
 Open access  Posted Content  DOI:10.1101/2020.06.04.135004

Landscape and Selection of Vaccine Epitopes in SARS-CoV-2 — Source link 

Christof C. Smith, Sarah Entwistle, Caryn Willis, Steven Vensko ...+16 more authors

Institutions: University of North Carolina at Chapel Hill, Icahn School of Medicine at Mount Sinai,
University of California, Santa Cruz, University of Georgia

Published on: 04 Jun 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Epitope, Linear epitope, Epitope mapping, Immunogenicity and Major histocompatibility complex

Related papers:

 Landscape and selection of vaccine epitopes in SARS-CoV-2.

 Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.

 
A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to
SARS-CoV-2

 
An immunoinformatics study on the spike protein of SARS-CoV-2 revealing potential epitopes as vaccine
candidates

 LBA73 The ORF1ab of SARS-CoV-2 encodes an immunodominant epitope restricted by HLA-A*01:01

Share this paper:    

View more about this paper here: https://typeset.io/papers/landscape-and-selection-of-vaccine-epitopes-in-sars-cov-2-
1puudb2o71

https://typeset.io/
https://www.doi.org/10.1101/2020.06.04.135004
https://typeset.io/papers/landscape-and-selection-of-vaccine-epitopes-in-sars-cov-2-1puudb2o71
https://typeset.io/authors/christof-c-smith-9cga2bn0gl
https://typeset.io/authors/sarah-entwistle-3oj8j11mv1
https://typeset.io/authors/caryn-willis-11la7dlt5c
https://typeset.io/authors/steven-vensko-2jrdnlbcqb
https://typeset.io/institutions/university-of-north-carolina-at-chapel-hill-1436f8fx
https://typeset.io/institutions/icahn-school-of-medicine-at-mount-sinai-12y9cgwq
https://typeset.io/institutions/university-of-california-santa-cruz-2bnhx0v8
https://typeset.io/institutions/university-of-georgia-x04ap2gf
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/epitope-21zdja1z
https://typeset.io/topics/linear-epitope-2r8y2puw
https://typeset.io/topics/epitope-mapping-1vpqja4j
https://typeset.io/topics/immunogenicity-1o6wh61b
https://typeset.io/topics/major-histocompatibility-complex-17wn3ynu
https://typeset.io/papers/landscape-and-selection-of-vaccine-epitopes-in-sars-cov-2-4b49ekifp9
https://typeset.io/papers/cryo-em-structure-of-the-2019-ncov-spike-in-the-prefusion-zi39zaqzj4
https://typeset.io/papers/a-sequence-homology-and-bioinformatic-approach-can-predict-11dnwdt3l2
https://typeset.io/papers/an-immunoinformatics-study-on-the-spike-protein-of-sars-cov-31kivu6s1s
https://typeset.io/papers/lba73-the-orf1ab-of-sars-cov-2-encodes-an-immunodominant-44hmktlqlt
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/landscape-and-selection-of-vaccine-epitopes-in-sars-cov-2-1puudb2o71
https://twitter.com/intent/tweet?text=Landscape%20and%20Selection%20of%20Vaccine%20Epitopes%20in%20SARS-CoV-2&url=https://typeset.io/papers/landscape-and-selection-of-vaccine-epitopes-in-sars-cov-2-1puudb2o71
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/landscape-and-selection-of-vaccine-epitopes-in-sars-cov-2-1puudb2o71
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/landscape-and-selection-of-vaccine-epitopes-in-sars-cov-2-1puudb2o71
https://typeset.io/papers/landscape-and-selection-of-vaccine-epitopes-in-sars-cov-2-1puudb2o71


RESEARCH Open Access

Landscape and selection of vaccine
epitopes in SARS-CoV-2
Christof C. Smith1,2†, Kelly S. Olsen1,2†, Kaylee M. Gentry2, Maria Sambade2, Wolfgang Beck1,2, Jason Garness2,

Sarah Entwistle2, Caryn Willis2, Steven Vensko2, Allison Woods1, Misha Fini1, Brandon Carpenter2, Eric Routh2,

Julia Kodysh3, Timothy O’Donnell3, Carsten Haber4, Kirsten Heiss4, Volker Stadler4, Erik Garrison5, Adam M. Sandor2,

Jenny P. Y. Ting2,6,7,8, Jared Weiss2,9, Krzysztof Krajewski10, Oliver C. Grant11, Robert J. Woods11, Mark Heise2,6,
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Abstract

Background: Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions
optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive
both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-
dependent enhancement (ADE).

Methods: We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining
protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine
candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance,
and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping
studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial
localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites.

Results: From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-
II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell
analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in
subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19
patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate
peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized)
were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity
of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T
cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses
were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides.
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Conclusions: Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell
epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction
and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.

Keywords: SARS-CoV-2, COVID-19, vaccine, T cell, B cell

Background
SARS-CoV-2 vaccines have largely focused on generation

of B cell responses to trigger production of neutralizing

antibodies [1–3]. SARS-CoV-2 enters cells through inter-

action of the viral receptor binding domain (RBD) with

angiotensin-converting enzyme 2 (ACE2) receptors, found

on the surface of human nasopharyngeal, lung, and gut mu-

cosa [4]. Neutralizing antibodies targeting the RBD and

other functional domains of the SARS-CoV-2 spike protein

are a major route for achieving immunity and vaccine effi-

cacy [5–10]. When work on this study began in March

2020, little was known about the relative contribution of

different adaptive immune compartments to immunity

against SARS-CoV-2. Broadly, it was understood that CD4+

and CD8+ T cells have roles in the antiviral immune re-

sponse, including against SARS-CoV-1 [11–13]. Prior stud-

ies in SARS-CoV-1 have demonstrated T cell responses

against viral epitopes, with strong T cell responses corre-

lated with generation of higher neutralizing antibody titers

[13]. Unlike antibody epitopes, T cell epitopes need not be

limited to accessible regions of surface proteins. In SARS-

CoV-1, concurrent CD4+ and CD8+ activation and central

memory T cell generation were induced in exposed pa-

tients, with increased Th2 cytokine polarization observed in

patients with fatal disease [13]; conversely, Th1 response

has been associated with less severe disease in SARS-CoV-2

[14]. Additionally, Type 1 and Type 2 immunity are not

strictly synonymous with cell-mediated and humoral im-

munity, respectively, with Th1 polarization capable of indu-

cing moderate antibody production [15]. Because of these

considerations, most groups developing vaccines for SARS-

CoV-2 have focused on promoting Th1 response due to

safety concerns and demonstrated efficacy of Th1 response

[16]. To this end, we deduced that vaccines targeting

humoral (B cells) and cytotoxic arms (CD8+ T cells) with

concurrent helper signalling (CD4+ T cells), delivered with

adjuvants promoting Th1 polarization, may provide optimal

immunity against SARS-CoV-2.

In the intervening year, many vaccine strategies for

SARS-CoV-2 have demonstrated efficacy in clinical tri-

als, including mRNA encoding of the spike glycoprotein,

recombinant spike protein, adenovirus vector expressing

the surface glycoprotein, as well as delivery of whole

inactivated virus [2, 3, 17–25]. These strategies have

proven successful at eliciting neutralizing antibody re-

sponses against conformational epitopes [26] and offer

impressive protection from both infection and disease

[22, 23, 27, 28]. More recently, however, concern has

emerged regarding the rapid evolution [29, 30] of the

virus with concomitant decrease or loss of neutralization

from some novel variants [31–33]. Currently circulating

variants, however, do not appear to abrogate T cell re-

activity [34] and there is hope that vaccine induced T

cell responses provide a second line of defense against

viral infection [35, 36]. Whether future variants would

also be recognized by T cell evolutionary pressure to es-

cape T cell responses is unclear. Multi-epitope peptide

vaccination is an alternative approach which targets

smaller antigenic fragments of viral proteins. Peptide

vaccines have historically been most successful at elicit-

ing T cell responses [37–40] and, in certain pathogens,

they have also been able to elicit neutralizing antibodies

against linear epitopes [41–44]. Peptide vaccines may

have a complementary role relative to existing SARS-

CoV-2 vaccines due to their history of safe administra-

tion [45–48], rapid development [49, 50], and precise

selection of antigenic content. A peptide vaccine can

easily exclude polymorphic antigenic regions or be up-

dated to include antigenic fragments from newly emer-

ging variants.

We report here a design methodology for selecting

SARS-CoV-2 vaccine peptides which combines linear B

cell epitopes with both CD4+ and CD8+ T cell epitopes,

as well as an evaluation of our strategy based on a mur-

ine vaccination study and a comparison with a curated

dataset of published SARS-CoV-2 T cell epitopes (Fig. 1).

We start with a survey of the T and B cell epitope space

of SARS-CoV-2 (Fig. 2). Predicted T cell epitopes were

derived from in silico predictions filtered on binding af-

finity and immunogenicity models generated from epi-

topes deposited in the Immune Epitope Database (IEDB)

[51], population diversity, and source protein abundance

in order to select peptides that bind common HLA al-

leles and are likely to generate robust CD8+ and CD4+ T

cell activity. B cell epitope candidates were curated from

linear epitope mapping studies and further filtered by

accessibility, glycosylation, polymorphism, and adjacency

to functional domains to identify peptides most likely to

generate robust antibody responses. Given the utility of

murine-adapted SARS-CoV-2 models for evaluating vac-

cine candidates [7, 52–54], we also identified peptides

derived from viral proteins predicted to bind murine
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MHC coded for by H2-Db/d, H2-Kb/d, and H2-IAb/d hap-

lotypes. We then selected 22 longer sequence regions for

use as vaccine antigens. These vaccine peptides each

span multiple predicted CD4+/CD8+ T cell and linear B

cell epitopes, along with predicted murine MHC-I/II

ligands. We compared this vaccine peptide selection

process with a curated dataset of eight studies mapping

SARS-CoV-2 T cell epitopes from COVID-19 patients

and found that many of the recurrent epitope regions

were captured by our vaccine peptides. We also

Fig. 1 Visual summary of T and B cell epitope vaccine prediction and validation. (1) We explored the set of computationally predicted SARS-CoV-
2 HLA-I and HLA-II ligands, examining source protein abundance, sequence conservation, coverage of high frequency HLA alleles, and predicted

immunogenicity. (2) B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering
for sequence conservation, surface accessibility, spatial localization near functional domains of the spike glycoprotein, and avoidance of
glycosylation sites. (3) Vaccine selection of 27mers peptides was performed by optimizing population HLA coverage of T cell epitopes, evaluating

human/murine MHC ligand co-coverage, as well as examining peptides with optimal coverage of B cell, CD4+, and CD8+ epitopes. (4) Lastly,
validation was performed through comparison against a curated dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients

across eight studies, as well as murine ELISA/ELISpot studies using animals vaccinated with synthetic 27mer peptides with human/murine
epitope co-coverage
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evaluated 16 of the 22 vaccine peptides in a murine vac-

cination experiment and found that the same subset of

the peptides elicited T cell responses in combination

with two different adjuvants.

Methods
Antibody epitope curation

Linear B cell epitopes on the SARS-CoV-2 surface

glycoprotein were curated from five published studies

[55–59]. Four of these studies screened polyclonal sera

of convalescent COVID-19 patients using either peptide

arrays [55, 56, 59] or phage immunoprecipitation se-

quencing (PhIP-Seq) [57]. One study characterized the

epitopes of monoclonal neutralizing antibodies [59].

Results from Schwarz et al. included sera from six

SARS-CoV-2-naive patient sera and nine SARS-CoV-2-

infected patient sera using PEPperCHIP® SARS-CoV-2

Proteome Microarrays [59]. The peptides included in

these proteome-wide epitope mapping analyses were

limited to those which demonstrated either IgG or IgA

fluorescence intensity > 1000 U in at least two infected

patient samples and in none of the naive patient sam-

ples. In addition, two peptides were also included

(QGQTVTKKSAAEASK, QTVTKKSAAEASKKP) which

demonstrated IgG fluorescence intensity > 1000 U in

only one naive patient sample each, but in four and five

infected patient samples, respectively.

HLA ligand prediction

The SARS-CoV-2 protein sequence FASTA was re-

trieved from the NCBI reference database (https://www.

ncbi.nlm.nih.gov/nuccore/MT072688) [60]. Haplotypes

included in this analysis were derived from those with >

5% expression within the United States populations

based on the National Marrow Donor Program’s Haplo-

Stats tool [61]:

� HLA-A: A*11:01, A*02:01, A*01:01, A*03:01,

A*24:02

� HLA-B: B*44:03, B*07:02, B*08:01, B*44:02, B*44:03,

B*35:01

� HLA-C: C*03:04, C*04:01, C*05:01, C*06:02,C*07:01,

C*07:02

� HLA-DR: DRB1*01:01, DRB1*03:01, DRB1*04:01,

DRB1*07:01, DRB1*11:01, DRB1*13:01, DRB1*15:01

Additionally, HLA-DQ alpha/beta pairs were chosen

based on prevalence in previous studies [62]:

� HLA-DQ: DQA1*01:02/DQB1*06:02, DQA1*05:01/

DQB1*02:01, DQA1*02:01/DQB1*02:02,

DQA1*05:05/DQB1*03:01, DQA1*01:01/

DQB1*05:01, DQA1*03:01/DQB1*03:02,

DQA1*03:03/DQB1*03:01, DQA1*01:03/

DQB1*06:03

For HLA-I, 8-11mer epitopes were predicted using

netMHCpan 4.0 [63] and MHCflurry 1.6.0 [64]. For

HLA-II calling, 15mers were predicted using

NetMHCIIpan 3.2 [65] and NetMHCIIpan 4.0 [66].

For optimization of epitope predictions, individual

features from each HLA-I and HLA-II prediction

tool was compared against IEDB binding affinities

using Spearman correlation (Additional file 1: Fig.

S1). Cutpoints for the best performing HLA-I and

HLA-II feature were set using 90% specificity of pre-

dicting for peptides with < 500 nM binding affinity

Fig. 2 Summary of B cell and CD4+/CD8+ epitope prediction workflows. Pathways are colored by B cell (blue), human T cell (black), and murine T

cell (red) epitope prediction workflows. Color bars represent proportions of epitopes derived from internal proteins (ORF), nucleocapsid
phosphoprotein, and surface-exposed proteins (spike, membrane, envelope)
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in the IEDB set, using predicted binding affinity

values from netMHCpan 4.0 (HLA-I) and netMH-

CIIpan 3.2 (HLA-II). The proportion of the total

U.S. population containing at least one haplotype

capable of binding each peptide was calculated as-

suming no genetic linkage:

1−
Y

i

1− f ið Þ2

Immunogenicity modeling

IEDB HLA-I and HLA-II viral tetramer data were used

to generate a generalized linear model (GLM; family =

binary) with tetramer-positivity as a binary outcome

[51]. Independent variables for HLA-I included

NetMHCpan 4.0 binding affinity and elution score,

MHCflurry binding affinity, presentation score, process-

ing score, and percentage of aromatic (F, Y, W), acidic

(D, E), basic (K, R H), small (A, G, S, T, P), cyclic (P),

and thiol (C, M) amino acid residues. Independent vari-

ables for HLA-II included NetMHCIIpan 4.0 binding af-

finity and elution scores, and percentage of aromatic,

acidic, basic, small, cyclic, and thiol amino acid residues.

All independent variables were normalized to 0–1 to

keep coefficients comparable (binding affinities divided

by 50,000). GLM model performance was derived using

5-fold cross-validation, balancing for HLA alleles. The

final HLA-I and HLA-II models were generated using

each full IEDB set, then applied to SARS-CoV-2 pre-

dicted HLA ligands to derive a GLM score. For im-

munogenicity filtering, predicted epitopes above the

median GLM score were kept.

B cell epitope selection

Accessibility of contiguous regions of the spike protein

was approximated with the following heuristic: mean ac-

cessibility of 35%, minimum accessibility of 15%, requir-

ing at least one residue to have accessibility greater than

50%, and the ends of a region to have at least 25% acces-

sibility. Adjacency to a functional region was defined as

within 15aa of either side of FP, HR1, and HR2, and

within 50aa of the RBD. A broader window was used for

the receptor binding domain due to the known presence

of neutralizing antibody epitopes in S1 of SARS-CoV-1

outside of the RBD [67].

Published T cell epitope data curation

T cell epitopes from eight studies of immune responses

from convalescent COVID-19 patients [68–75] were

manually curated into a spreadsheet with 973 entries

(Table S9). Other studies were excluded which focused

on murine immune responses and/or immunity from

vaccination. To aggregate epitope regions of varying

granularities, the viral proteome was split into 40aa bins,

overlapping by 20aa. A bin was considered to contain an

epitope region if they overlapped by at least 8aa. Simi-

larly, each vaccine peptide counted as overlapping a bin

if their overlap was at least 8aa. Overlapping bins were

mutually exclusive, and only the bin with the highest

number responding patients was retained. Bin boundar-

ies were then clipped to the minimum and maximum

boundaries of any epitope region contained within it.

