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Abstract

The optimization of multilayer neural networks

typically leads to a solution with zero training er-

ror, yet the landscape can exhibit spurious local

minima and the minima can be disconnected. In

this paper, we shed light on this phenomenon: we

show that the combination of stochastic gradient

descent (SGD) and over-parameterization makes

the landscape of multilayer neural networks ap-

proximately connected and thus more favorable

to optimization. More specifically, we prove that

SGD solutions are connected via a piecewise lin-

ear path, and the increase in loss along this path

vanishes as the number of neurons grows large.

This result is a consequence of the fact that the pa-

rameters found by SGD are increasingly dropout

stable as the network becomes wider. We show

that, if we remove part of the neurons (and suit-

ably rescale the remaining ones), the change in

loss is independent of the total number of neu-

rons, and it depends only on how many neurons

are left. Our results exhibit a mild dependence

on the input dimension: they are dimension-free

for two-layer networks and require the number of

neurons to scale linearly with the dimension for

multilayer networks. We validate our theoretical

findings with numerical experiments for different

architectures and classification tasks.

1. Introduction

The recent successes of deep learning have two elements

in common: (i) a local search algorithm, e.g., stochastic

gradient descent (SGD), and (ii) an over-parameterized neu-

ral network. Even though the training problem can have

several local minima (Auer et al., 1996) and is NP-hard in

the worst case (Blum & Rivest, 1989), the optimization of
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an over-parameterized network via SGD typically leads to a

solution that has small training error and generalizes well.

This fact has led to a focus on the theoretical understanding

of neural networks’ optimization landscape (see, e.g., (Livni

et al., 2014; Dauphin et al., 2014; Safran & Shamir, 2016;

Pennington & Bahri, 2017) and the discussion in Section

2). However, most of the existing results either make strong

assumptions on the model or do not provide a satisfactory

scaling with respect to the parameters of the problem.

From the empirical viewpoint, it has been observed that, if

we connect two minima of SGD with a line segment, the

loss is large along this path (Goodfellow et al., 2015; Keskar

et al., 2017). However, if the path is chosen in a more so-

phisticated way, one can connect the minima found by SGD

via a piecewise linear path where the loss is approximately

constant (Garipov et al., 2018; Draxler et al., 2018). These

findings suggest that the minima of SGD are not isolated

points in parameter space, but rather they are approximately

connected. In the recent paper (Kuditipudi et al., 2019),

mode connectivity of multilayer ReLU networks is proved

by assuming generic properties of well-trained networks,

i.e., dropout stability and noise stability.

In this work, we consider multilayer neural networks trained

by one-pass (or online) SGD with the square loss. We show

that, as the number of neurons increases, (i) the neural

network becomes increasingly dropout stable, and (ii) the

optimization landscape becomes increasingly connected be-

tween SGD solutions. We establish quantitative bounds

on how much the loss changes after the dropout procedure

and along the path connecting two SGD solutions, and we

relate this change in loss to the total number of neurons, the

size of the dropout pattern, and the input dimension. By

doing so, we give a theoretical justification to the empirical

observation that the barriers between local minima tend to

disappear as the neural network becomes larger (Draxler

et al., 2018). More specifically, our main contributions can

be summarized as follows:

Two-layer networks. We consider the training of a two-

layer neural network ŷ(x) = 1
N
aTσ(Wx) with N neu-

rons. First, we study the dropout stability of SGD solutions,

namely, we bound the change in loss when N −M neurons

are removed from the trained network and M remaining
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neurons are suitably rescaled: we show that the change in

loss scales at most as
√
logM/M , and therefore it does not

depend on the number of neurons N of the original network

or on the dimension d of the input. Then, we characterize

the landscape connectivity for the parameters obtained via

SGD: we show that pairs of SGD solutions are connected

via a piecewise linear path, and the loss along this path is no

larger than the loss at the extremes plus a term that scales

as
√
logN/N . Let us emphasize that the two solutions

of SGD are obtained by running the algorithm on differ-

ent samples (from the same data distribution), for different

initializations, and for the different number of iterations.

