite image. 
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Figure 5. a, Kaufman band ratio (7/5; 5/4; 6/7 as RGB). b, Sabins band ratio (4/2, 6/7 and 6/5 as RGB). c, Hasim band 
ratio (4/2 ,6/7, 10 as RGB). d, Pour and Hasim band ratio (4/2 ,6/7, 5 as RGB). 

 

 

 
 

Figure 6. True and relative absorption band depth9,37. 

 
 

extracting band combinations that illuminate the target 

litho-units are quite difficult29. 

Band ratio 

Band ratio can reduce the effect of environmental artefacts. 

Previous studies illustrated typical band ratios which 

have been used for enhancing lithological features1,13,14. 

Most effective band ratio practices used by Sabins’ for 

geological mapping, are RGB of 4/2, 6/7 and 6/5 (Figure 

5 a). Sabins’ band ratio is beneficial for lithological 

mapping and detection of hydrothermal alteration zones1,30. 

Previous studies suggest that iron-rich minerals or other 

minerals associated with hydrothermal processes can be 

delineated using 4/2 of Landsat 8 OLI image12.  

Band ratio of Landsat 8 OLI image 6/7 is beneficial  

for mapping clay minerals like kaolinite, illite and 

montmorillonite31. Ali and Pour30 suggest a combination of 

Landsat 8 OLI image 4/2, 6/7 and 5 as RGB for 

identification of lithology, altered rocks, and vegetation. 

Kaufmann band ratio (7/5, 5/4 and 6/7) was also used for 

separation of vegetation from altered zones30. Band ratios 

derived from images 4/2, 6/7, 5 and 4/2, 6/7, 10 as RGB 

depict separability of rock units and alteration zones 

precisely (Figure 5 c and d)32. Colour variations can be seen 

in different band ratio results which are the primary keys to 

identify a hydrothermally altered zone. 

 Several pair of bands have offered delineation of 

various rock-mineral types such as: (a) 4/2 – iron oxide, 

(b) 6/7 – hydroxyl bearing rock, (c) 7/5 – clay minerals 

and (d) 6/5 – ferrous mineral32,33.  
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Figure 7. a, RBD image (b2 + b5)/b4 in integer value. b, RBD image (b2 + b5)/b4 in float value. c, Spectral plot showing absorption band. 

 

 

 
 

Figure 8. Band selection used in RBD approach. 

 

Relative absorption band depth method 

Band ratio, PCA and RBD are some common methods to 

detect hydrothermally altered zones. Band ratio 

suppresses the common attribute in two bands. Band ratio 

images are designed to highlight the spectral contrast of 

specific objects having absorption characteristics in the 

entire channel34,35. Band ratio (BR) divides one band by 

another to create a new image that may be used to 

highlight a particular type of feature36,37. RBD divides the 

sum of two highest reflectance spectral bands which may 

be in a sequence in the spectral channel or not, by the 

lowest absorption spectral channel (Figures 6 and 7)9. 

RBD images are the result of a three-point ratio 

formulation for displaying Al–O–H, Mg–OH and CaCO3 

absorption strengths9,10. 

 RBD reduces radiometric miscalibrations which can 

misguide the interpreter. RBD produces a local 

continuum correction (LCC) which removes any small 

channel-to-channel radiometric offsets. RBD provides 

information on solar irradiance drop-off for each pixel in 

the dataset and irregular atmospheric absorption9,12,38. 

Absorption features associated with local continuum 

detect pixels having greater absorption bands, which 

indicates presence of a particular mineral38. 

Successive band depth difference technique 

In the present study, an attempt was made to modify  

the RBD approach. SBDD measures the difference in 

reflectance value of successive bands by dividing the sum 

of two highest successive shoulder channels by the 

bottom channel before the starting shoulder (Figure 8). 

Both RBD and SBDD image processing methods are used 

to identify lithological units as well as hydrothermally 

altered zones. Depth difference of two highest reflectance 

channels can be calculated by this method. Landsat 8 OLI 

data have absorption features in different band numbers 

which were used to analyse a specific mineral type. 

Chlorite and epidote have extensive Fe2+ absorption 

feature in the 0.66–1.65 μm region39,40. Alunite and 

kaolinite have Al–O–H absorption features at 2.17 μm 

and 2.20 μm respectively. Muscovite has a prominent Al–

O–H 2.20 μm absorption feature and a secondary 

2.35 μm absorption feature39,40. 

Data analysis 

Crowley et al.9 have developed a method of RBD which 

was processed through radiance data. In the present study 

radiance data of Landsat 8 OLI was used for the image 

analysis and identification of hydrothermally altered 

zones. Layer stacking and subsetting the image of the 

study area was carried out. Colour variation in different 

band combination and ratio images confirmed the location 

of the hydrothermally altered zones. Depth-based image 

analysis of spectra needs precise pixel locations. Geological 
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Figure 9. a, Successive band depth difference image ((B7 + B6)/B5) in integer value. b, Successive band depth differ-
ence image ((B7 + B6)/B5) in float value. c, Logical operator mined exact value. d, Vectorization of logical operators out-
put image of mining area outcrop. 

 

 

 
 

Figure 10. Band selection used in SBDD approach. 
 