Vaccine peptide manufacturability

Based on previous experiences with peptide synthesis

failures and consultation with the UNC High-

Throughput Peptide Synthesis and Array Facility, we de-

vised a scoring rubric for solid-phase peptide synthesis

difficulty (Additional file 1: Fig. S8A). This rubric in-

cludes features related to the stability of the synthesized

peptide product as well as sequence features which in-

crease the difficulty of peptide elongation and/or purifi-

cation. For example, hydrophobic peptides are

challenging to solubilize, whereas hydrophobic regions

within peptides are challenging to elongate during syn-

thesis due to strong conformational properties. In our

scoring rubric, hydrophobicity of peptide sequences is

calculated using the mean GRAVY score [76], which is

computed both for the entire peptide as well as the max

for all local windows of lengths between 5mer and 8mer.

Local hydrophobicity scores are penalized proportional

to how much they exceed 2.5 whereas whole peptide

hydrophobicity is penalized to the degree that it exceeds

2. These values were determined based on unpublished

data relating to which peptides had failed for reasons re-

lated to hydrophobicity during the PGV001 neoantigen

vaccine trial [77]. Another category of difficulties relates

to the instability of certain pairs of adjacent amino acids.

The extremely unstable dipeptides are DG and NG,

whereas the less penalized but still problematic dipep-

tides are DS, DN, DD, NN, ND, NS, and NP. Further-

more, certain terminal residues inhibit the initiation of

synthesis or formation of undesired residues such as pyr-

oglutamate. Difficult N terminal residues are Q, E, C,

and N, whereas difficult C terminal residues are P, C,

and H. Lastly, the inclusion of multiple thiol residues

can be challenging due to formation of long-range disul-

fide bonds. Our heuristic penalizes both the total num-

ber of thiols (C and M residues), as well as a penalty for

excessive cysteines which is only applied when the num-

ber of C residues exceeds 1. Many of similar features are

enumerated in commercial peptide design guides, such

as ones published by Biomatik [78] and SB peptide [79]

or in standard texts on solid-phase synthesis [80]. The

particular weights given to different peptide features are

determined purely from experience and intuition and

are presented without claims of accuracy or optimality.
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SARS-CoV-2 entropy calculations

In total, 7881 SARS-CoV-2 genome sequences were

downloaded from GISAID (https://www.gisaid.org/) [81].

A preprocessing step removed 127 sequences that were

shorter than 25,000 bases. The sequences were split into

79 smaller files and aligned using Augur [82] (which re-

lies on the MAFFT [83] aligner) with NCBI entry

MT072688.1 [84] as the reference genome. The refer-

ence genome was downloaded from NCBI GenBank

[85]. The 79 resulting alignment files were concatenated

into a single alignment file with the duplicate reference

genome alignments removed. The multiple sequence

alignment was translated to protein space using the R

packages seqinr [86] and msa [87]. Entropy for each pos-

ition was calculated using the following formula, where

n is the number of possible outcomes (i.e., total unique

identifiable amino acid residues at each location) and pi
is the probability of each outcome (i.e., probability of

each possible amino acid residues at each location):

−

Xn

i¼1

pi � log pið Þ

Mouse vaccination

All mouse work was performed according to IACUC

guidelines under UNC IACUC protocol ID 20-121.0.

Vaccine studies were performed using BALB/c mice with

free access to food and water. Mice were ordered from

Jackson Laboratories and vaccinated at 8 weeks of age.

Equal numbers of male and female mice were used per

group, vaccinated with poly(I:C) (Sigma-Aldrich cat.

#P1530) either alone or in combination with 16 synthe-

sized vaccine peptides. In total, 26 μg total peptide was

utilized per vaccination (divided equimass per peptide).

Then, 75 μg of polyI:C was utilized per vaccination, with

n = 6 mice per experimental group and n = 3 mice per

polyI:C-only control group. Mice were vaccinated on

days 1 and 7, cheek bleeds obtained on days 7 and 14,

and sacrificed with cardiac bleeds performed on day 21.

S Protein ELISA

Serum obtained from cardiac bleeds on day 21 was uti-

lized for ELISA testing for antibody response to SARS-

CoV-2 spike (S) protein. Nunc Maxisorp plates (Thermo

Fisher Scientific) were coated with S protein (generously

provided by Ting Lab at UNC), or BSA as a negative

control and incubated overnight. Plates were blocked

with 10% FBS in PBS, washed, and serum plated in du-

plicate wells with serial dilutions. 6x His Tagged mono-

clonal antibody (Thermo Fisher Scientific) was also

plated as an experimental control. Goat anti-mouse IgG

HRP (Thermo Fisher Scientific) was added to washed

plates as a secondary antibody. TMB substrate (Thermo

Fisher Scientific) was added, development was stopped

with TMB Stop solution (BioLegend), and plates were

read at 450 nm.

Peptide ELISA

Serum obtained from cardiac bleeds on day 21 and

cheek bleeds on experimental days 7 and 14 were tested

for antibody response to the predicted B cell peptide epi-

topes used for vaccinations via peptide ELISAs. Plates

were coated with 5μg/mL of target peptide using coating

reagent from the Takara Peptide Coating Kit (Takara

cat. #MK100). Measles peptide was utilized as a negative

control, and Flag peptide was also plated as an experi-

mental control. Plates were blocked with a blocking buf-

fer according to the manufacturer’s protocol. Serum was

plated in duplicate wells with serial dilutions, and anti-

FLAG antibody was plated in the experimental control

wells. Rabbit anti-mouse IgG HRP (Abcam ab97046)

was utilized as a secondary antibody. TMB substrate

(Thermo Fisher Scientific cat. #34028) was added, devel-

opment was stopped with TMB Stop solution (BioLe-

gend cat. #423001), and plates were read at 450 nm.

ELISpot

After the sacrifice of mice on experimental day 21,

spleens were dissected out for ELISpot assessment of T

cell activation in response to peptide and adjuvant vac-

cination. Spleens were mechanically dissociated using a

GentleMACS Octo Dissociator (Miltenyi Biotec) and

passed through a 70-μm filter. RBC lysis buffer (Gibco

cat. #A1049201) was used to remove red blood cells, and

cells were washed then passed through 40-μm filters.

Splenocytes were counted and 250,000 splenocytes were

plated per well into plates (BD Biosciences; cat.

#551083) that had been coated with each of the individ-

ual 16 predicted target peptides, or PBS as negative

control or PHA as experimental control. Plates were in-

cubated for 72 h. Anti-interferon gamma detection anti-

body was added according to the manufacturer’s

protocol, followed by enzyme conjugate Streptavidin-

HRP and final substrate solution (BD Biosciences; cat.

#557630). Plates were allowed to develop, washed to

stop development, and allowed to dry before reading on

ELISpot reader (AID Classic ERL07).

Graphical and statistical analysis

Plots and analyses were generated using the following R

packages: caret 6.0-84 [88], cowplot 0.9.4 [89], data.table

1.12.8 [90], DESeq2 1.22.2 [91], doMC 1.3.6 [92], dplyr

0.8.4 [93], forcats 0.4.0 [94], GenomicRanges 1.34.0 [95],

ggallin 0.1.1 [96], ggbeeswarm 0.6.0 [97], ggnewscale

0.4.1 [98], ggplot2 3.3.0 [89], ggpubr 0.2 [99], ggrepel

0.8.1 [100], gplots 3.0.3 [101], gridExtra 2.3 [102], huxta-

ble 4.7.1 [103], magrittr 1.5 [104], officer 0.3.10 [105],
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pROC 1.16.2 [106], RColorBrewer 1.1-2 [107], readxl

1.3.1 [108], scales 1.1.0 [109], seqinr 3.6-1 [86], stringr

1.4.0 [110], venneuler 1.1-0 [111], viridis 0.5.1 [112]. Fig-

ures 4C, D and 5 were generated using the following Py-

thon packages: NumPy [113], pandas [114], Matplotlib

[115], and Jupyter [116].

Results
Landscape of MHC ligands in SARS-CoV-2

To determine the landscape of potential HLA ligands in

SARS-CoV-2 (Fig. 2, black), we first identified candidate

MHC ligands by performing HLA-I binding prediction

using NetMHCpan 4.0 (both EL (elution ligand) and BA

(binding affinity) mode) [63] and MHCflurry [64] (8–

11mers), and HLA-II binding prediction using NetMH-

CIIpan 3.2 [65] and 4.0 [66] (15mers), using alleles with

> 5% genetic frequency in the USA [61, 62] and world-

wide populations [117] (full predicted sets for U.S.

alleles: Table S1, S2; worldwide alleles: Table S3, S4). To

assess the accuracy of these peptide/MHC binding pre-

diction tools on viral peptides, we tested their perform-

ance on IEDB MHC affinity assay data values for viral

peptides. Of the predictive models evaluated, NetMHC-

pan 4.0 (BA) and NetMHCIIpan 3.2 demonstrated the

highest correlation of binding affinity predictions for

Class I and Class II MHC, respectively (Additional file 1:

Fig. S1A-B). Therefore, these two predictors were used

for predicting MHC ligands. A measured peptide/MHC

binding affinity of 500 nM or less is commonly used to

identify MHC-binding peptides which are more likely to

be T cell epitopes [118, 119]. To account for the inaccur-

acy inherent to prediction (as opposed to measurement)

of peptide-MHC affinity, we derived slightly stricter cut-

offs. In order to achieve 90% specificity in IEDB binding

affinity data (validated ligand set), we use predicted bind-

ing affinity thresholds of 393.4 nM and 220.0 nM for Class

I and Class II MHC, respectively (Additional file 1:

Fig. 1C-D). This filter was applied to NetMHCpan 4.0 and

NetMHCIIpan 3.2 SARS-CoV-2 MHC binding predic-

tions, which removed the majority of viral protein sub-

sequences (Additional file 1: Fig. 2A-B).

After filtering by binding affinity, we observed a total

of 2486 unique HLA-I ligands and 3138 unique HLA-II

ligands (Fig. 3C). Predicted MHC ligands were not

evenly distributed across the proteome, with local peaks

and troughs observed that correlated between HLA-I

and HLA-II ligands (Fig. 3C, bottom; Pearson correl-

ation of HLA-I/II LOESS, r = 0.703, p < 0.001). Notably,

while SARS-CoV-1 T cell epitopes previously described

in the literature were primarily located in the surface

glycoprotein (S) and nucleocapsid protein (N) (Table S5)

[13, 120–145], we observed a paucity of predicted MHC

ligands in the N protein. As murine models for SARS-

CoV-2 would be a powerful tool in understanding viral

immunobiology, we determined which predicted HLA li-

gands were also predicted to bind murine MHC alleles

of the H2b and H2d haplotypes. NetMHCpan and

NetMHCIIpan were run using the SARS-CoV-2 prote-

ome against the H2b and H2d haplotypes, filtering by

MHC-I ligands in the top 2nd percentile (n = 3053) and

MHC-II ligands in the top 10th percentile (n = 1648).

From this set, we observed an overlap of 887 peptides in

MHC-I and 1571 peptides in MHC-II between murine

and human sets (Fig. 3D). For the nested HLA ligand

set, we observed 825 and 848 overlapping murine MHC-

I and MHC-II ligands, respectively, with 846 HLA li-

gands containing both murine MHC-I and MHC-II

coverage. The majority of HLA ligand sequences were

predicted to bind to fewer than 50% of the U.S. popula-

tion, particularly for HLA-I ligands (Fig. 3E). In accord-

ance with higher population coverage distribution in

HLA-II, predicted HLA-II ligands also demonstrated

more binding alleles on average (mean alleles per pep-

tide: HLA-I = 1.35, HLA-II = 2.80). Among the most

common alleles were HLA-A*02:01 (n = 784), HLA-

A*11:01 (n = 643), and HLA-A*03:01 (n = 383) for pre-

dicted HLA-I binding peptides and HLA-DRB1*01:01 (n

= 5401), HLA-DRB1*07:01 (n = 3225), and HLA-

DRB1*13:01 (n = 3022) for predicted HLA-II binding

peptides.

CD8+ and CD4+ T cell epitope prediction

Peptide/MHC binding is necessary but not sufficient for

peptide epitopes to elicit T cell responses. We sought to

identify a set of epitopes that would serve as good tar-

gets for a SARS-CoV-2 T cell vaccine. From the total

pool of HLA-I, HLA-II, and nested MHC ligands, we

sought to prioritize sequences which are predicted to be

immunogenic from highly conserved regions of abun-

dant viral proteins (Fig. 4, middle).

To predict the immunogenicity of MHC ligands, we fit

a forward stepwise multivariable logistic regression

model using peptide/HLA tetramer flow cytometry data

curated from viral entries of the IEDB [51]. Tetramer

data was selected for the response variable because it

provides unambiguous association between a peptide

and its bound MHC, and additionally tests which

specific peptide/MHC is capable of eliciting a T cell re-

sponse. Each unique peptide-MHC was encoded with

features derived from epitope prediction tools as well as

features relating to amino acid content (see “Immuno-

genicity modeling”). Epitope prediction tool features

were selected to allow for consideration of predicted

binding affinity alongside other tangential features such

as MHC ligand elution (NetMHCpan 4.0, NetMHCIIpan

4.0) and antigen processing (MHCflurry), while amino

acid content was considered due to prior studies demon-

strating capacity of these features to predict for epitope
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immunogenicity [146, 147]. Model performance in 5-

fold cross-validation demonstrated AUC values of

approximately 0.7 and 0.9 for HLA-I and HLA-II, re-

spectively, in both training and test sets Additional file 1:

Fig. S2A-B). Models demonstrated cleaner separation of

tetramer positive and negative groups for CD4+ epitopes

compared to CD8+ (Additional file 1: Fig. S2C-D). To

determine a cause for this difference in model perform-

ance, we examined predicted binding affinity scores

between tetramer positive and negative epitopes, which

demonstrated significantly better separation for CD4+

epitopes than CD8+ epitopes (Additional file 1: Fig. S2E-

F). In accordance with this difference in binding affinity

distribution, the HLA-II model showed strong associ-

ation between lower binding affinity and lower predicted

tetramer positivity, while the HLA-I model showed a

weaker inverse association (Additional file 1: Fig. S3).

Due to these binding affinity distribution differences

A B

D E

C

Murine 

MHC-I

2166

Human

HLA-I

2787

887

Murine 

MHC-II

77

Human

HLA-II

3447

1571

Fig. 3 Landscape of SARS-CoV-2 MHC ligands. A,B Selection criteria for A HLA-I and B HLA-II SARS-CoV-2 HLA ligand candidates. Scatterplot

(bottom) shows predicted (x-axis) versus IEDB (y-axis) binding affinity, with horizontal line representing 500 nM IEDB binding affinity and vertical
line representing corresponding predicted binding affinity for 90% specificity in binding prediction. Histogram (top) shows all predicted SARS-

CoV-2 HLA ligand candidates. Scatterplot in B shows subsampled points from HLA-DRB1 alleles (< 50 points per allele) to allow for increased
visibility of points. C Landscape of predicted HLA ligands, showing HLA-I (red) and HLA-II (blue) ligands with U.S. population coverage > 50%
(top), and LOESS fitted curve (span = 0.1) for HLA-I/II ligands by location along the SARS-CoV2 proteome (color tracks). The predicted binding

affinity of HLA ligand peptides to murine H2-b/d alleles is represented with point shading. D Summary of murine/human MHC ligand overlap.
E Distribution of population frequencies among predicted HLA-I and HLA-II ligands
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between IEDB HLA-I and HLA-II tetramer sets, a

performance-based cutoff did not allow for equal filter-

ing of CD4+ and CD8+ epitopes. Therefore, we filtered

by generalized linear model (GLM) predicted immuno-

genicity scores above the median in each HLA-I/II

SARS-CoV-2 epitope group, which provided balanced

selection while removing predicted low-immunogenicity

epitopes (Additional file 1: Fig. S4).