Multilayer networks. We consider the training of a general

model of deep neural network with L+1 ≥ 4 layers, where

each hidden layer contains N neurons. This model includes

as a special case ŷ(x) which is equal to

1

N
WL+1σL

(
· · ·
(

1

N
W 2σ1 (W 1x)

)
· · ·
)

(1.1)

Our results are similar to those for two-layer networks: (i) if

we keep at least M neurons in each layer, the change in loss

scales at most as
√
(d+ logM)/M ; (ii) pairs of SGD solu-

tions are connected via a piecewise linear path, along which

the loss does not increase more than
√
(d+ logN)/N .

In contrast with the two-layer case, these bounds are not

dimension-free. However, the dependence on the input di-

mension d is only linear, since the loss change vanishes as

soon as M,N ≫ d. We assume that, during SGD train-

ing, the parameters of the first and last layer are kept fixed,

and they are regarded as random features (Rahimi & Recht,

2008). We believe that this assumption, as well as the re-

quirement of having at least 4 layers, can be removed with

an improved analysis.

The proofs of dropout stability build on recent results con-

cerning the mean-field description of the SGD dynamics

(Mei et al., 2019; Araújo et al., 2019), see also the discus-

sion in Section 2. The proofs of landscape connectivity use

ideas from (Kuditipudi et al., 2019).

Organization of the paper. In Section 2, we succinctly

review related work. In Section 3, we present our rigorous

results for two-layer networks: we first assume that the

activation function σ is bounded, and then we provide an

extension to unbounded activations. In Section 4, we present

our results for multilayer networks. In Section 5, we validate

our findings with numerical experiments on fully-connected

neural networks trained on MNIST and CIFAR-10 datasets.

Finally, in Section 6 we discuss additional connections to

the literature and give directions for future work. All the

proofs are deferred to the appendices in the supplementary

material, which also contain additional numerical results.

Notation. We use bold symbols for vectors a, b, and

capitalized bold symbols for matrices A,B. We denote

by ‖a‖2 the norm of a, by ‖A‖op the operator norm of A,

by 〈a, b〉 the scalar product of a, b, and by a ⊙ b the

Hadamard (or entrywise) product of a, b. Given an inte-

ger N and a real number r ≥ 1, we set [N ] = {1, . . . , N}
and [r] = {1, . . . , ⌊r⌋}. Given a discrete set A, we denote

by |A| its cardinality.

2. Related Work

The landscape of several non-convex optimization problems

has been studied in recent years, including empirical risk

minimization (Mei et al., 2018a), low rank matrix problems

(Ge et al., 2017), matrix completion (Ge et al., 2016), and

semi-definite programs (Boumal et al., 2016). Motivated

by the extraordinary success of deep learning, a growing

literature is focusing on the loss surfaces of neural networks.

Under strong assumptions, in (Choromanska et al., 2015)

the loss function is related to a spin glass and it is shown

that local minima are located in a well-defined band. It

has been shown that local minima are globally optimal in

various settings: deep linear networks (Kawaguchi, 2016);

fully connected and convolutional neural networks with a

wide layer containing more neurons than training samples

(Nguyen & Hein, 2017; 2018); deep networks with more

neurons than training samples and skip connections (Nguyen

et al., 2019). Furthermore, if one of the layers is sufficiently

wide, in (Nguyen, 2019b) it is shown that sublevel sets are

connected. Similar results are proved for binary classifi-

cation in (Liang et al., 2018a;b). In (Freeman & Bruna,

2017), a two-layer neural networks with ReLU activations

is considered, and it is shown that the landscape becomes ap-

proximately connected as the number of neurons increases.

However, the energy gap scales exponentially with the input

dimension. In (Venturi et al., 2019), it is shown that there

are no spurious valleys when the number of neurons is larger

than the intrinsic dimension of the networks. However, for

many standard architectures, the intrinsic dimension of the

network is infinite.