 

Survey of India (GSI) location points of copper have been 

superimposed in RGB with 5, 6, 7 bands of Landsat 

8 OLI data to perceive spectral characteristics of ore 

outcrops for further analysis (Figure 9). Hydrothermally 

altered mineral shows absorption feature (0.66 μm) in a 

known sample location (Figure 10)31,41,42. RBD approach 

suggests dividing the sum of two peak reflected shoulders 

by the lowest absorption channel between them. Local 

continuum removal is possible by this approach. SBDD 

approach calculates the depth difference between two 

successive peak channels (Figure 10). 

 Typical spectral curve (Figure 10) depicts the conceptual 

parameters used in the SBDD calculation. Infrared to 

shortwave region of the electromagnetic spectrum is most 

significant to iron oxides, oxyhydroxides, and clay minerals 

which are formed by high or low-temperature alteration43,44. 

A significant level of band absorption can be noticed in 

SWIR channels (1.5 and 2.3 μm)45. Molecular vibrations 

from species such as hydroxyl, water, carbonate and 

sulphate are the sign of transition metals (generally iron 

or copper)46,47. Electronic orbital configuration and the 

combined overtones of molecular vibration process are 

responsible for such band absorption effects in transition 

metals30. Three successive bands of Landsat 8 OLI data, 

B5 (NIR), B6 (SWIR1) and B7 (SWIR2) have been used 

for the calculation. The integer and float value images 
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Table 3. Accuracy assessment statistics of different mapping procedures used in multispectral image 

 User accuracy Producer accuracy Overall classification Overall kappa 

Satellite image (%) (%) accuracy (%) statistics (%) 
 

Band combination 80.00 70.59 84.62 0.6395 

Band ratio 73.33 78.57 86.79 0.6679 

SBDD 93.33 87.50 94.34 0.8633 

 
 

 
 

Figure 11. Sample collection and GPS surveying of study area. 

 

 

of SBDD technique were processed through ENVI 

software’s band math function using simple logical 

expressions. Equations are given below. SBDD of float 

value image was calculated using eq. (1). 

 

 (float (b1) + float (b2))/float (b3). (1) 

 

The integer value of the same was calculated using eq. 

(2). 

 

 (b1 + b2)/b3. (2) 

 

The integer and float value images were calculated for 

elimination of mixed pixel values which were non-

targeted materials or non-hydrothermally altered zones. 

Such data values were eliminated through interactive data 

language (IDL) and logical operators. A critical threshold 

value of 2.10 was assigned in the operation (eq. (3)). The 

threshold value was decided after examining known 

points of chalcopyrite occurrence. The integer value 

image shows three data types 0, 1 and 2. The integer 

value image was compared with the float value image. 

ENVI software uses a typical type of conversion  

factor while processing the band math function for  

float value image. This conversion factor of ENVI 

facilitates the extraction of floating point difference up to 

0.10 interval. The mathematical expression in eq. (3) 

does the same. The first operation in eq. (3) eliminates 

float values above 2.10 and the second operation extracts 

the value of 2.00. Both operations are connected through 

a logical ‘and’ operator which fetches the demanded 

values when both the expressions are satisfied 

simultaneously (eq. (3)). The value image of (2.10–

2.00) = 0.10 difference can be extracted by the above 

procedure. The output value image provides the output in 

true and false value point in which true values are 

presented as 1 and false values are presented as 0 (Figure 

9 a and c). 

 

 ((b1 le 2.10) and (b2 eq 2)). (3) 

 

Results and discussion 

Dark blue patches in the north-western and south corner 

of the study area confirm the presence of hydrothermal 

alteration zones (RGB 5, 6, 7; Figure 3). The second 

RGB (7, 6, 4) shows dark brown colour in the same areas 
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(Figure 4). Sabins’ ratio (4/2, 6/7 and 6/5 as RGB) helps 

to recognize the hydrothermally altered zones in violet 

colour which can be seen in the North, South and North 

Eastern portions (Figure 5 b). Band combination of 4/2, 

6/7 and 5; 4/2, 6/7 and 10 was suggested by Hasim et 

al.48. The result of these band ratios represents the tonal 

difference in vegetation, water and hydrothermally 

altered zones. Light and dark violet colour in RGB of 4/2, 

6/7, 10 (Figure 5 c) and 4/2, 6/7, 5 (Figure 5 d) confirm 

the presence of hydrothermally altered minerals in the 

southern and northern part of the study area (Figure 9 d). 

Overall accuracy of band combination, band ratio and 

SBDD was compared. The accuracy assessment was 

carried out using GPS location and GSI mineral locations. 

Band combination and band ratio methods show 0.63 and 

0.66 of kappa statistics. SBDD based porphyry copper 

zonation map shows 94.34% of overall classification 

accuracy and kappa coefficient of 0.86 (Table 3). Field 

verification and data collection was carried out using 

hand-held GPS and digital camera. Geo-tagged field 

photos were collected in mining areas and their 

surroundings (Figure 11). 

Conclusion 

Band combination, band ratioing and RBD approach  

are conventional methods used for explicit mineral 

identification in large scale. Field surveying methods for 

mineral outcrop mapping are difficult and time 

consuming. Different band combination and ratio images 

represent various colours of rock minerals and are key to 

mineral identification. SBDD method is a spectral depth-

based method which needs prior knowledge of the 

targeted mineral spectra. Misinterpretation of target 

spectra may lead to wrong SBDD calculation. SBDD 

method uses radiance data of satellite image which is 

biased by atmospheric attenuation such as gases, dust 

particles, haze, etc. and hence can reduce overall 

accuracy. 
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