Next, we sought to prioritize epitopes derived from re-

gions of low sequence variation across viral strains. A

position-based entropy filter was applied to all epitopes

(Additional file 1: Fig. S5), keeping those with an entropy

score ≤ 0.1 (~ 98% sequence identity, n = 7881) in all

amino acid positions across MSA-aligned SARS-CoV-2

genomes downloaded from the GISAID database [81,

82]. High entropy was observed in the well-described

spike protein D614G polymorphic site (Additional file 1:

Fig. S5A, red dot). Other areas of high entropy included

positions 3606, 4715, 5828, and 5865 of ORF1ab, and

position 84 of ORF8 (all with entropy > 0.4). The

Low 

entropy

Protein 

expression

Immunogenicity

filter

HLA-I HLA-II

Fig. 4 Prediction of SARS-CoV-2 T cell epitopes. (Top) Summary of predicted and IEDB-defined HLA-I (left) and HLA-II (right) SARS-CoV-2 HLA
ligands, showing proportions of each derivative protein. (Middle) Funnel plot representing counts of HLA-I (left) and HLA-II (right) ligands along

with proportions of HLA-I (top bar) and HLA-II (bottom bar) alleles at each filtering step. (Bottom) Summary of CD8+ (red, top), CD4+ (blue,
bottom), and nested T cell epitopes (middle) after filtering criteria in S, M, and N proteins. Y-axis and size represent the U.S. population frequency

of each CD8+ and CD4+ epitopes by circles. Middle track of diamonds represents overlaps between CD8+ and CD4+ epitopes, showing the
overlap with greatest population frequency (size) for each region of overlap. Color of diamonds represents the proportion of overlap between
CD4+ and CD8+ epitope sequences
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majority of positions demonstrated > 95% sequence

identity, suggesting high homology between different

SARS-CoV-2 viral genomes (Additional file 1: Fig. S5B).

Lastly, as the likelihood of MHC presentation is corre-

lated with protein expression [148], we filtered epitopes

to those derived from the S, M, and N proteins. These

were the three highest expressed proteins based on a

semi-quantitative mass spectrometry analysis of SARS-

CoV-2 protein expression (PSM count/protein length;

Additional file 1: Fig. S6A) [149]. This protein abun-

dance estimation closely matched expression levels de-

rived from SARS-CoV-2 RNA-seq data (Additional

file 1: Fig. S6B) [150]. After all these filtering steps, 292

CD8+, 616 CD4+, and 423 nested T cell epitopes were

predicted. We cross-filtered these epitopes against a ref-

erence peptidome of 8-11mer and 15mer peptides de-

rived from the GRCh38 reference proteome [151] and

observed no overlap. Relative proportions of HLA alleles

were conserved throughout filtering (Fig. 4, middle). Full

peptide sets with all filtering criteria are listed in Tables

S1 (HLA-I) and S2 (HLA-II).

B cell epitope prediction

In addition to identifying SARS-CoV-2 T cell epitopes,

we sought to identify a set of linear B cell epitopes on

the spike protein which would serve as good targets for

stimulating neutralizing antibody responses (Fig. 2). Epi-

tope candidates were derived from four published pre-

print mapping/array studies [55, 56, 58, 59] including a

PEPperCHIP® peptide array study [59] (for study details

see “Antibody epitope curation”). Starting with an initial

candidate pool of 58 linear epitopes with data to support

in vivo generation in humans (Fig. 5A, Table S6), we ap-

plied a set of filtering criteria to narrow our target space

(Fig. 5B):

1. Contiguous sub-sequences of the spike protein with

high accessibility

2. Exclude glycosylation sites

3. Exclude regions with significant polymorphism

between SARS-CoV-2 strains

4. Keep candidate epitopes within or adjacent to

functional domains with evidence of antibody-

mediated viral neutralization in SARS-CoV-1 (re-

ceptor binding domain, fusion peptide, heptad re-

peat regions)

5. Exclude any candidates shorter than four amino

acids

We used SARS-CoV-2 S protein accessibility data

from Grant et. al. [152], which calculates accessibility

from molecular dynamics simulations of a spike protein

structure with several different glycosylation patterns.

Unfortunately, this accessibility data lacks HR2, causing

that domain to be left out from subsequent analyses.

After filtering for contiguously accessible regions, there

were 19 remaining under consideration. Since many epi-

topes occur in multiple sources, we combined overlap-

ping epitope candidates into 14 unique sequences. After

filtering out epitopes containing glycosites, which may

alter antibody binding characteristics [153, 154], 11 non-

glycosylated regions remained. Two additional regions

were removed because they contained polymorphic sites,

defined by mutation frequency > 0.1% from GISAID

SARS-CoV-2 viral sequences. Of the remaining 9 re-

gions, only 4 were close to functional domains which in

the closely related virus SARS-CoV-1 have evidence of

antibody-mediated viral neutralization: the RBD, fusion

protein (FP), and heptad repeats [155–160]. This filter-

ing resulted in four remaining regions, of which our final

criteria removed one which had length less than four

residues (Fig. 5B). This filtering criteria precluded the

vast majority of total spike protein regions (Fig. 5C),

with three predicted antibody binding regions (residue

lengths 18, 4, and 4) remaining (Fig. 5D). All three epi-

tope candidate regions were present on solvent-exposed

surfaces of the S protein trimer 3D structure (Fig. 5E). It

is worth noting that the largest region, residues 456-473

within the receptor binding motif (RBM) loop, is only

accessible when the RBD is in the “open” conformation.

Selection of human and murine SARS-CoV-2 vaccine

peptides

With the above filters applied to predicted T and B cell

epitope candidates, we derived a minimal collection of

long vaccine peptides for all combinations of the follow-

ing immunological criteria: CD4+ responses, CD8+ re-

sponses, coverage of predicted B cell epitopes, along

with optional inclusion of predicted murine MHC li-

gands. A 27mer sequence for each vaccine peptide was

selected to maximize U.S. population coverage of T cell

epitopes within a peptide set, with or without additional

coverage for murine H2b, H2d, or both haplotypes

(Fig. 6A-B; Additional file 1: Fig. S7). If population

coverage was identical for multiple candidates, peptides

were also optimized based on a manufacturability diffi-

culty scoring system (Additional file 1: Fig. S8). The pep-

tide sequence length was inspired by previous work in

cancer neoantigen vaccination [161–163] which has

demonstrated strong CD8+ and CD4+ responses using

27mer peptides. Optimizing for CD4+ epitope popula-

tion coverage demonstrated 88.5% population frequency

encompassed by three 27mer peptides (Fig. 6B: 1, 9, and

15), while CD8+ epitope optimization provided 95.8%

population frequency coverage by three 27mer peptides

(Fig. 6B: 1, 4, and 14). CD4+/CD8+ co-optimization pro-

vided the best overall population coverage at 81.6%

population frequency with four 27mer peptides (Fig. 6B:
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A

D

C

B

E

Fig. 5 Selection of SARS-CoV-2 B cell epitope regions. A SARS-CoV-2 linear B cell epitopes curated from epitope mapping studies. X-axis represents

amino acid position along the SARS-CoV-2 spike protein, with labeled start sites. B Schematic for filtering criteria of B cell epitope candidates. C Amino
acid sequence of spike protein domains considered for B cell epitope selection, with overlay of selection features prior to filtering. Polymorphic
residues are red, glycosites are blue, accessible regions highlighted in yellow. The receptor binding domain (RBD), fusion peptide (FP), and HR1 regions

are outlined. HR2 excluded for lack of accessibility data. D Spike protein functional regions (RBD, FP, HR1) amino acid sequences, with residues colored
by how many times they occur in identified epitopes. Selected accessible sub-sequences of known antibody epitopes highlighted in purple outline.

E S protein trimer crystal structure with glycosylation, with final linear epitope regions highlighted by color
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1, 6, 9, 13). While B cell epitope optimization provided

CD8+ coverage above 85%, CD4+ coverage was only

52.8%, suggesting the design of a combination B cell/

CD4+ T cell vaccine requires use of non-spatially over-

lapping sequences. Overall, selection of peptides which

also provided both H2b and H2d epitope coverage did

not greatly impact population coverage, suggesting these

murine-encompassing sets may allow for vaccine studies

in animal models whilst preserving human relevance.

Across the different selection criteria for minimal vac-

cine peptide sets, there was significant redundancy. Col-

lapsing the set of vaccine peptides by unique sequences

results in a final set of 22 27mer vaccine peptides

(Fig. 6B). In addition to 27mer peptides, all individual T/

B cell epitopes (S, M, and N: Table S7; all proteins:

Table S8) as well as 15mer (Additional file 1: Fig. 9) and

Fig. 6 T cell and B cell vaccine candidates. A 27mer vaccine peptide sets selecting for best CD4+, CD8+, CD4+/CD8+, and B cell epitopes with
HLA-I, HLA-II, and total U.S. population coverage. B Unified list of all selected 27mer vaccine peptides. Vaccine peptides containing predicted

ligands for murine MHC alleles (H2-b and H2-d haplotypes) are indicated in their respective columns
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21mer (Additional file 1: Fig. S10) optimized peptide sets

are also available.

Validation of T cell predictions by comparison with

recurrent published T cell epitopes from COVID-19

patients

To determine how our predictions of CD8+ and CD4+ T

cell epitopes relate to actual SARS-CoV-2 T cell epitopes,

we curated a dataset of published T cell epitope mapping

studies (Table S9) and compared recurrent epitope re-

gions with vaccine peptides. We focused on human stud-

ies of infection induced immunity, excluding murine and

vaccine studies, as well as excluding studies which only

performed TCR sequencing. We were able to curate eight

diverse studies [68–74, 164] whose study characteristics

are summarized in Fig. 7A. The T cell response assays in-

cluded ELISpot, MHC multimers, MIRA [165], AIM

[166], and T-Scan [167]. It is important to note that not

all studies examined responses to the same proteins or

even the same peptides within a protein. Some studies

conducted exhaustive unbiased tiling over the viral prote-

ome [68, 72, 74, 164], while others used computational

predictions of MHC affinity to select small sets of peptides

[68–71, 73]. Of these studies, only those which used mul-

timeric MHC assays were able to unambiguously identify

biological HLA restriction and the exact peptide determi-

nants of a T cell response, whereas others used predicted

or statistical assignments, sometimes within large peptide

windows. To overcome the heterogeneity of this dataset,

we binned the viral proteome into regions of 40 amino

acids into which each study could contribute one or more

identified epitope regions. A small number of recurrent

epitope regions contained responses from three or more

studies (Fig. 7B). Inspection of these recurrent regions

broadly confirms the choice of S and N as particularly im-

munogenic proteins, likely due to their abundance, as well

as one recurrent epitope region in the M protein. We also

see strong recurrent responses to two regions of ORF3a,

as well as three regions within non-structural proteins

contained within ORF1ab (nsp3, nsp12, nsp13), which

were not selected for consideration in our study. The

identified recurrent epitope regions were strongly

enriched for overlap with vaccine peptides selected in this

study. In fact, 8/15 recurrent epitope regions in the S, M,

and N proteins (and 8/20 total recurrent epitope regions)

significantly overlapped at least one vaccine peptide. This

degree of concordance gives us confidence that our com-

putational selection process for T cell epitopes is at least

to some degree predictive of biological SARS-CoV-2 T cell

epitopes following infection.

Murine validation of T and B cell epitope immunogenicity

We sought to experimentally evaluate our minimum set

of predicted T and B cell epitope candidates. We

manually selected 16 of the 22 vaccine peptides for syn-

thesis, keeping at most 2 peptides per overlapping region

with a preference for those with predicted H2d MHC li-

gands. We then vaccinated BALB/c mice with the 16

synthesized vaccine peptides and evaluated immune acti-

vation from humoral and T cell perspectives. Mice were

vaccinated on experimental day 1, given booster vaccin-

ation on day 7, and sacrificed on day 21. We performed

IFN-y ELISpot in order to assess T cell activation by cul-

turing splenocytes from vaccinated animals alongside

each of the peptides within the vaccine pool. We ob-

served a statistically significant increase in IFN-y release

in response to seven out of ten of our predicted T cell

epitopes in mice vaccinated with peptides plus poly(I:C)

versus poly(I:C) alone (Fig. 8A). We did not observe a

statistically significant response against any of our six

predicted B cell epitopes in our peptide vaccination

group versus adjuvant alone. For evaluation of antibody

responses, peptide (Fig. 8B) and S protein (Fig. 8C)

ELISA from the day 21 sera of the above mice failed to

show signal above adjuvant alone in all groups.

Discussion
We report here a survey of the SARS-CoV-2 epitope

landscape along with a strategy for prioritizing both T

cell and B cell epitopes for vaccine development. Major

vaccine efforts targeting coronaviruses have focused pri-

marily on generation of neutralizing antibody responses

[168–176]. CD4+ T cells provide help to B cells to sup-

port class switching, maturation, and antibody produc-

tion. Additionally, they promote CD8+ T cell activation,

maturation, and effector function. We therefore searched

for vaccine peptide sequences which include both B cell

epitopes and MHC ligands predicted to drive CD4+ and

CD8+ T cell responses at high population frequencies

within the U.S. based on data available in the first few

months of the pandemic. Our current efforts are focused

on testing the immunogenicity of these peptides in mur-

ine models, comparing those which contain overlapping

and non-overlapping T and B cell epitopes. Results from

such preclinical testing will inform an envisioned phase I

clinical trial using a condensed peptide set targeting B

cell epitopes with known viral neutralization plus opti-

mal T cell epitopes.

Prior work has surveyed the epitope space of SARS-

CoV-2 using analysis of sequence homology with SARS-

CoV-1 epitopes, prediction of linear B cell epitopes, and

prediction of T cell epitopes using IEDB tools. Grifoni

et al. reported predicted T and B cell epitopes based on

cross-referencing of known SARS epitopes with se-

quence homology to SARS-CoV-2 against SARS-CoV-2-

specific parallel computational prediction [177]. This

study did not consider epitope mapping of SARS-CoV-2

convalescent antibody repertoires, which may be
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important to achieve high specificity of B cell epitope

predictions. Our prediction of T cell epitopes is concep-

tually similar to their computational process, but our

study does not focus on conserved epitopes relative to

SARS-CoV-1. Instead, we attempt to filter CD4+, CD8+,

and B cell epitopes by additional considerations of vac-

cination suitability (e.g., polymorphism, accessibility) and

go beyond epitope selection to vaccine peptides integrat-

ing different categories of epitopes. Ahmed et al. re-

ported a set of predicted T and B cell SARS-CoV-2

Fig. 7 Evaluation of vaccine peptides based on published T cell responses in COVID-19 patients. A Overview of studies included in the T cell
validation dataset. B All regions (up to 40aa) of the SARS-CoV-2 proteome for which at least three of the eight studies observed either a CD4+ or

CD8+ T cell response. Fraction of circle fill corresponds to the largest fraction of patients with responses to any epitope in the region for a
particular study. Percentage column corresponds to percent of patients with positive response to an epitope in the region as a fraction of

patients evaluated. Overlapping vaccine peptides from this study are noted in the right-most column
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epitopes with associated assay confirmation within the

NIAID ViPR database. However, these predicted epi-

topes were largely limited to those with sequence hom-

ology between SARS-CoV-1 and SARS-CoV-2, given the

paucity of available SARS-CoV-2 assay data in the spring

of 2020. Several studies identified linear B cell epitopes

on the SARS-CoV-2 surface glycoprotein from sera of

viral exposed patients using peptide arrays [55, 56, 58] as

well as phage immunoprecipitation sequencing (PhIP-

Seq) [57]. These studies are an important source of in-

formation, but it has also been shown that antibodies

which recognize peptides often cross-react primarily

with proteins only in denatured conformations [178–

180]. There is a risk that identified linear epitopes would

not be able to promote viral neutralization in vivo due

to a lack of surface exposure. Our work adds to this im-

portant emerging field by analyzing the SARS-CoV-2

HLA ligand landscape through binding affinity filters de-

rived from validated IEDB HLA ligands, as well as deriv-

ing T and B cell vaccine candidates through rational

filtering criteria grounded in SARS-CoV-2 biology, in-

cluding predicted immunogenicity, epitope location, gly-

cosylation sites, and polymorphic sites. Additionally,

inclusion of corresponding murine epitopes allows for

future studies to be performed in animal models of

SARS-CoV-2. We expect the application of these filters

will improve specificity of antiviral response.

Other computational methods for prediction of SARS-

CoV-2 epitopes have been described [181–183] in a con-

tinuously growing body of literature. Many of these

studies consider population-specific MHC allele fre-

quencies and attempt to derive an optimal epitope set

that allows for broad population coverage. Liu et al.