In this paper, we take a different view and relate the prob-

lem to a recent line of work, which shows that the behavior

of neural networks trained by SGD tends to a mean field

limit, as the number of neurons grows. This phenomenon

has been first studied in two-layer neural networks in (Mei

et al., 2018b; Rotskoff & Vanden-Eijnden, 2018; Chizat &

Bach, 2018; Sirignano & Spiliopoulos, 2018). In particular,

in (Mei et al., 2018b), it is shown that the SGD dynamics

is well approximated by a Wasserstein gradient flow, given

that the number of neurons exceeds the data dimension. Im-

proved and dimension-free bounds are provided in (Mei

et al., 2019). Convergence to the global optimum is proved

for noisy SGD in (Mei et al., 2018b; Chizat & Bach, 2018),

without any explicit rate. A convergence rate which is ex-

ponential and dimension-free is proved in (Javanmard et al.,
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2019) by exploiting the displacement convexity of the limit

dynamics. An argument indicating convergence in a time

polynomial in the dimension is provided in (Wei et al., 2018),

but for a different type of continuous flow. Fluctuations

around the mean field limit are also studied in (Rotskoff &

Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2019a).

The multilayer case is tackled in (Nguyen, 2019a; Sirig-

nano & Spiliopoulos, 2019b; Araújo et al., 2019; Nguyen

& Pham, 2020a). In (Sirignano & Spiliopoulos, 2019b), it

is considered a (less natural) model where the number of

neurons grows one layer at a time. In (Nguyen, 2019a), a

formalism is developed to describe the mean field limit, but

the results are not rigorous. Rigorous bounds between the

SGD dynamics and a limit stochastic process are established

in (Araújo et al., 2019), where it is assumed that the first and

last layer are not trained to simplify the analysis. A different

approach based on the concept of neuronal embedding is

put forward in (Nguyen & Pham, 2020a). In (Nguyen &

Pham, 2020a), it is also provided a convergence result for

three-layer networks, later generalized in the companion

note (Nguyen & Pham, 2020b).

In a nutshell, existing mean-field analyses show that the

dynamics of SGD is close to a limit stochastic process.

However, the consequences of this fact remain largely un-

explored, since the limit process is hard to analyze. In this

work, we advance the mean-field theory of neural networks,

and we provide the first theoretical guarantees on two phe-

nomena widely observed in practice: dropout stability and

mode connectivity of SGD solutions.

We remark that the mean-field regime considered in this

paper is different from the “lazy training” regime that has re-

cently received a lot of attention (Allen-Zhu et al., 2019a;b;

Chizat et al., 2019; Du et al., 2018; 2019; Jacot et al., 2018;

Li & Liang, 2018; Zou et al., 2018). In fact, in order to

prove convergence of gradient descent in the lazy regime,

it is crucially exploited that the parameters stay bounded in

a certain region. On the contrary, in the mean field regime,

the scaling of the gradient (see Eqs. (3.3) and (4.3)) ensures

that the parameters move away from the initialization. The

connection between the mean-field and the lazy regime is

investigated in Section 4 of (Mei et al., 2019) and in the

recent paper (Chen et al., 2020). We highlight that neural

networks trained in the mean-field regime achieve results

comparable to the state of the art for standard datasets, as

demonstrated in the numerical results of Section 5.

3. Dropout Stability and Connectivity for

Two-Layer Networks

3.1. Setup

We consider a two-layer neural network with N neurons:

ŷN (x,θ) = 1
N

∑N

i=1 aiσ(x,wi), (3.1)

where x ∈ R
d is a feature vector, ŷN (x,θ) ∈ R is the

output of the network, θ = (θ1, . . . ,θN ), with θi =
(ai,wi) ∈ R

D+1, are the parameters of the network and

σ : Rd × R
D → R is an activation function.

A typical example is σ(x,w) = σ(〈x,w〉), for a scalar

function σ : R → R. In order to incorporate a bias term

in the hidden layer, one can simply add the feature 1 to x

and adjust the shape of the parameters wi accordingly. We

are interested in minimizing the expected square loss (also

known as population risk):

LN (θ) = E

{(
y − ŷN (x,θ)

)2}
, (3.2)

where the expectation is taken over (x, y) ∼ P. To do so,

we are given data (xk, yk)k≥0
i.i.d.∼ P, and we learn the

parameters of the network via stochastic gradient descent

(SGD) with step size sk:

θk+1
i = θk

i − skN ·Gradi(θ
k),

Gradi(θ
k) = ∇θi

(
yk − ŷN (xk,θ

k)
)2
,

(3.3)

where θk denotes the parameters after k steps of SGD, and

the parameters are initialized independently according to the

distribution ρ0. We consider a one-pass (or online) model,

where each data point is used only once.

Given a neural network with parameters θ and a subset A
of [N ], the dropout network with parameters θS is obtained

by setting to 0 the outputs of the neurons indexed by [N ]\A
and by suitably rescaling the remaining outputs. Denote

by ŷ|A|(x,θS) and L|A|(θS) the output of the dropout net-

work and its expected square loss, respectively. In formulas,

ŷ|A|(x,θS) =
1

|A|
∑

i∈A

aiσ(x,wi),

L|A|(θS) = E

{(
y − ŷ|A|(x,θS)

)2}
.

(3.4)

Let us compare the original network (3.1) with the dropout

network (3.4): wi does not change, ai is rescaled by

|A|/|N | and in (3.4) we sum over |A| neurons (while in

(3.1) the sum is over N neurons). This is equivalent to set-

ting |N | − |A| neurons to zero and rescaling the others by a

factor, as in (Kuditipudi et al., 2019).

We now define the notions of dropout stability and connec-

tivity for network parameters.

Definition 3.1 (Dropout stability). Given A ⊆ [N ], we say

that θ is εD-dropout stable if

|LN (θ)− L|A|(θS)| ≤ εD. (3.5)

Definition 3.2 (Connectivity). We say that two parameters

θ and θ′
are εC-connected if there exists a continuous path
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in parameter space π : [0, 1] → R
D×N , such that π(0) = θ

and π(1) = θ′
with

LN (π(t)) ≤ max(LN (θ), LN (θ′)) + εC. (3.6)

3.2. Results for Bounded Activations

We make the following assumptions on the learning rate sk,

the data distribution (x, y) ∼ P, the activation function σ,

and the initialization ρ0:

(A1) sk = αξ(kα), where ξ : R≥0 → R>0 is bounded

by K1 and K1-Lipschitz.

(A2) The response variables y are bounded by K2 and the

gradient ∇wσ(x,w) is K2 sub-gaussian when x ∼ P.

(A3) The activation function σ is bounded by K3 and differ-

entiable, with gradient bounded by K3 and K3-Lipschitz.

(A4) The initialization ρ0 is supported on |a0i | ≤ K4.

We are now ready to present our results, which are proved

in Appendix A in the supplementary material.

Theorem 1 (Two-layer). Assume that conditions (A1)-(A4)

hold, and fix T ≥ 1. Let θk
be obtained by running k steps

of the SGD algorithm (3.3) with data {(xj , yj)}kj=0
i.i.d.∼ P

and initialization ρ0. Then, the following results hold:

(A) Pick A ⊆ [N ] independent of θk
. Then, with probability

at least 1−e−z2

, for all k ∈ [T/α], θk
is εD-dropout stable

with εD equal to

KeKT 3

(√
log |A|+ z√

|A|
+
√
α
(√

D + logN + z
)
)
,

(3.7)

where the constant K depends only on the constants Ki of

the assumptions.

(B) Fix T ′ ≥ 1 and let (θ′)k
′

be obtained by running k′

steps of SGD with data {(x′
j , y

′
j)}k

′

j=0
i.i.d.∼ P and initializa-

tion ρ′0 that satisfies (A4). Then, with probability at least

1− e−z2

, for all k ∈ [T/α] and k′ ∈ [T ′/α], θk
and (θ′)k

′

are εC-connected with εC equal to

KeKT 3
max

(√
logN + z√

N
+
√
α
(√

D + logN + z
))

,

(3.8)

where Tmax = max(T, T ′). Furthermore, the path connect-

ing θk
with (θ′)k

′

consists of 7 line segments.

The result (A) characterizes the change in loss when only

|A| neurons remain in the network. In particular, the change

in loss scales as
√
log |A|/|A|+

√
α(D + logN), where

N is the total number of neurons, D is the dimension of

the neurons and α is the step size of SGD. This quantity

vanishes as long as |A| ≫ 1 and α ≪ 1/(D + logN).

Note that the number of training samples k is such that kα
is a constant. Thus, the condition α ≪ 1/(D + logN)
implies that k needs to scale only logarithmically with N .