[182] adds to this by further considering allelic linkage

Fig. 8 Experimental assessment of T and B cell epitope immunogenicity. A Mice were vaccinated with sixteen predicted T cell and B cell

epitopes, designated as “peptides,” in combination with poly(I:C), or with poly(I:C) alone. T cell activity in response to vaccination was measured
via IFN-y ELISpot with splenocytes isolated from mice at experimental day 21, plated with individual peptides. Activity was calculated by ELISpot
plate reader. Peptide designations indicate protein, start, and end as shown in Fig. 6B. B Antibody response against predicted B cell peptide

epitopes was measured via peptide ELISA. Wells were coated with pairs of predicted B cell peptides. C Antibody response against S protein was
assessed via whole protein ELISA. Response to bovine serum albumin (BSA) was measured as negative control. For all subfigures, asterisks indicate

statistically significant p value (< 0.05) from Mann-Whitney U tests of poly(I:C) + peptide groups compared to poly(I:C) alone
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disequilibrium. Omnibus analysis of peptide-MHC bind-

ing from previously described tools was used to identify

their peptide set comprising 19 each of MHC-I and

MHC-II ligands. This method differs from our strategy

in two ways: only considering peptide-MHC binding

prediction rather than filtering for putative T cell epi-

topes, and deriving a set of 38 total minimal MHC-I and

MHC-II ligands rather than identifying longer regions in

the SARS-CoV-2 proteome that encompass regions with

population-optimized T cell epitopes. While our capacity

to predict peptide-MHC binding is reasonably accurate

for MHC-I and variably accurate for MHC-II, our cap-

acity to predict immunogenicity of any given minimal

epitope remains limited. As such, we believe vaccinating

with a longer (27mer) sequence containing multiple pre-

dicted minimal epitopes allows for a degree of purpose-

ful imprecision, allowing for the optimal MHC-I and

MHC-II sequences to be processed and presented

in vivo. Compared to Poran et al. [181], which used a

mass spectrometry-derived HLA presentation predictor,

this peptide set is filtered through tetramer derived im-

munogenicity prediction—a more direct metric for epi-

tope efficacy. Yarmarkovich et al. [183] addresses

concerns for peptide immunogenicity versus auto-

immunity by comparing predicted epitopes against a ref-

erence human peptidome.

While this study also filters for peptide overlap with

self-epitopes, our immunogenicity prediction algorithm

primarily considers peptide sequence features inspired

by Calis et al. [146], predicted MHC scores, as well as

the MHCflurry 2.0 [184] peptide processing score for

CD8+ T cell epitopes, which are then used to fit a model

against a validated viral tetramer dataset curated from

IEDB [185]. Additionally, B cell epitopes were derived

from in silico methods in Yarmarkovich et al., while this

study used in vitro epitope mapping studies as the basis

for our B cell epitope candidate set. Lastly, Gao et al.

[186] approach the problem of SARS-CoV-2 epitope

prediction by directly evaluating a candidate peptide’s

sequence similarity to both the human proteome and

the set of pathogenic epitopes in IEDB; based on the

methodology, Luksza et al. [187] used for cancer neoan-

tigen prediction. This approach is intrinsically limited by

a hypothetical sequence homology between T cell epi-

topes in SARS-CoV-2 and previously identified patho-

genic epitopes. On the other hand, we use a diverse set

of peptide-MHC features and do not expect actual se-

quence homology with any existing known epitopes.

A key aspect of our epitope selection process is the

prioritization of overlapping CD4+, CD8+, and B cell epi-

topes. As the role of T cell epitope vaccines in SARS-

CoV-2 continues to be investigated in model systems,

we furthermore cross-referenced human and murine T

cell epitopes to allow for murine vaccine studies using

human-relevant peptides in H2b and H2d haplotypes.

We hypothesize that inclusion of CD8+ epitopes may

allow for clearance of SARS-CoV-2 from infected cells,

and the inclusion of CD4+ epitopes may allow for

greater activation of both cytotoxic and humoral anti-

viral responses. Overlapping CD4+ and CD8+ epitopes

allowed for selection of peptide candidates covering a

large proportion of the population. We next attempted

to identify candidates with overlapping CD4+/CD8+ epi-

topes with B cell epitopes. However, these candidate op-

tions were limited due to the paucity of predicted B cell

candidates. Therefore, a more effective strategy would be

to include overlapping CD4+/CD8+ optimized peptides

together with separate B cell optimized peptides. We ex-

pect this to provide the most robust and broad antiviral

adaptive immune coverage by activating CD4+ T cells,

CD8+ T cells, and B cells.

To this end, we predicted and tested the immunogen-

icity of peptides optimized for both overlapping CD4+/

CD8+ T cell epitopes as well as peptides optimized for B

cell epitopes. We observed statistically significant T cell

activation measured by IFN-y release in response to

seven of our 10 predicted T cell stimulatory epitopes

when administered with poly(I:C) adjuvant as compared

to vaccination with poly(I:C) alone. None of our six pre-

dicted B cell epitopes generated significant T cell activa-

tion, indicating that our method for predicting T cell

immunogenicity is appropriately specific. A 70% success

rate for prediction of T cell epitopes that would activate

T cells to generate significantly enhanced IFN-y release

demonstrates that our computational prediction of pep-

tide vaccines was successful from a T cell standpoint.

Further studies to assess (1) the CD4+ versus CD8+ re-

sponses against each peptide, (2) immunogenicity of in-

dividual epitopes within each peptide, and (3) the

protective capacities of these epitopes are required to

validate their therapeutic potential.

Contrasting these T cell findings, we did not observe

increased antibody response against any of our predicted

B cell epitopes in peptide-vaccinated mice compared to

those vaccinated with adjuvant alone. We also did not

observe any significant antibody response against S pro-

tein above negative control in vaccinated mice. This in-

dicates that while our strategy was successful in

predicting immunogenic T cell epitopes, our predicted B

cell epitopes did not provide robust B cell activation by

day 21. Options to further investigate these results in-

clude titrating dosage of the administered B cell peptides

to evaluate whether concentrations used were sufficient

to generate robust antibody responses, or further refine-

ment of our criteria for B cell epitope prediction in order

to predict epitopes more likely to generate an antibody

response. Whether T cell responses in absence of anti-

body responses are sufficient for antiviral protection
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remains unclear and can be addressed in future viral

challenge studies.

In addition to epitope selection, optimal adjuvant

choice for a SARS-CoV-2 vaccine is currently unclear.

Prior evidence from SARS-CoV-1 suggested a Th2 dom-

inant response to be associated with worse outcomes

[13]—thus, adjuvant selection may also play an import-

ant role in SARS-CoV-2 in skewing the helper arm to-

ward a Th1 phenotype. Patients with severe COVID-19

demonstrate elevated levels of CCR6+ Th17 cells [188].

Additionally, many COVID-19 patients with acute re-

spiratory distress syndrome (ARDS) demonstrated cyto-

kine storm manifested by elevation of a variety of

cytokines, of which several are involved in Th17 re-

sponses [189]. In MERS patients, increased IL-17 to type

I IFN is associated with worse outcome [190].

Altogether, the Th17 response may contribute to in-

creased risk of severe pulmonary injury and worse out-

comes in COVID-19 patients [191]. As the Th1 and

Th17 cellular response pathways are closely linked, co-

therapies that inhibit Th17 activation (e.g., secukinumab,

tocilizumab) have been proposed for use in COVID-19;

however, the efficacy of these therapies remains to be

seen. The role of other helper subsets (Th9, Th18) re-

mains even more poorly understood. Relevant for the

vaccine studies presented here, poly(I:C) appears to pri-

marily activate Th1 cells, skewing the immune response

toward a phenotype that may be most beneficial [192].

Further studies would be needed to assess which sub-

types of T cells were activated by our vaccine

formulations.

One limitation of our study is that, while we use epi-

tope mapping data with direct biological evidence for B

cell epitopes in SARS-CoV-2, the T cell epitopes we re-

port were all derived from computational prediction. In

an effort to partially overcome this weakness, we applied

binding affinity and immunogenicity prediction filters

grounded in validated IEDB binding and tetramer stud-

ies. Other filtering criteria for T cell epitopes have been

evaluated, including allergenicity, antigenicity, stability,

and inflammatory/cytotoxic response [193–195]; it re-

mains to be seen if these or other filtering criteria im-

prove T cell epitope selection in SARS-CoV-2.

Reassuringly, our selection of T cell-directed vaccine

peptides demonstrates significant overlap with the recur-

rent epitopes identified in eight different studies examin-

ing T cell responses in COVID-19 patients (Fig. 7). Le

Bert et al. looked for T cell epitopes within the nucleo-

capsid (N), nsp7 and nsp13 proteins in PBMCs of recov-

ered COVID-19 patients using an IFN-γ ELISpot assay

[196]. They identified two recurrent epitope regions

(N101-120, N321-340) which overlap with multiple

27mer vaccine peptides in this paper (Fig. 6B, peptides

4–8). Shomuradova et al. also identified COVID-19

patient T cell epitopes, but using A*02:01 tetramers

loaded with 13 distinct peptides from the surface

glycoprotein (S) [71]. Two of these 13 peptides showed

recurrent reactivity across 14 A*02:01-positive patients

(S269-277 and S1000-1008). Both of these epitopes are

also included in multiple 27mer vaccine peptides (Fig. 6B,

peptides 11 and 15). Across all eight studies considered,

the most recurrently identified epitopes fall within two

regions, both in the nucleocapsid protein (N) around po-

sitions N100 and N300 (Fig. 7B), overlapping with mul-

tiple vaccine peptides selected by our algorithm. It is

worth noting that our heuristic for selecting abundant

proteins (only considering epitopes and vaccine peptides

from the M, N, and S proteins) was moderately success-

ful in that 15/20 recurrent epitope regions occurred in

these proteins. While we missed recurrent epitope re-

gions in ORF3a, nsp3, nsp12, and nsp13, filtering our

predictions to the most abundant proteins allowed us to

avoid many false positive predictions from ORF1ab and

perform much better in predicting true T cell epitopes.

It is worth noting that the dataset of biologically mea-

sured T cell responses to SARS-CoV-2 infection which

we curated to evaluate our vaccine peptide selection

overlaps significantly with another study by Quadeer

et al. [197]. The biggest difference between their ap-

proach and ours is that we do not require HLA restric-

tion of identified epitope regions and can thus use a

larger number of epitopes from assays such as unbiased

ELISPOT screening. Since our evaluation seeks primarily

to ascertain whether our vaccine peptides are highly

enriched for immunogenic epitopes, we are less stringent

in knowing exactly which epitopes are present and to

which HLA alleles they bind.

A different potential limitation of this study is the in-

sensitivity of our experiments to the total potential space

of SARS-CoV-2 antibody epitopes. Our B cell epitope

analyses start with only 58 identified linear antibody epi-

topes on the surface glycoprotein of SARS-CoV-2, while

it is likely that many other epitopes are possible. Second,

these linear epitope mappings do not allow for identifi-

cation of antibodies which bind tertiary/quaternary pro-

tein structures. Lastly, identification of epitopes via array

studies depended on differences in antibody binding to

potential linear epitopes between uninfected and in-

fected persons. There may be some cross-reactivity be-

tween antibodies generated against other coronaviruses

and SARS-CoV-2, which if present might show reactivity

in our screening assay. If true, our strategy would not

identify these epitopes as specific for SARS-CoV-2. Simi-

larly, we excluded viral regions with significant poly-

morphism across the viral population. We instead

focused on conserved regions of SARS-CoV-2 to identify

epitopes that would be most broadly targetable in the

human population. For these reasons, we do not present
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our antibody data as describing the complete set of

SARS-CoV-2 epitopes.

Conclusions
Our study sought to design a peptide vaccine for SARS-

CoV-2 targeting immune responses from B cells, CD4+

T cells, and CD8+ T cells. This kind of vaccine may be a

useful addition to the evolving landscape of SARS-CoV-

2 vaccines since its rapid manufacturing and precise de-

sign may help fill gaps in immunity that arise due to

antigenic drift of new viral variants. However, we

emphasize that epitope selection is only one aspect of

the problem, and a key question is whether a peptide

vaccine can be sufficiently immunogenic. Adjuvant se-

lection, conjugation to carriers such as KLH [43] or

rTTHC [198], and prime/boost approaches using or-

thogonal platforms are all potential avenues to explore.

Thus far, we have demonstrated the immunogenic cap-

acity of our T cell epitope selection process coupled with

linear peptide vaccination using poly(I:C) as an adjuvant.

It is possible that the selected B cell epitopes in this

work may still be useful for eliciting neutralizing re-

sponses when encoded using a more conformationally

stable immunogen. We anticipate that the sets of vaccine

peptides reported here may be valuable in the preclinical

development of these approaches.

Abbreviations

RBD: Receptor binding domain; ACE2: Angiotensin-converting enzyme 2;
IEDB: Immune Epitope Database; PhIP-Seq: Phage immunoprecipitation
sequencing; EL: Elution ligand; BA: Binding affinity; S: Surface glycoprotein;
N: Nucleocapsid protein; M: Membrane; FP: Fusion peptide; HR: Heptad
repeat; RBM: Receptor binding motif

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13073-021-00910-1.

Additional file 1. Contains all supplemental figures (Fig. S1 - S10).

Additional file 2: Table S1. All SARS-CoV-2 MHC-I ligands contained in
the top 5% of U.S. HLA alleles. Table S2. All SARS-CoV-2 MHC-II ligands
contained in the top 5% of U.S. HLA alleles. Table S3. All SARS-CoV-2
MHC-I ligands contained in the top 5% of worldwide HLA alleles. Table
S4. All SARS-CoV-2 MHC-II ligands contained in the top 5% of worldwide
HLA alleles. Table S5. Summary of SARS-CoV-1 MHC ligands previously
described in the literature. Table S6. SARS-CoV-2 B cell linear epitopes
from array/mapping studies. Table S7. SARS-CoV-2 T cell epitopes within
S, M, and N proteins. Table S8. SARS-CoV-2 T cell epitopes within all pro-
teins. Table S9. Curated a dataset of published T cell epitope mapping
studies.

Acknowledgements

We would like to thank members of the #DownWithTheCrown Slack channel
for helpful discussion and feedback.

Authors’ contributions

C.C.S., K.S.O., K.M.G., S.E., C.W., S.V., J.K., T.O., J.W., B.G.V., and A.R. contributed to
the conception and design of the work. C.C.S., K.S.O., K.M.G., M.S., W.B., J.G.,
S.E., C.W., S.V., A.W., M.F., B.C., E.R., J.K., T.O., C.H., K.H., V.S., E.G., A.M.S., J.P.T.,
H.W., O.C.G., R.J.W., K.K., M.H., B.G.V., and A.R. contributed to the acquisition,
analysis, and interpretation of data. C.C.S., K.S.O., B.G.V., and A.R. have drafted

the work or substantively revised it. The author(s) read and approved the
final manuscript.

Funding

The authors appreciate funding support from University of North Carolina
University Cancer Research Fund (A.R. and B.G.V.), the Susan G. Komen
Foundation (B.G.V.), the North Carolina Collaboratory Grant, the V Foundation
for Cancer Research (B.G.V.), and the National Institutes of Health (C.C.S.:
1F30CA225136; J.P.T.: R01AI141333; A.M.S.: T32CA196589).

Availability of data and materials

The datasets generated and/or analysed during the current study are
available in the Vincent lab github repository, https://github.com/Benjamin-
Vincent-Lab/Landscape-and-Selection-of-Vaccine-Epitopes-in-SARS-CoV-2
[199]. Several data files larger than 100 Mb and supplemental tables are
available at https://data.mendeley.com/datasets/c6pdfrwxgj/6 [200].

Declarations

Ethics approval and consent to participate

The studies involving human participants were reviewed and approved by
Ethics Committee of Charité Universitätsmedizin Berlin (EA2/066/20, EA1/068/
20) and Ethics Committee at the Medical Faculty of the Ludwig Maximilians
Universität Munich (vote 20-225 KB). The patients/participants provided their
written informed consent to participate in this study. All murine experiments
described in this study were approved by the UNC Institutional Animal Care
and Use Committee (IACUC), ID 20-121.0. The research was conducted in
strict compliance with the Helsinki Declaration.

Consent for publication

Not applicable.

Competing interests

C.H., K.H., and V.S. are employees of PEPperPRINT GmbH. The other authors
declare that they have no competing interests.

Author details
1Department of Microbiology and Immunology, UNC School of Medicine,
Chapel Hill, NC, USA. 2Lineberger Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC 27599-7295, USA.
3Department of Genetics and Genomic Sciences, Icahn School of Medicine at
Mount Sinai, New York, NY, USA. 4PEPperPRINT GmbH, Heidelberg, Germany.
5Genomics Institute, University of California, Santa Cruz, CA, USA.
6Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA.
7Institute for Inflammatory Diseases, University of North Carolina at Chapel
Hill, Chapel Hill, NC, USA. 8Center for Translational Immunology, University of
North Carolina at Chapel Hill, Chapel Hill, NC, USA. 9Division of Medical
Oncology, Department of Medicine, UNC School of Medicine, Chapel Hill,
NC, USA. 10Department of Biochemistry and Biophysics, UNC School of
Medicine, Chapel Hill, NC, USA. 11Complex Carbohydrate Research Center,
University of Georgia, Athens, GA, USA. 12Computational Medicine Program,
UNC School of Medicine, Chapel Hill, NC, USA. 13Curriculum in Bioinformatics
and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA.
14Division of Hematology, Department of Medicine, UNC School of Medicine,
Chapel Hill, NC, USA.