Furthermore, the condition |A| ≫ 1 implies that |A| does

not need to scale with N , D. The proof builds on the

machinery developed in (Mei et al., 2019) to provide a

mean-field approximation to the dynamics of SGD. In (Mei

et al., 2019), it is shown that, as N → ∞ and α → 0, the

parameters θk obtained by running k steps of SGD with step

size α are close to N i.i.d. particles that evolve according

to a nonlinear dynamics at time kα. Here, the idea is to

show that (i) the parameters θk
S are also close to |A| such

i.i.d. particles, and (ii) the quantities LN (θk) and L|A|(θ
k
S)

concentrate to the same limit value, which represents the

limit loss of the nonlinear dynamics.

The result (B) shows that we can connect two different

solutions of SGD via a simple path. Note that the two so-

lutions can be obtained by running SGD for the different

number of iterations (k′ 6= k), for different training datasets

((xj , yj) 6= (x′
j , y

′
j)) and for different initializations of

SGD (ρ0 6= ρ′0). The proof uses ideas from (Kuditipudi

et al., 2019). In that work, the authors consider a multilayer

neural network with ReLU activations and show how to

find a piecewise linear path between two solutions that are

dropout stable with |A| = N/2. In fact, εC has a similar

scaling to εD after setting |A| = N/2. We are also able

to show (and, consequently, exploit) a more general notion

of dropout stability for the trained network. In fact, (Kudi-

tipudi et al., 2019) requires the existence of a single dropout

pattern, while here we give a bound for any fixed dropout

pattern (as long as it does not depend on SGD).

The bounds in Theorem 1 exhibit an exponential depen-

dence on T . We remark that, in the mean-field regime, the

number of samples k is large, the step size α is small, and

T = kα is a constant. In fact, T is the evolution time of

the limit stochastic process (which does not depend on N ,

α). Empirically, the value of T needed to achieve good

accuracy is quite small: T = 1 gives < 16% error on

CIFAR-10, see Section 5. The exponential dependence on

T is common to all existing mean-field analyses, and im-

proving it is an open question. The assumptions on the

learning rate, the data distribution and the initialization are

mild and only require some regularity. The assumptions

on the activation function are fulfilled in several practical

settings: σ(x,w) = σ(〈x,w〉), where σ : R → R is, e.g.,

the sigmoid or the hyperbolic tangent.

3.3. Extension to Unbounded Activations

Note that Theorem 1 requires that the activation function

is bounded. We can relax this assumption, at the cost

of a less tight dependence on the time T of the evolu-

tion. In particular, assume further that (i) the feature vec-
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tors x and the initialization ρ0 are bounded, and that (ii)

the loss at each step of SGD is uniformly bounded, i.e.,

maxj |yj − ŷN (xj ,θ
j)| ≤ K5. This last requirement is

reasonable, since the objective of SGD is to minimize such

a loss. Then, the results of Theorem 1 hold also for un-

bounded σ, where the term KeKT 3

is replaced by a generic

K(T ), which depends on T and on the constants Ki of the

assumptions. The simulation results of Section 5 show that

such a dependence on T is mild in practical settings.

The formal statement and the proof of this result is contained

in Appendix B in the supplementary material. The idea

is to show that, if the parameters of the neural network

are initialized with a bounded distribution, then they stay

bounded for any finite time T of the SGD evolution. Thus,

the SGD evolution does not change if we substitute the

unbounded activation function with a bounded one, and we

can apply the results for bounded σ.

4. Dropout Stability and Connectivity for

Multilayer Networks

4.1. Setup

We consider a neural network with L+ 1 ≥ 4 layers, where

each hidden layer contains N neurons. Given the input

feature vector x ∈ R
d0 , the first layer activations z

(1)
i1

for

i1 ∈ [N ] have form

σ(0)
(
x,θ

(0)
i1

)
, θ

(0)
i1

∈ R
D0

the intermediate layer ℓ ∈ [L− 1] activations z
(ℓ+1)
iℓ+1

(x,θ)