Received: 15 July 2020 Accepted: 14 May 2021

References

1. Graham BS. Advances in antiviral vaccine development. Immunol Rev. 2013;
255:230–42. https://doi.org/10.1111/imr.12098.

2. Hodgson J. The pandemic pipeline. Nat Biotechnol. 2020. https://doi.org/1
0.1038/d41587-020-00005-z.

3. With record-setting speed, vaccinemakers take their first shots at the new
coronavirus. Science | AAAS. 2020. https://www.sciencemag.org/news/2020/
03/record-setting-speed-vaccine-makers-take-their-first-shots-new-
coronavirus. Accessed 3 Apr 2020.

4. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, et al. Characterization of the
receptor-binding domain (RBD) of 2019 novel coronavirus: implication for

Smith et al. Genome Medicine          (2021) 13:101 Page 18 of 23

https://doi.org/10.1186/s13073-021-00910-1
https://doi.org/10.1186/s13073-021-00910-1
https://github.com/Benjamin-Vincent-Lab/Landscape-and-Selection-of-Vaccine-Epitopes-in-SARS-CoV-2
https://github.com/Benjamin-Vincent-Lab/Landscape-and-Selection-of-Vaccine-Epitopes-in-SARS-CoV-2
https://data.mendeley.com/datasets/c6pdfrwxgj/5
https://doi.org/10.1111/imr.12098
https://doi.org/10.1038/d41587-020-00005-z
https://doi.org/10.1038/d41587-020-00005-z


development of RBD protein as a viral attachment inhibitor and vaccine.
Cell Mol Immunol. 2020. https://doi.org/10.1038/s41423-020-0400-4.

5. Piccoli L, Park Y-J, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M,
et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2
spike receptor-binding domain by structure-guided high-resolution serology.
Cell. 2020;183:1024–42.e21. https://doi.org/10.1016/j.cell.2020.09.037.

6. Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, et al. Potent neutralizing
antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 2020;584:
450–6. https://doi.org/10.1038/s41586-020-2571-7.

7. Laczkó D, Hogan MJ, Toulmin SA, Hicks P, Lederer K, Gaudette BT, et al. A
single immunization with nucleoside-modified mRNA vaccines elicits strong
cellular and humoral immune responses against SARS-CoV-2 in mice.
Immunity. 2020. https://doi.org/10.1016/j.immuni.2020.07.019.

8. Zang J, Gu C, Zhou B, Zhang C, Yang Y, Xu S, et al. Immunization with the
receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing
SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell
Discov. 2020;6:61. https://doi.org/10.1038/s41421-020-00199-1.

9. Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP,
et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in
nonhuman primates. N Engl J Med. 2020;383:1544–55. https://doi.org/10.1
056/NEJMoa2024671.

10. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and
other human coronaviruses. Trends Immunol. 2020;41:355–9. https://doi.
org/10.1016/j.it.2020.03.007.

11. Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4+ T cells in
immunity to viruses. Nat Rev Immunol. 2012;12:136–48. https://doi.org/10.1
038/nri3152.

12. Kulinski JM, Tarakanova VL, Verbsky J. Regulation of antiviral CD8 T-cell
responses. Crit Rev Immunol. 2013;33:477–88. https://doi.org/10.1615/
critrevimmunol.2013007909.

13. Li CK-F, Wu H, Yan H, Ma S, Wang L, Zhang M, et al. T cell responses to
whole SARS coronavirus in humans. J Immunol. 2008;181:5490–500. https://
doi.org/10.4049/jimmunol.181.8.5490.

14. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z.
Immunological considerations for COVID-19 vaccine strategies. Nat Rev
Immunol. 2020;20:615–32. https://doi.org/10.1038/s41577-020-00434-6.

15. Spellberg B, Edwards JE Jr. Type 1/Type 2 immunity in infectious diseases.
Clin Infect Dis. 2001;32:76–102. https://doi.org/10.1086/317537.

16. Gil-Etayo FJ, Suàrez-Fernández P, Cabrera-Marante O, Arroyo D, Garcinuño S,
Naranjo L, et al. T-helper cell subset response is a determining factor in
COVID-19 progression. Front Cell Infect Microbiol. 2021;11:624483. https://
doi.org/10.3389/fcimb.2021.624483.

17. Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M,
et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov.
2020. doi:https://doi.org/10.1038/d41573-020-00073-5.

18. van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham
JN, Port JR, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2
pneumonia in rhesus macaques. bioRxiv. 2020:2020.05.13.093195. https://
doi.org/10.1101/2020.05.13.093195.

19. Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, et al.
DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science.
2020. https://doi.org/10.1126/science.abc6284.

20. Zhu F-C, Li Y-H, Guan X-H, Hou L-H, Wang W-J, Li J-X, et al. Safety,
tolerability, and immunogenicity of a recombinant adenovirus type-5
vectored COVID-19 vaccine: a dose-escalation, open-label, non-
randomised, first-in-human trial. Lancet. 2020. https://doi.org/10.1016/
s0140-6736(20)31208-3.

21. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1–2 trial
of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J
Med. 2020;383:2320–32. https://doi.org/10.1056/NEJMoa2026920.

22. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and
safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384:403–
16. https://doi.org/10.1056/NEJMoa2035389.

23. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al.
Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med.
2020;383:2603–15. https://doi.org/10.1056/NEJMoa2034577.

24. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al.
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against
SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil,
South Africa, and the UK. Lancet. 2021;397:99–111. https://doi.org/10.1016/
S0140-6736(20)32661-1.

25. Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, et al. Safety
and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a
double-blind, randomised, phase 1 trial. Lancet Infect Dis. 2021. https://doi.
org/10.1016/S1473-3099(20)30942-7.

26. Barnes CO, West AP Jr, Huey-Tubman KE, Hoffmann MAG, Sharaf NG,
Hoffman PR, et al. Structures of human antibodies bound to SARS-CoV-2
spike reveal common epitopes and recurrent features of antibodies. Cell.
2020;182:828–42.e16. https://doi.org/10.1016/j.cell.2020.06.025.

27. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV,
Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-
based heterologous prime-boost COVID-19 vaccine: an interim analysis of a
randomised controlled phase 3 trial in Russia. Lancet. 2021;397:671–81.
https://doi.org/10.1016/S0140-6736(21)00234-8.

28. Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK,
et al. Single-dose administration and the influence of the timing of the
booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19
(AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021;
397:881–91. https://doi.org/10.1016/S0140-6736(21)00432-3.

29. Gribble J, Stevens LJ, Agostini ML, Anderson-Daniels J, Chappell JD, Lu X,
et al. The coronavirus proofreading exoribonuclease mediates extensive viral
recombination. Plos Pathog. 2021;17:e1009226. https://doi.org/10.1371/
journal.ppat.1009226.

30. Clark SA, Clark LE, Pan J, Coscia A, McKay LGA, Shankar S, et al. SARS-CoV-2
evolution in an immunocompromised host reveals shared neutralization
escape mechanisms. Cell. 2021. https://doi.org/10.1016/j.cell.2021.03.027.

31. Edara VV, Norwood C, Floyd K, Lai L, Davis-Gardner ME, Hudson WH, et al.
Infection- and vaccine-induced antibody binding and neutralization of the
B.1.351 SARS-CoV-2 variant. Cell Host Microbe. 2021. https://doi.org/10.1016/
j.chom.2021.03.009.

32. Cele S, Gazy I, Jackson L, Hwa S-H, Tegally H, Lustig G, et al. Escape of SARS-
CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature. 2021.
https://doi.org/10.1038/s41586-021-03471-w.

33. Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS, et al. SARS-
CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell.
2021. https://doi.org/10.1016/j.cell.2021.03.036.

34. Tarke A, Sidney J, Methot N, Zhang Y, Dan JM, Goodwin B, et al. Negligible
impact of SARS-CoV-2 variants on CD4+ and CD8+ T cell reactivity in
COVID-19 exposed donors and vaccinees. bioRxiv. 2021;2021.02.27.433180.
doi:https://doi.org/10.1101/2021.02.27.433180.

35. Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and
future challenges. Nat Rev Immunol. 2021;21:195–7. https://doi.org/10.1038/
s41577-021-00526-x.

36. Sherina N, Piralla A, Du L, Wan H, Kumagai-Braesch M, Andréll J, et al.
Persistence of SARS-CoV-2-specific B and T cell responses in convalescent
COVID-19 patients 6–8 months after the infection. Med. 2021;2:281–95.e4.
https://doi.org/10.1016/j.medj.2021.02.001.

37. Khong H, Volmari A, Sharma M, Dai Z, Imo CS, Hailemichael Y, et al. Peptide
vaccine formulation controls the duration of antigen presentation and
magnitude of tumor-specific CD8+ T cell response. J Immunol. 2018;200:
3464–74. https://doi.org/10.4049/jimmunol.1700467.

38. Baz A, Buttigieg K, Zeng W, Rizkalla M, Jackson DC, Groves P, et al. Branched
and linear lipopeptide vaccines have different effects on primary CD4 and
CD8 T-cell activation but induce similar tumor-protective memory CD8 T-
cell responses. Vaccine. 2008;26:2570–9. https://doi.org/10.1016/j.vaccine.2
008.03.022.

39. Martins KAO, Cooper CL, Stronsky SM, Norris SLW, Kwilas SA, Steffens JT,
et al. Adjuvant-enhanced CD4 T cell responses are critical to durable
vaccine immunity. EBioMedicine. 2016;3:67–78. https://doi.org/10.1016/j.
ebiom.2015.11.041.

40. Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, et al.
Dendritic cells process synthetic long peptides better than whole protein,
improving antigen presentation and T-cell activation. Eur J Immunol. 2013;
43:2554–65. https://doi.org/10.1002/eji.201343324.

41. Wang CY, Chang TY, Walfield AM, Ye J, Shen M, Chen SP, et al. Effective
synthetic peptide vaccine for foot-and-mouth disease in swine. Vaccine.
2002;20:2603–10. https://doi.org/10.1016/s0264-410x(02)00148-2.

42. Zhou M, Kostoula I, Brill B, Panou E, Sakarellos-Daitsiotis M, Dietrich U. Prime
boost vaccination approaches with different conjugates of a new HIV-1
gp41 epitope encompassing the membrane proximal external region
induce neutralizing antibodies in mice. Vaccine. 2012;30:1911–6. https://doi.
org/10.1016/j.vaccine.2012.01.026.

Smith et al. Genome Medicine          (2021) 13:101 Page 19 of 23

https://doi.org/10.1038/s41423-020-0400-4
https://doi.org/10.1016/j.cell.2020.09.037
https://doi.org/10.1038/s41586-020-2571-7
https://doi.org/10.1016/j.immuni.2020.07.019
https://doi.org/10.1038/s41421-020-00199-1
https://doi.org/10.1056/NEJMoa2024671
https://doi.org/10.1056/NEJMoa2024671
https://doi.org/10.1016/j.it.2020.03.007
https://doi.org/10.1016/j.it.2020.03.007
https://doi.org/10.1038/nri3152
https://doi.org/10.1038/nri3152
https://doi.org/10.1615/critrevimmunol.2013007909
https://doi.org/10.1615/critrevimmunol.2013007909
https://doi.org/10.4049/jimmunol.181.8.5490
https://doi.org/10.4049/jimmunol.181.8.5490
https://doi.org/10.1038/s41577-020-00434-6
https://doi.org/10.1086/317537
https://doi.org/10.3389/fcimb.2021.624483
https://doi.org/10.3389/fcimb.2021.624483
https://doi.org/10.1038/d41573-020-00073-5
https://doi.org/10.1101/2020.05.13.093195
https://doi.org/10.1101/2020.05.13.093195
https://doi.org/10.1126/science.abc6284
https://doi.org/10.1016/s0140-6736(20)31208-3
https://doi.org/10.1016/s0140-6736(20)31208-3
https://doi.org/10.1056/NEJMoa2026920
https://doi.org/10.1056/NEJMoa2035389
https://doi.org/10.1056/NEJMoa2034577
https://doi.org/10.1016/S0140-6736(20)32661-1
https://doi.org/10.1016/S0140-6736(20)32661-1
https://doi.org/10.1016/S1473-3099(20)30942-7
https://doi.org/10.1016/S1473-3099(20)30942-7
https://doi.org/10.1016/j.cell.2020.06.025
https://doi.org/10.1016/S0140-6736(21)00234-8
https://doi.org/10.1016/S0140-6736(21)00432-3
https://doi.org/10.1371/journal.ppat.1009226
https://doi.org/10.1371/journal.ppat.1009226
https://doi.org/10.1016/j.cell.2021.03.027
https://doi.org/10.1016/j.chom.2021.03.009
https://doi.org/10.1016/j.chom.2021.03.009
https://doi.org/10.1038/s41586-021-03471-w
https://doi.org/10.1016/j.cell.2021.03.036
https://doi.org/10.1101/2021.02.27.433180
https://doi.org/10.1038/s41577-021-00526-x
https://doi.org/10.1038/s41577-021-00526-x
https://doi.org/10.1016/j.medj.2021.02.001
https://doi.org/10.4049/jimmunol.1700467
https://doi.org/10.1016/j.vaccine.2008.03.022
https://doi.org/10.1016/j.vaccine.2008.03.022
https://doi.org/10.1016/j.ebiom.2015.11.041
https://doi.org/10.1016/j.ebiom.2015.11.041
https://doi.org/10.1002/eji.201343324
https://doi.org/10.1016/s0264-410x(02)00148-2
https://doi.org/10.1016/j.vaccine.2012.01.026
https://doi.org/10.1016/j.vaccine.2012.01.026


43. Langeveld JP, Casal JI, Osterhaus AD, Cortés E, de Swart R, Vela C, et al. First
peptide vaccine providing protection against viral infection in the target
animal: studies of canine parvovirus in dogs. J Virol. 1994;68:4506–13
https://www.ncbi.nlm.nih.gov/pubmed/8207825.

44. Vázquez S, Guzmán MG, Guillen G, Chinea G, Pérez AB, Pupo M, et al.
Immune response to synthetic peptides of dengue prM protein. Vaccine.
2002;20:1823–30. https://doi.org/10.1016/s0264-410x(01)00515-1.

45. Vieillard V, Combadière B, Tubiana R, Launay O, Pialoux G, Cotte L, et al. HIV
therapeutic vaccine enhances non-exhausted CD4+ T cells in a randomised
phase 2 trial. NPJ Vaccines. 2019;4:25. https://doi.org/10.1038/s41541-019-
0117-5.

46. Pavlick AC, Blazquez A, Meseck M, Donovan MJ, Castillo-Martin M, Htwe
Thin T, et al. A phase II open labeled, randomized study of poly-ICLC
matured dendritic cells for NY-ESO-1 and Mean-A peptide vaccination
compared to Montanide, in melanoma patients in complete clinical
remission. J Clin Orthod. 2019;37:9538. https://doi.org/10.1200/JCO.2019.37.1
5_suppl.9538.

47. Firbas C, Jilma B, Tauber E, Buerger V, Jelovcan S, Lingnau K, et al.
Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV)
peptide vaccine: a randomized, placebo controlled trial for dose
optimization in 128 healthy subjects. Vaccine. 2006;24:4343–53. https://doi.
org/10.1016/j.vaccine.2006.03.009.

48. Francis JN, Bunce CJ, Horlock C, Watson JM, Warrington SJ, Georges B, et al.
A novel peptide-based pan-influenza A vaccine: a double blind, randomised
clinical trial of immunogenicity and safety. Vaccine. 2015;33:396–402.
https://doi.org/10.1016/j.vaccine.2014.06.006.

49. Pennington MW, Zell B, Bai CJ. Commercial manufacturing of current good
manufacturing practice peptides spanning the gamut from neoantigen to
commercial large-scale products. Med Drug Discov. 2021;9:100071. https://
doi.org/10.1016/j.medidd.2020.100071.

50. Bray BL. Large-scale manufacture of peptide therapeutics by chemical
synthesis. Nat Rev Drug Discov. 2003;2:587–93. https://doi.org/10.1038/
nrd1133.

51. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The
Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019;47:
D339–43. https://doi.org/10.1093/nar/gky1006.

52. Tian J-H, Patel N, Haupt R, Zhou H, Weston S, Hammond H, et al. SARS-CoV-
2 spike glycoprotein vaccine candidate NVX-CoV2373 elicits
immunogenicity in baboons and protection in mice. Cold Spring Harbor
Lab. 2020;2020.06.29.178509. doi:https://doi.org/10.1101/2020.06.29.178509.

53. Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. Immunogenicity
of a DNA vaccine candidate for COVID-19. Nat Commun. 2020;11:2601.
https://doi.org/10.1038/s41467-020-16505-0.

54. Dinnon KH 3rd, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery
SA, et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19
countermeasures. Nature. 2020;586:560–6. https://doi.org/10.1038/s41586-02
0-2708-8.

55. Heidepriem J, Dahlke C, Kobbe R, Santer R, Koch T, Fathi A, et al.
Longitudinal Development of antibody responses in COVID-19 patients of
different severity with ELISA, peptide, and glycan arrays: an immunological
case series. Pathogens. 2021;10. https://doi.org/10.3390/pathogens10040438.

56. Wang H, Wu X, Zhang X, Hou X, Liang T, Wang D, et al. SARS-CoV-2
proteome microarray for mapping COVID-19 antibody interactions at amino
acid resolution. ACS Cent Sci. 2020;6:2238–49. https://doi.org/10.1021/a
cscentsci.0c00742.

57. Zamecnik CR, Rajan JV, Yamauchi KA, Mann SA, Loudermilk RP, Sowa GM,
et al. ReScan, a multiplex diagnostic pipeline, pans human sera for SARS-
CoV-2 antigens. Cell Rep Med. 2020;1:100123. https://doi.org/10.1016/j.
xcrm.2020.100123.

58. Poh CM, Carissimo G, Wang B, Amrun SN, Lee CY-P, Chee RS-L, et al. Two
linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising
antibodies in COVID-19 patients. Nat Commun. 2020;11:2806. https://doi.
org/10.1038/s41467-020-16638-2.

59. Schwarz T, Heiss K, Mahendran Y, Casilag F, Kurth F, Sander LE, et al. SARS-
CoV-2 proteome-wide analysis revealed significant epitope signatures in
COVID-19 patients. Front Immunol. 2021;12:629185. https://doi.org/10.3389/
fimmu.2021.629185.

60. Severe acute respiratory syndrome coronavirus 2 isolate SARS-CoV-2/hum -
Nucleotide - NCBI. https://www.ncbi.nlm.nih.gov/nuccore/MT072688.
Accessed 1 Apr 2021.

61. Schaid DJ. HaploStats. Rochester: Mayo Clinic/Foundation; 2005.

62. Klitz W, Maiers M, Spellman S, Baxter-Lowe LA, Schmeckpeper B, Williams
TM, et al. New HLA haplotype frequency reference standards: high-
resolution and large sample typing of HLA DR-DQ haplotypes in a sample
of European Americans. Tissue Antigens. 2003;62:296–307. https://doi.org/1
0.1034/j.1399-0039.2003.00103.x.

63. Jurtz V, Paul S, Andreatta M, Marcatili P. NetMHCpan-4.0: improved peptide–
MHC class I interaction predictions integrating eluted ligand and peptide
binding affinity data. The Journal of. 2017. https://www.jimmunol.org/
content/199/9/3360.abstract. Accessed 21 May 2020.

64. O’Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, Hammerbacher
J. MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst.
2018;7:129–32.e4. https://doi.org/10.1016/j.cels.2018.05.014.

65. Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M.
Accurate pan-specific prediction of peptide-MHC class II binding affinity
with improved binding core identification. Immunogenetics. 2015;67:641–
50. https://doi.org/10.1007/s00251-015-0873-y.

66. Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M.
Improved prediction of MHC II antigen presentation through integration
and motif deconvolution of mass spectrometry MHC eluted ligand data. J
Proteome Res. 2020. https://doi.org/10.1021/acs.jproteome.9b00874.

67. Zhou T, Wang H, Luo D, Rowe T, Wang Z, Hogan RJ, et al. An exposed
domain in the severe acute respiratory syndrome coronavirus spike protein
induces neutralizing antibodies. J Virol. 2004;78:7217–26. https://doi.org/1
0.1128/JVI.78.13.7217-7226.2004.

68. Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, et al. Comprehensive
analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2
epitopes in COVID-19 cases. bioRxiv. 2020. https://doi.org/10.1101/2020.12.
08.416750.

69. Schulien I, Kemming J, Oberhardt V, Wild K, Seidel LM, Killmer S, et al.
Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T
cells. Nat Med. 2020. https://doi.org/10.1038/s41591-020-01143-2.

70. Snyder TM, Gittelman RM, Klinger M, May DH, Osborne EJ, Taniguchi R, et al.
Magnitude and dynamics of the T-cell response to SARS-CoV-2 infection at
both individual and population levels. medRxiv. 2020. https://doi.org/10.11
01/2020.07.31.20165647.

71. Shomuradova AS, Vagida MS, Sheetikov SA, Zornikova KV, Kiryukhin D, Titov
A, et al. SARS-CoV-2 epitopes are recognized by a public and diverse
repertoire of human T-cell receptors. medRxiv. 2020; https://www.medrxiv.
org/content/10.1101/2020.05.20.20107813v1.abstract. Accessed 8 May 2021.

72. Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, et al. Broad and strong
memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK
convalescent individuals following COVID-19. Nat Immunol. 2020;21:1336–
45. https://doi.org/10.1038/s41590-020-0782-6.

73. Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M, et al. SARS-
CoV-2 T-cell epitopes define heterologous and COVID-19-induced T-cell
recognition. 2020. https://www.researchsquare.com/article/rs-35331/latest.

74. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. SARS-
CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and
uninfected controls. Nature. 2020;584:457–62. https://doi.org/10.1038/s41
586-020-2550-z.

75. Ferretti AP, Kula T, Wang Y, Nguyen DMV, Weinheimer A, Dunlap GS, et al.
COVID-19 patients form memory CD8+ T cells that recognize a small set of
shared immunodominant epitopes in SARS-CoV-2; 2020. https://doi.org/1
0.2139/ssrn.3669387.

76. Kyte J, Doolittle RF. A simple method for displaying the hydropathic
character of a protein. J Mol Biol. 1982;157:105–32 https://www.ncbi.nlm.nih.
gov/pubmed/7108955.

77. Kyi C, Sabado RL, Blazquez A, Posner MR, Genden EM, Miles BA, et al. A phase I
study of the safety and immunogenicity of a multipeptide personalized
genomic vaccine in the adjuvant treatment of solid cancers. J Clin Orthod.
2017;35:TPS3114. https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS3114.

78. Peptide Design Guideline. Biomatik; 2011. https://www.biomatik.com/
content/service_docs/peptide_design_guideline.pdf. Accessed 9 Apr 2021.

79. Peptide design guidelines. SB Peptide. https://www.sb-peptide.com/
support/design/. Accessed 9 Apr 2021.

80. Grant GA. Synthetic peptides: a user’s guide: Oxford University Press; 2002.
https://play.google.com/store/books/details?id=_Z3mCwAAQBAJ. Accessed
9 Apr 2021.

81. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s
innovative contribution to global health. Glob Chall. 2017;1:33–46. https://
doi.org/10.1002/gch2.1018.

Smith et al. Genome Medicine          (2021) 13:101 Page 20 of 23

https://doi.org/10.1016/s0264-410x(01)00515-1
https://doi.org/10.1038/s41541-019-0117-5
https://doi.org/10.1038/s41541-019-0117-5
https://doi.org/10.1200/JCO.2019.37.15_suppl.9538
https://doi.org/10.1200/JCO.2019.37.15_suppl.9538
https://doi.org/10.1016/j.vaccine.2006.03.009
https://doi.org/10.1016/j.vaccine.2006.03.009
https://doi.org/10.1016/j.vaccine.2014.06.006
https://doi.org/10.1016/j.medidd.2020.100071
https://doi.org/10.1016/j.medidd.2020.100071
https://doi.org/10.1038/nrd1133
https://doi.org/10.1038/nrd1133
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1101/2020.06.29.178509
https://doi.org/10.1038/s41467-020-16505-0
https://doi.org/10.1038/s41586-020-2708-8
https://doi.org/10.1038/s41586-020-2708-8
https://doi.org/10.3390/pathogens10040438
https://doi.org/10.1021/acscentsci.0c00742
https://doi.org/10.1021/acscentsci.0c00742
https://doi.org/10.1016/j.xcrm.2020.100123
https://doi.org/10.1016/j.xcrm.2020.100123
https://doi.org/10.1038/s41467-020-16638-2
https://doi.org/10.1038/s41467-020-16638-2
https://doi.org/10.3389/fimmu.2021.629185
https://doi.org/10.3389/fimmu.2021.629185
https://doi.org/10.1034/j.1399-0039.2003.00103.x
https://doi.org/10.1034/j.1399-0039.2003.00103.x
https://www.jimmunol.org/content/199/9/3360.abstract
https://www.jimmunol.org/content/199/9/3360.abstract
https://doi.org/10.1016/j.cels.2018.05.014
https://doi.org/10.1007/s00251-015-0873-y
https://doi.org/10.1021/acs.jproteome.9b00874
https://doi.org/10.1128/JVI.78.13.7217-7226.2004
https://doi.org/10.1128/JVI.78.13.7217-7226.2004
https://doi.org/10.1101/2020.12.08.416750
https://doi.org/10.1101/2020.12.08.416750
https://doi.org/10.1038/s41591-020-01143-2
https://doi.org/10.1101/2020.07.31.20165647
https://doi.org/10.1101/2020.07.31.20165647
https://www.medrxiv.org/content/10.1101/2020.05.20.20107813v1.abstract
https://www.medrxiv.org/content/10.1101/2020.05.20.20107813v1.abstract
https://doi.org/10.1038/s41590-020-0782-6
https://www.researchsquare.com/article/rs-35331/latest
https://doi.org/10.1038/s41586-020-2550-z
https://doi.org/10.1038/s41586-020-2550-z
https://doi.org/10.2139/ssrn.3669387
https://doi.org/10.2139/ssrn.3669387
https://doi.org/10.1200/JCO.2017.35.15_suppl.TPS3114
https://www.biomatik.com/content/service_docs/peptide_design_guideline.pdf
https://www.biomatik.com/content/service_docs/peptide_design_guideline.pdf
https://www.sb-peptide.com/support/design/
https://www.sb-peptide.com/support/design/
https://play.google.com/store/books/details?id=_Z3mCwAAQBAJ
https://doi.org/10.1002/gch2.1018
https://doi.org/10.1002/gch2.1018


82. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al.
Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34:
4121–3. https://doi.org/10.1093/bioinformatics/bty407.

83. Katoh K, Misawa K, Kuma K-I, Miyata T. MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids
Res. 2002;30:3059–66. https://doi.org/10.1093/nar/gkf436.

84. Bastola A, Sah R, Rodriguez-Morales AJ, Lal BK, Jha R, Ojha HC, et al. The first
2019 novel coronavirus case in Nepal. Lancet Infect Dis. 2020;20:279–80.
https://doi.org/10.1016/S1473-3099(20)30067-0.

85. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al.
GenBank. Nucleic Acids Res. 2018;46:D41–7. https://doi.org/10.1093/nar/gkx1094.

86. Charif D, Lobry JR. SeqinR 1.0-2: A contributed package to the R Project for
statistical computing devoted to biological sequences retrieval and analysis.
In: Bastolla U, Porto M, Roman HE, Vendruscolo M, editors. Structural
approaches to sequence evolution: molecules, networks, populations. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2007. p. 207–32. https://doi.org/10.1
007/978-3-540-35306-5_10.

87. Bodenhofer U, Bonatesta E, Horejš-Kainrath C, Hochreiter S. msa: an R
package for multiple sequence alignment. Bioinformatics. 2015;31:3997–9.
https://doi.org/10.1093/bioinformatics/btv494.

88. Kuhn M. Classification and regression training [R package caret version 6.0-
86]. https://CRAN.R-project.org/package=caret. Accessed 21 May 2020.

89. Wilke CO. cowplot: streamlined plot theme and plot annotations for
“ggplot2.” CRAN Repos; 2016.

90. Dowle M, Srinivasan A. data. table: Extension of “data. frame”. R package
version 1.10. 4-3. 2017. https://CRAN.R-project.org/package=data.table.
Accessed 21 May 2020.

91. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
https://doi.org/10.1186/s13059-014-0550-8.

92. Revolution Analytics WS. doMC: foreach parallel adaptor for “parallel”. R
package version 1.3. 4. 2015. https://CRAN.R-project.org/package=doMC.
Accessed 21 May 2020.

93. Wickham H, Francois R, Henry L, Müller K. dplyr: a grammar of data
manipulation. R package version 0.4. 3. R Found Stat Comput , Vienna
https://CRAN R-project org/package= dplyr. 2015. https://CRAN.R-project.
org/package=dplyr. Accessed 21 May 2020.

94. Wickham H. forcats: tools for working with categorical variables (factors).
2017. https://CRANR-projectorg/package=forcatsRpackageversion020.
Accessed 21 May 2020.

95. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al.
Software for computing and annotating genomic ranges. Plos Comput Biol.
2013;9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118.

96. Pav SE. Grab Bag of “ggplot2” Functions [R package ggallin version 0.1.1].
https://CRAN.R-project.org/package=ggallin. Accessed 21 May 2020.

97. Clarke E, Sherrill-Mix S. Ggbeeswarm: categorical scatter (violin point) plots.
R package version 0 6 0 Retrieved from https://CRANR-projectorg. 2017.
Accessed 21 May 2020.

98. Campitelli E. Multiple fill and colour scales in “ggplot2” [R package
ggnewscale version 0.4.1]. https://CRAN.R-project.org/package=ggnewscale.
Accessed 21 May 2020.

99. Kassambara A. “ggplot2” based publication ready plots [R package ggpubr version
0.3.0]. https://CRAN.R-project.org/package=ggpubr. Accessed 21 May 2020.

100. Slowikowski K. Automatically position non-overlapping text labels with
“ggplot2” [R package ggrepel version 0.8.2]. https://CRAN.R-project.org/pa
ckage=ggrepel. Accessed 21 May 2020.

101. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al.
gplots: Various R programming tools for plotting data. 2015. https://www.
scienceopen.com/document?vid=0e5d8e31-1fe4-492f-a3d8-8cd71b2b8ad9.
Accessed 21 May 2020.

102. Auguie B. Miscellaneous functions for “grid” graphics [R package gridExtra version
2.3]. https://CRAN.R-project.org/package=gridExtra. Accessed 21 May 2020.

103. Hugh-Jones D. HuxTable: Easily create and style tables for LaTeX, HTML and
other formats. R package version 4.7. 1; 2019.

104. Bache SM, Wickham H. magrittr: a forward-pipe operator for R. R package
version; 2014. p. 1.

105. Gohel D. officer: manipulation of Microsoft Word and PowerPoint
documents; 2018.

106. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an
open-source package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011;12:77. https://doi.org/10.1186/1471-2105-12-77.

107. Neuwirth E. RColorBrewer: ColorBrewer palettes. R package version 1.1-2.
The R Foundation. 2014. https://CRAN.R-project.org/package=RColorBrewer.
Accessed 21 May 2020.

108. Wickham H, Bryan J. readxl: Read excel files. R package version; 2019. p. 1.
109. Wickham H. scales: scale functions for visualization. R package version 0.4. 0.

2016. https://CRAN.R-project.org/package=scales. Accessed 21 May 2020.
110. Wickham H. stringr: Simple, consistent wrappers for common string

operations (Package Version 1.2. 0)[Computer software]. 2017. https://CRAN.
R-project.org/package=stringr. Accessed 21 May 2020.

111. CRAN - Package venneuler. https://CRAN.R-project.org/package=venneuler.
Accessed 21 May 2020.

112. Garnier S. viridis: Default Color Maps from “matplotlib”. 2016. R package version
0.3. 4. 2017. https://CRAN.R-project.org/package=viridis. Accessed 21 May 2020.

113. van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for
Efficient Numerical Computation. Comput Sci Eng. 2011;13:22–30. https://
doi.org/10.1109/MCSE.2011.37.

114. McKinney W, Others. pandas: a foundational Python library for data analysis
and statistics. Python for High Performance and Scientific Computing. 2011;
14. https://www.dlr.de/sc/portaldata/15/resources/dokumente/pyhpc2011/
submissions/pyhpc2011_submission_9.pdf. Accessed 21 May 2020.

115. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:
90–5. https://doi.org/10.1109/MCSE.2007.55.

116. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al.
Jupyter Notebooks-a publishing format for reproducible computational
workflows. In: ELPUB; 2016. p. 87–90. https://books.google.com/books?hl=
en&lr=&id=Lgy3DAAAQBAJ&oi=fnd&pg=PA87&dq=jupyter&ots=N1
GS7UpCdp&sig=YPTK4iGHEE712ql7APEF_IRSJBk. Accessed 21 May 2020.

117. Gonzalez-Galarza FF, McCabe A, Santos EJMD, Jones J, Takeshita L, Ortega-
Rivera ND, et al. Allele frequency net database (AFND) 2020 update: gold-
standard data classification, open access genotype data and new query tools.
Nucleic Acids Res. 2020;48:D783–8. https://doi.org/10.1093/nar/gkz1029.

118. Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, et al. The
relationship between class I binding affinity and immunogenicity of
potential cytotoxic T cell epitopes. J Immunol. 1994;153:5586–92 https://
www.ncbi.nlm.nih.gov/pubmed/7527444.

119. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al.
Systematic identification of personal tumor-specific neoantigens in chronic
lymphocytic leukemia. Blood. 2014;124:453–62. https://doi.org/10.1182/
blood-2014-04-567933.

120. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of
potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2)
based on SARS-CoV immunological studies. Viruses. 2020;12. https://doi.
org/10.3390/v12030254.

121. Liu J, Sun Y, Qi J, Chu F, Wu H, Gao F, et al. The membrane protein of
severe acute respiratory syndrome coronavirus acts as a dominant
immunogen revealed by a clustering region of novel functionally and
structurally defined cytotoxic T-lymphocyte epitopes. J Infect Dis. 2010;202:
1171–80. https://doi.org/10.1086/656315.

122. Liu J, Wu P, Gao F, Qi J, Kawana-Tachikawa A, Xie J, et al. Novel
immunodominant peptide presentation strategy: a featured HLA-A*2402-
restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen
bonds from severe acute respiratory syndrome coronavirus nucleocapsid
protein. J Virol. 2010;84:11849–57. https://doi.org/10.1128/JVI.01464-10.

123. Ng O-W, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, et al. Memory T cell
responses targeting the SARS coronavirus persist up to 11 years post-infection.
Vaccine. 2016;34:2008–14. https://doi.org/10.1016/j.vaccine.2016.02.063.

124. Oh H-LJ, Chia A, Chang CXL, Leong HN, Ling KL, Grotenbreg GM, et al.
Engineering T cells specific for a dominant severe acute respiratory
syndrome coronavirus CD8 T cell epitope. J Virol. 2011;85:10464–71. https://
doi.org/10.1128/JVI.05039-11.

125. Cheung Y-K, Cheng SC-S, Sin FW-Y, Chan K-T, Xie Y. Induction of T-cell
response by a DNA vaccine encoding a novel HLA-A*0201 severe acute
respiratory syndrome coronavirus epitope. Vaccine. 2007;25:6070–7. https://
doi.org/10.1016/j.vaccine.2007.05.025.

126. Ohno S, Kohyama S, Taneichi M, Moriya O, Hayashi H, Oda H, et al.
Synthetic peptides coupled to the surface of liposomes effectively induce
SARS coronavirus-specific cytotoxic T lymphocytes and viral clearance in
HLA-A*0201 transgenic mice. Vaccine. 2009;27:3912–20. https://doi.org/10.1
016/j.vaccine.2009.04.001.

127. Røder G, Kristensen O, Kastrup JS, Buus S, Gajhede M. Structure of a SARS
coronavirus-derived peptide bound to the human major histocompatibility

Smith et al. Genome Medicine          (2021) 13:101 Page 21 of 23

https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1016/S1473-3099(20)30067-0
https://doi.org/10.1093/nar/gkx1094
https://doi.org/10.1007/978-3-540-35306-5_10
https://doi.org/10.1007/978-3-540-35306-5_10
https://doi.org/10.1093/bioinformatics/btv494
https://cran.r-project.org/package=caret
https://CRAN.R-project.org/package=data.table
https://doi.org/10.1186/s13059-014-0550-8
https://CRAN.R-project.org/package=doMC
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=forcatsRpackageversion020
https://doi.org/10.1371/journal.pcbi.1003118
https://cran.r-project.org/package=ggallin
https://CRAN.R-project.org
https://cran.r-project.org/package=ggnewscale
https://cran.r-project.org/package=ggpubr
https://cran.r-project.org/package=ggrepel
https://cran.r-project.org/package=ggrepel
https://www.scienceopen.com/document?vid=0e5d8e31-1fe4-492f-a3d8-8cd71b2b8ad9
https://www.scienceopen.com/document?vid=0e5d8e31-1fe4-492f-a3d8-8cd71b2b8ad9
https://cran.r-project.org/package=gridExtra
https://doi.org/10.1186/1471-2105-12-77
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://cran.r-project.org/package=venneuler
https://CRAN.R-project.org/package=viridis
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://www.dlr.de/sc/portaldata/15/resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_9.pdf
https://www.dlr.de/sc/portaldata/15/resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_9.pdf
https://doi.org/10.1109/MCSE.2007.55
https://books.google.com/books?hl=en&lr=&id=Lgy3DAAAQBAJ&oi=fnd&pg=PA87&dq=jupyter&ots=N1GS7UpCdp&sig=YPTK4iGHEE712ql7APEF_IRSJBk
https://books.google.com/books?hl=en&lr=&id=Lgy3DAAAQBAJ&oi=fnd&pg=PA87&dq=jupyter&ots=N1GS7UpCdp&sig=YPTK4iGHEE712ql7APEF_IRSJBk
https://books.google.com/books?hl=en&lr=&id=Lgy3DAAAQBAJ&oi=fnd&pg=PA87&dq=jupyter&ots=N1GS7UpCdp&sig=YPTK4iGHEE712ql7APEF_IRSJBk
https://doi.org/10.1093/nar/gkz1029
https://www.ncbi.nlm.nih.gov/pubmed/7527444
https://www.ncbi.nlm.nih.gov/pubmed/7527444
https://doi.org/10.1182/blood-2014-04-567933
https://doi.org/10.1182/blood-2014-04-567933
https://doi.org/10.3390/v12030254
https://doi.org/10.3390/v12030254
https://doi.org/10.1086/656315
https://doi.org/10.1128/JVI.01464-10
https://doi.org/10.1016/j.vaccine.2016.02.063
https://doi.org/10.1128/JVI.05039-11
https://doi.org/10.1128/JVI.05039-11
https://doi.org/10.1016/j.vaccine.2007.05.025
https://doi.org/10.1016/j.vaccine.2007.05.025
https://doi.org/10.1016/j.vaccine.2009.04.001
https://doi.org/10.1016/j.vaccine.2009.04.001


complex class I molecule HLA-B*1501. Acta Crystallogr Sect F Struct Biol
Cryst Commun. 2008;64(Pt 6):459–62. https://doi.org/10.1107/S17443091
08012396.

128. Du L, Zhao G, Lin Y, Chan C, He Y, Jiang S, et al. Priming with rAAV
encoding RBD of SARS-CoV S protein and boosting with RBD-specific
peptides for T cell epitopes elevated humoral and cellular immune
responses against SARS-CoV infection. Vaccine. 2008;26:1644–51. https://doi.
org/10.1016/j.vaccine.2008.01.025.

129. Tsao Y-P, Lin J-Y, Jan J-T, Leng C-H, Chu C-C, Yang Y-C, et al. HLA-A*0201 T-
cell epitopes in severe acute respiratory syndrome (SARS) coronavirus
nucleocapsid and spike proteins. Biochem Biophys Res Commun. 2006;344:
63–71. https://doi.org/10.1016/j.bbrc.2006.03.152.

130. Lv Y, Ruan Z, Wang L, Ni B, Wu Y. Identification of a novel conserved HLA-
A*0201-restricted epitope from the spike protein of SARS-CoV. BMC
Immunol. 2009;10:61. https://doi.org/10.1186/1471-2172-10-61.

131. Wang B, Chen H, Jiang X, Zhang M, Wan T, Li N, et al. Identification of an
HLA-A*0201-restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein.
Blood. 2004;104:200–6. https://doi.org/10.1182/blood-2003-11-4072.

132. Wang Y-D, Sin W-YF XG-B, Yang H-H, Wong T-Y, Pang X-W, et al. T-cell
epitopes in severe acute respiratory syndrome (SARS) coronavirus spike protein
elicit a specific T-cell immune response in patients who recover from SARS. J
Virol. 2004;78:5612–8. https://doi.org/10.1128/JVI.78.11.5612-5618.2004.

133. Li T, Xie J, He Y, Fan H, Baril L, Qiu Z, et al. Long-term persistence of robust
antibody and cytotoxic T cell responses in recovered patients infected with
SARS coronavirus. Plos One. 2006;1:e24. https://doi.org/10.1371/journal.pone.
0000024.

134. Chang CXL, Tan AT, Or MY, Toh KY, Lim PY, Chia ASE, et al. Conditional
ligands for Asian HLA variants facilitate the definition of CD8+ T-cell
responses in acute and chronic viral diseases. Eur J Immunol. 2013;43:1109–
20. https://doi.org/10.1002/eji.201243088.

135. Chen H, Hou J, Jiang X, Ma S, Meng M, Wang B, et al. Response of memory
CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in
recovered SARS patients and healthy individuals. J Immunol. 2005;175:591–
8. https://doi.org/10.4049/jimmunol.175.1.591.

136. Blicher T, Kastrup JS, Buus S, Gajhede M. High-resolution structure of HLA-A*
1101 in complex with SARS nucleocapsid peptide. Acta Crystallogr D Biol
Crystallogr. 2005;61:1031–40 https://scripts.iucr.org/cgi-bin/paper?dz5040.

137. Rivino L, Tan AT, Chia A, Kumaran EAP, Grotenbreg GM, MacAry PA, et al.
Defining CD8+ T cell determinants during human viral infection in
populations of Asian ethnicity. J Immunol. 2013;191:4010–9. https://doi.
org/10.4049/jimmunol.1301507.

138. Cheung YK, Cheng SCS, Sin FWY, Chan KT, Xie Y. Investigation of
immunogenic T-cell epitopes in SARS virus nucleocapsid protein and their
role in the prevention and treatment of SARS infection. Hong Kong Med J.
2008;14(Suppl 4):27–30 https://www.ncbi.nlm.nih.gov/pubmed/18708671.

139. Yang J, James E, Roti M, Huston L, Gebe JA, Kwok WW. Searching
immunodominant epitopes prior to epidemic: HLA class II-restricted SARS-
CoV spike protein epitopes in unexposed individuals. Int Immunol. 2009;21:
63–71. https://doi.org/10.1093/intimm/dxn124.

140. Yang L, Peng H, Zhu Z, Li G, Huang Z, Zhao Z, et al. Persistent memory
CD4+ and CD8+ T-cell responses in recovered severe acute respiratory
syndrome (SARS) patients to SARS coronavirus M antigen. J Gen Virol. 2007;
88(Pt 10):2740–8. https://doi.org/10.1099/vir.0.82839-0.

141. Poran A, Harjanto D, Malloy M, Rooney MS, Srinivasan L, Gaynor RB.
Sequence-based prediction of vaccine targets for inducing T cell responses
to SARS-CoV-2 utilizing the bioinformatics predictor RECON. doi:https://doi.
org/10.1101/2020.04.06.027805.

142. Peng H, Yang L-T, Wang L-Y, Li J, Huang J, Lu Z-Q, et al. Long-lived memory
T lymphocyte responses against SARS coronavirus nucleocapsid protein in
SARS-recovered patients. Virology. 2006;351:466–75. https://doi.org/10.1016/
j.virol.2006.03.036.

143. Zhou M, Xu D, Li X, Li H, Shan M, Tang J, et al. Screening and identification
of severe acute respiratory syndrome-associated coronavirus-specific CTL
epitopes. J Immunol. 2006;177:2138–45. https://doi.org/10.4049/jimmunol.1
77.4.2138.

144. Kohyama S, Ohno S, Suda T, Taneichi M, Yokoyama S, Mori M, et al.
Efficient induction of cytotoxic T lymphocytes specific for severe acute
respiratory syndrome (SARS)-associated coronavirus by immunization
with surface-linked liposomal peptides derived from a non-structural
polyprotein 1a. Antiviral Res. 2009;84:168–77. https://doi.org/10.1016/j.a
ntiviral.2009.09.004.

145. Libraty DH, O’Neil KM, Baker LM, Acosta LP, Olveda RM. Human CD4(+)
memory T-lymphocyte responses to SARS coronavirus infection. Virology.
2007;368:317–21. https://doi.org/10.1016/j.virol.2007.07.015.

146. Calis JJA, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A,
et al. Properties of MHC class I presented peptides that enhance
immunogenicity. Plos Comput Biol. 2013;9:e1003266. https://doi.org/10.13
71/journal.pcbi.1003266.

147. Smith CC, Chai S, Washington AR, Lee SJ, Landoni E, Field K, et al. Machine-
learning prediction of tumor antigen immunogenicity in the selection of
therapeutic epitopes. Cancer Immunol Res. 2019;7:1591–604. https://doi.
org/10.1158/2326-6066.CIR-19-0155.

148. Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, et al.
Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic
cells enables more accurate epitope prediction. Immunity. 2017;46:315–26.
https://doi.org/10.1016/j.immuni.2017.02.007.

149. Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ,
et al. Characterisation of the transcriptome and proteome of SARS-CoV-2
reveals a cell passage induced in-frame deletion of the furin-like cleavage
site from the spike glycoprotein. Genome Med. 2020;12:68. https://doi.org/1
0.1186/s13073-020-00763-0.

150. Kim D, Lee J-Y, Yang J-S, Kim JW, Narry Kim V, Chang H. The architecture of
SARS-CoV-2 transcriptome. doi:https://doi.org/10.1101/2020.03.12.988865.

151. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al.
Ensembl 2020. Nucleic Acids Res. 2020;48:D682–8. https://doi.org/10.1093/na
r/gkz966.

152. Grant OC, Montgomery D, Ito K, Woods RJ. 3D Models of glycosylated
SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine
development. bioRxiv. 2020:2020.04.07.030445. doi:https://doi.org/10.1101/2
020.04.07.030445.

153. Walls AC, Park YJ, Tortorici MA, Wall A. Seattle Structural Genomics Center for
Infectious Disease (SSGCID), McGuire AT, et al. SARS-CoV-2 spike ectodomain
structure (open state); 2020. https://doi.org/10.2210/pdb6vyb/pdb.

154. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific analysis
of the SARS-CoV-2 glycan shield. bioRxiv. 2020;:2020.03.26.010322. doi:
https://doi.org/10.1101/2020.03.26.010322.

155. Xu Y, Zhu J, Liu Y, Lou Z, Yuan F, Liu Y, et al. Characterization of the heptad
repeat regions, HR1 and HR2, and design of a fusion core structure model of
the spike protein from severe acute respiratory syndrome (SARS) coronavirus.
Biochemistry. 2004;43:14064–71. https://doi.org/10.1021/bi049101q.

156. Lai S-C, Chong PC-S, Yeh C-T, Liu LS-J, Jan J-T, Chi H-Y, et al.
Characterization of neutralizing monoclonal antibodies recognizing a 15-
residues epitope on the spike protein HR2 region of severe acute
respiratory syndrome coronavirus (SARS-CoV). J Biomed Sci. 2005;12:711–27.
https://doi.org/10.1007/s11373-005-9004-3.

157. He Y, Zhu Q, Liu S, Zhou Y, Yang B, Li J, et al. Identification of a critical
neutralization determinant of severe acute respiratory syndrome (SARS)-
associated coronavirus: importance for designing SARS vaccines. Virology.
2005;334:74–82. https://doi.org/10.1016/j.virol.2005.01.034.

158. He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. Receptor-binding domain
of SARS-CoV spike protein induces highly potent neutralizing antibodies:
implication for developing subunit vaccine. Biochem Biophys Res Commun.
2004;324:773–81. https://doi.org/10.1016/j.bbrc.2004.09.106.

159. Hu H, Li L, Kao RY, Kou B, Wang Z, Zhang L, et al. Screening and
identification of linear B-cell epitopes and entry-blocking peptide of severe
acute respiratory syndrome (SARS)-associated coronavirus using synthetic
overlapping peptide library. J Comb Chem. 2005;7:648–56. https://doi.org/1
0.1021/cc0500607.

160. Madu IG, Roth SL, Belouzard S, Whittaker GR. Characterization of a highly
conserved domain within the severe acute respiratory syndrome coronavirus
spike protein S2 domain with characteristics of a viral fusion peptide. J Virol.
2009;83:7411–21. https://doi.org/10.1128/JVI.00079-09.

161. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J,
et al. Mutant MHC class II epitopes drive therapeutic immune responses to
cancer. Nature. 2015;520:692–6. https://doi.org/10.1038/nature14426.

162. Iiizumi S, Ohtake J, Murakami N, Kouro T, Kawahara M, Isoda F, et al.
Identification of novel HLA class II-restricted neoantigens derived from driver
mutations. Cancers . 2019;11. doi:https://doi.org/10.3390/cancers11020266.

163. Bekri S, Uduman M, Gruenstein D, Mei AH-C, Tung K, Rodney-Sandy R, et al.
Neoantigen synthetic peptide vaccine for multiple myeloma elicits T cell
immunity in a pre-clinical model. Blood. 2017;130(Supplement 1):1868.
https://doi.org/10.1182/blood.V130.Suppl_1.1868.1868.

Smith et al. Genome Medicine          (2021) 13:101 Page 22 of 23

https://doi.org/10.1107/S1744309108012396
https://doi.org/10.1107/S1744309108012396
https://doi.org/10.1016/j.vaccine.2008.01.025
https://doi.org/10.1016/j.vaccine.2008.01.025
https://doi.org/10.1016/j.bbrc.2006.03.152
https://doi.org/10.1186/1471-2172-10-61
https://doi.org/10.1182/blood-2003-11-4072
https://doi.org/10.1128/JVI.78.11.5612-5618.2004
https://doi.org/10.1371/journal.pone.0000024
https://doi.org/10.1371/journal.pone.0000024
https://doi.org/10.1002/eji.201243088
https://doi.org/10.4049/jimmunol.175.1.591
https://scripts.iucr.org/cgi-bin/paper?dz5040
https://doi.org/10.4049/jimmunol.1301507
https://doi.org/10.4049/jimmunol.1301507
https://doi.org/10.1093/intimm/dxn124
https://doi.org/10.1099/vir.0.82839-0
https://doi.org/10.1101/2020.04.06.027805
https://doi.org/10.1101/2020.04.06.027805
https://doi.org/10.1016/j.virol.2006.03.036
https://doi.org/10.1016/j.virol.2006.03.036
https://doi.org/10.4049/jimmunol.177.4.2138
https://doi.org/10.4049/jimmunol.177.4.2138
https://doi.org/10.1016/j.antiviral.2009.09.004
https://doi.org/10.1016/j.antiviral.2009.09.004
https://doi.org/10.1016/j.virol.2007.07.015
https://doi.org/10.1371/journal.pcbi.1003266
https://doi.org/10.1371/journal.pcbi.1003266
https://doi.org/10.1158/2326-6066.CIR-19-0155
https://doi.org/10.1158/2326-6066.CIR-19-0155
https://doi.org/10.1016/j.immuni.2017.02.007
https://doi.org/10.1186/s13073-020-00763-0
https://doi.org/10.1186/s13073-020-00763-0
https://doi.org/10.1101/2020.03.12.988865
https://doi.org/10.1093/nar/gkz966
https://doi.org/10.1093/nar/gkz966
https://doi.org/10.1101/2020.04.07.030445
https://doi.org/10.1101/2020.04.07.030445
https://doi.org/10.2210/pdb6vyb/pdb
https://doi.org/10.1101/2020.03.26.010322
https://doi.org/10.1021/bi049101q
https://doi.org/10.1007/s11373-005-9004-3
https://doi.org/10.1016/j.virol.2005.01.034
https://doi.org/10.1016/j.bbrc.2004.09.106
https://doi.org/10.1021/cc0500607
https://doi.org/10.1021/cc0500607
https://doi.org/10.1128/JVI.00079-09
https://doi.org/10.1038/nature14426
https://doi.org/10.3390/cancers11020266
https://doi.org/10.1182/blood.V130.Suppl_1.1868.1868


164. Ferretti AP, Kula T, Wang Y, Nguyen DMV, Weinheimer A, Dunlap GS,
et al. Unbiased screens show CD8 T cells of COVID-19 patients
recognize shared epitopes in SARS-CoV-2 that Largely Reside outside
the Spike Protein. Immunity. 2020;53:1095–107.e3. https://doi.org/10.101
6/j.immuni.2020.10.006.

165. Klinger M, Pepin F, Wilkins J, Asbury T, Wittkop T, Zheng J, et al. Multiplex
Identification of antigen-specific T cell receptors using a combination of
immune assays and immune receptor sequencing. Plos One. 2015;10:
e0141561. https://doi.org/10.1371/journal.pone.0141561.

166. Reiss S, Baxter AE, Cirelli KM, Dan JM, Morou A, Daigneault A, et al.
Comparative analysis of activation induced marker (AIM) assays for sensitive
identification of antigen-specific CD4 T cells. Plos One. 2017;12:e0186998.
https://doi.org/10.1371/journal.pone.0186998.

167. Wang Z, Cheng G, Li G. TCR Ligand Discovery via T-Scan. Trends Immunol.
2019;40:1075–7. https://doi.org/10.1016/j.it.2019.10.003.

168. Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020.
https://doi.org/10.1016/j.immuni.2020.03.007.

169. Wang L, Shi W, Chappell JD, Joyce MG, Zhang Y, Kanekiyo M, et al.
Importance of neutralizing monoclonal antibodies targeting multiple
antigenic sites on the Middle East respiratory syndrome coronavirus spike
glycoprotein to avoid neutralization escape. J Virol. 2018;92. https://doi.
org/10.1128/JVI.02002-17.

170. Du L, Tai W, Yang Y, Zhao G, Zhu Q, Sun S, et al. Introduction of
neutralizing immunogenicity index to the rational design of MERS
coronavirus subunit vaccines. Nat Commun. 2016;7:13473. https://doi.org/1
0.1038/ncomms13473.

171. Li Y, Wan Y, Liu P, Zhao J, Lu G, Qi J, et al. A humanized neutralizing
antibody against MERS-CoV targeting the receptor-binding domain of the
spike protein. Cell Res. 2015;25:1237–49. https://doi.org/10.1038/cr.2015.113.

172. Coleman CM, Liu YV, Mu H, Taylor JK, Massare M, Flyer DC, et al. Purified
coronavirus spike protein nanoparticles induce coronavirus neutralizing
antibodies in mice. Vaccine. 2014;32:3169–74. https://doi.org/10.1016/j.va
ccine.2014.04.016.

173. Escriou N, Callendret B, Lorin V, Combredet C, Marianneau P, Février M, et al.
Protection from SARS coronavirus conferred by live measles vaccine
expressing the spike glycoprotein. Virology. 2014;452-453:32–41. https://doi.
org/10.1016/j.virol.2014.01.002.

174. Ishii K, Hasegawa H, Nagata N, Ami Y, Fukushi S, Taguchi F, et al.
Neutralizing antibody against severe acute respiratory syndrome (SARS)-
coronavirus spike is highly effective for the protection of mice in the
murine SARS model. Microbiol Immunol. 2009;53:75–82. https://doi.org/1
0.1111/j.1348-0421.2008.00097.x.

175. Kuate S, Cinatl J, Doerr HW, Uberla K. Exosomal vaccines containing the S
protein of the SARS coronavirus induce high levels of neutralizing antibodies.
Virology. 2007;362:26–37. https://doi.org/10.1016/j.virol.2006.12.011.

176. Woo PCY, Lau SKP, Tsoi H-W, Chen Z-W, Wong BHL, Zhang L, et al. SARS
coronavirus spike polypeptide DNA vaccine priming with recombinant spike
polypeptide from Escherichia coli as booster induces high titer of
neutralizing antibody against SARS coronavirus. Vaccine. 2005;23:4959–68.
https://doi.org/10.1016/j.vaccine.2005.05.023.

177. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A
sequence homology and bioinformatic approach can predict candidate
targets for immune responses to SARS-CoV-2. Cell Host Microbe. 2020;27:
671–80.e2. https://doi.org/10.1016/j.chom.2020.03.002.

178. Forsström B, Axnäs BB, Rockberg J, Danielsson H, Bohlin A, Uhlen M.
Dissecting antibodies with regards to linear and conformational epitopes.
Plos One. 2015;10:e0121673. https://doi.org/10.1371/journal.pone.0121673.

179. Van Regenmortel MHV. What is a B-cell epitope? In: Epitope Mapping
Protocols. Springer; 2009. p. 3–20. https://link.springer.com/protocol/10.1
007/978-1-59745-450-6_1. Accessed 21 May 2020.

180. Ito HO, Nakashima T, So T, Hirata M, Inoue M. Immunodominance of
conformation-dependent B-cell epitopes of protein antigens. Biochem
Biophys Res Commun. 2003;308:770–6. https://doi.org/10.1016/s0006-291
x(03)01466-9.

181. Poran A, Harjanto D, Malloy M, Arieta CM, Rothenberg DA, Lenkala D, et al.
Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass
spectrometry-based bioinformatics predictor identifies immunogenic T cell
epitopes. Genome Med. 2020;12:70. https://doi.org/10.1186/s13073-020-00767-w.

182. Liu G, Carter B, Bricken T, Jain S, Viard M, Carrington M, et al.
Computationally optimized SARS-CoV-2 MHC class I and II vaccine

formulations predicted to target human haplotype distributions. Cell Syst.
2020;11:131–44.e6. https://doi.org/10.1016/j.cels.2020.06.009.

183. Yarmarkovich M, Warrington JM, Farrel A, Maris JM. Identification of
SARS-CoV-2 vaccine epitopes predicted to induce long-term population-
scale immunity. Cell Rep Med. 2020;1:100036. https://doi.org/10.1016/j.
xcrm.2020.100036.

184. O’Donnell TJ, Rubinsteyn A, Laserson U. MHCflurry 2.0: improved pan-allele
prediction of MHC class I-presented peptides by incorporating antigen
processing. Cell Syst. 2020;11:418–9. https://doi.org/10.1016/j.cels.2020.09.001.

185. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR,
et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015;
43(Database issue):D405–12. https://doi.org/10.1093/nar/gku938.

186. Gao A, Chen Z, Segal FP, Carrington M, Streeck H, Chakraborty AK, et al.
Predicting the Immunogenicity of T cell epitopes: From HIV to SARS-CoV-2.
doi:https://doi.org/10.1101/2020.05.14.095885.

187. Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A,
et al. A neoantigen fitness model predicts tumour response to checkpoint
blockade immunotherapy. Nature. 2017;551:517–20. https://doi.org/10.1038/
nature24473.

188. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings
of COVID-19 associated with acute respiratory distress syndrome. Lancet
Respir Med. 2020;8:420–2. https://doi.org/10.1016/S2213-2600(20)30076-X.

189. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of
patients infected with 2019 novel coronavirus in Wuhan, China. Lancet.
2020;395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.

190. Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, et al. Distinct
immune response in two MERS-CoV-infected patients: can we go from
bench to bedside? Plos One. 2014;9:e88716. https://doi.org/10.1371/journal.
pone.0088716.

191. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an
emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect.
2020;53:368–70. https://doi.org/10.1016/j.jmii.2020.03.005.

192. Shi G, Vistica BP, Nugent LF, Tan C, Wawrousek EF, Klinman DM, et al.
Differential involvement of Th1 and Th17 in pathogenic autoimmune
processes triggered by different TLR ligands. J Immunol. 2013;191:415–23.
https://doi.org/10.4049/jimmunol.1201732.

193. Jyotisha, Singh S, Qureshi IA. Multi-epitope vaccine against SARS-CoV-2
applying immunoinformatics and molecular dynamics simulation
approaches. J Biomol Struct Dyn. 2020;1–17. doi:https://doi.org/10.1080/073
91102.2020.1844060.

194. Behmard E, Soleymani B, Najafi A, Barzegari E. Immunoinformatic design of
a COVID-19 subunit vaccine using entire structural immunogenic epitopes
of SARS-CoV-2. Sci Rep. 2020;10:20864. https://doi.org/10.1038/s41598-020-
77547-4.

195. Kwarteng A, Asiedu E, Sakyi SA, Asiedu SO. Targeting the SARS-CoV2
nucleocapsid protein for potential therapeutics using immuno-
informatics and structure-based drug discovery techniques. Biomed
Pharmacother. 2020;132:110914. https://doi.org/10.1016/j.biopha.2020.11
0914.

196. Le Bert N, Tan AT, Kunasegaran K, Tham CYL. Different pattern of pre-
existing SARS-COV-2 specific T cell immunity in SARS-recovered and
uninfected individuals. bioRxiv. 2020. https://www.biorxiv.org/content/10.11
01/2020.05.26.115832v1.abstract. Accessed 8 May 2021.

197. Quadeer AA, Ahmed SF, McKay MR. Epitopes targeted by T cells in
convalescent COVID-19 patients. bioRxiv. 2020;:2020.08.26.267724. doi:
https://doi.org/10.1101/2020.08.26.267724.

198. Ou L, Kong W-P, Chuang G-Y, Ghosh M, Gulla K, O’Dell S, et al. Preclinical
Development of a Fusion Peptide Conjugate as an HIV Vaccine
Immunogen. Sci Rep. 2020;10:3032. https://doi.org/10.1038/s41598-020-
59711-y.

199. Smith CC, Rubinsteyn A. Landscape-and-Selection-of-Vaccine-Epitopes-in-
SARS-CoV-2. Github. 2021. https://github.com/Benjamin-Vincent-Lab/La
ndscape-and-Selection-of-Vaccine-Epitopes-in-SARS-CoV-2. Accessed 8 May
2021.

200. Smith CC. Landscape and selection of vaccine epitopes in SARS-CoV-2.
Mendeley Data, V6; 2021. https://doi.org/10.17632/c6pdfrwxgj.6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Smith et al. Genome Medicine          (2021) 13:101 Page 23 of 23

https://doi.org/10.1016/j.immuni.2020.10.006
https://doi.org/10.1016/j.immuni.2020.10.006
https://doi.org/10.1371/journal.pone.0141561
https://doi.org/10.1371/journal.pone.0186998
https://doi.org/10.1016/j.it.2019.10.003
https://doi.org/10.1016/j.immuni.2020.03.007
https://doi.org/10.1128/JVI.02002-17
https://doi.org/10.1128/JVI.02002-17
https://doi.org/10.1038/ncomms13473
https://doi.org/10.1038/ncomms13473
https://doi.org/10.1038/cr.2015.113
https://doi.org/10.1016/j.vaccine.2014.04.016
https://doi.org/10.1016/j.vaccine.2014.04.016
https://doi.org/10.1016/j.virol.2014.01.002
https://doi.org/10.1016/j.virol.2014.01.002
https://doi.org/10.1111/j.1348-0421.2008.00097.x
https://doi.org/10.1111/j.1348-0421.2008.00097.x
https://doi.org/10.1016/j.virol.2006.12.011
https://doi.org/10.1016/j.vaccine.2005.05.023
https://doi.org/10.1016/j.chom.2020.03.002
https://doi.org/10.1371/journal.pone.0121673
https://link.springer.com/protocol/10.1007/978-1-59745-450-6_1
https://link.springer.com/protocol/10.1007/978-1-59745-450-6_1
https://doi.org/10.1016/s0006-291x(03)01466-9
https://doi.org/10.1016/s0006-291x(03)01466-9
https://doi.org/10.1186/s13073-020-00767-w
https://doi.org/10.1016/j.cels.2020.06.009
https://doi.org/10.1016/j.xcrm.2020.100036
https://doi.org/10.1016/j.xcrm.2020.100036
https://doi.org/10.1016/j.cels.2020.09.001
https://doi.org/10.1093/nar/gku938
https://doi.org/10.1101/2020.05.14.095885
https://doi.org/10.1038/nature24473
https://doi.org/10.1038/nature24473
https://doi.org/10.1016/S2213-2600(20)30076-X
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1371/journal.pone.0088716
https://doi.org/10.1371/journal.pone.0088716
https://doi.org/10.1016/j.jmii.2020.03.005
https://doi.org/10.4049/jimmunol.1201732
https://doi.org/10.1080/07391102.2020.1844060
https://doi.org/10.1080/07391102.2020.1844060
https://doi.org/10.1038/s41598-020-77547-4
https://doi.org/10.1038/s41598-020-77547-4
https://doi.org/10.1016/j.biopha.2020.110914
https://doi.org/10.1016/j.biopha.2020.110914
https://www.biorxiv.org/content/10.1101/2020.05.26.115832v1.abstract
https://www.biorxiv.org/content/10.1101/2020.05.26.115832v1.abstract
https://doi.org/10.1101/2020.08.26.267724
https://doi.org/10.1038/s41598-020-59711-y
https://doi.org/10.1038/s41598-020-59711-y
https://github.com/Benjamin-Vincent-Lab/Landscape-and-Selection-of-Vaccine-Epitopes-in-SARS-CoV-2
https://github.com/Benjamin-Vincent-Lab/Landscape-and-Selection-of-Vaccine-Epitopes-in-SARS-CoV-2
https://doi.org/10.17632/c6pdfrwxgj.6