for iℓ+1 ∈ [N ] are defined as follows

1

N

N∑

iℓ=1

a
(ℓ)
iℓ,iℓ+1

⊙ σ(ℓ)
(
z
(ℓ)
iℓ

(x,θ) ,w
(ℓ)
iℓ,iℓ+1

)
,

θ
(ℓ)
iℓ,iℓ+1

= (a
(ℓ)
iℓ,iℓ+1

,w
(ℓ)
iℓ,iℓ+1

) ∈ R
Dℓ+dℓ+1 ,

and the output of network is given by

ŷN (x,θ) =
1

N

N∑

iL=1

a
(L)
iL

⊙ σ(L)
(
z
(L)
iL

(x,θ) ,w
(L)
iL

)
,

θ
(L)
iL

= (a
(L)
iL

,w
(L)
iL

) ∈ R
DL+dL+1 , iL ∈ [N ]. (4.1)

Here, σ(ℓ) : Rdℓ × R
Dℓ → R

dℓ+1 (ℓ ∈ {0, . . . , L}) are the

activation functions, and θ contains the parameters of the

network, which are θ
(0)
i1

, θ
(ℓ)
iℓ,iℓ+1

and θ
(L)
iL

.

Note that (4.1) includes the model (1.1) as a special case. To

see this, consider the following setting: pick D0 = d0 and

stack the parameters θ
(0)
i1

∈ R
d0 into the rows of the matrix

W 1 ∈ R
N×d0 ; for i ∈ [L − 1], pick Dℓ = 1 and stack

the scalar parameters a
(ℓ)
iℓ,iℓ+1

∈ R into the matrix W ℓ+1 ∈

R
N×N ; pick DL = dL+1 and stack the parameters a

(L)
iL

∈
R

dL+1 into the columns of the matrix WL+1 ∈ R
dL+1×N ;

finally, assume that the activation function σ(ℓ) does not

depend on w
(ℓ)
iℓ,iℓ+1

for ℓ ∈ [L − 1] and that σ(L) does not

depend on w
(L)
iL

. Then, in this setting, (4.1) can be reduced

to (1.1).

We are interested in minimizing the expected square loss:

LN (θ) = E

{∥∥y − ŷN (x,θ)
∥∥2
2

}
, (4.2)

where the expectation is taken over (x,y) ∼ P. To do so,

we are given data (xk,yk)k≥0
i.i.d.∼ P, we run SGD with

step size sk for the intermediate layers ℓ ∈ [L− 1], and we

fix first and last layer:

θ
(ℓ)
iℓ,iℓ+1

(k + 1) = θ
(ℓ)
iℓ,iℓ+1

(k)− skN
2Grad

(ℓ)
iℓ,iℓ+1

(
θ(k)

)
,

Grad
(ℓ)
iℓ,iℓ+1

(
θ(k)

)
= ∇

θ
(ℓ)
iℓ,iℓ+1

∥∥yk − ŷN (xk,θ(k))
∥∥2
2
,

θ
(0)
i1

(k + 1) = θ
(0)
i1

(k), θ
(L)
iL

(k + 1) = θ
(L)
iL

(k), (4.3)

where θ(k) contains the parameters of the network after k
steps of SGD. As in the two-layer setting, we consider a one-

pass model and the parameters are initialized independently,

i.e., {θ(0)
i1

(0)}i1∈[N ]
i.i.d.∼ ρ

(0)
0 , {θ(ℓ)

iℓ,iℓ+1
(0)}iℓ,iℓ+1∈[N ]

i.i.d.∼
ρ
(ℓ)
0 , for ℓ ∈ [L− 1], and {θ(L)

iL
(0)}iL∈[N ]

i.i.d.∼ ρ
(L)
0 .

The gradients of ŷN with respect to the parameters of the

network can be computed via backpropagation (Goodfellow

et al., 2016). By doing so (see Araújo et al. (2019, Section

3.3)), we obtain that θ
(ℓ)
iℓ,iℓ+1

evolves at a time scale of 1/N2.

Thus, we multiply the step size sk in (4.3) with the factor N2

in order to avoid falling into the “lazy training” regime. In

lazy training, the parameters hardly vary but the method still

converges to zero training loss, and this regime has received

a lot of attention recently (Jacot et al., 2018; Li & Liang,

2018; Zou et al., 2018; Du et al., 2018; 2019; Allen-Zhu

et al., 2019b;a; Chizat et al., 2019). Let us emphasize that

the SGD scalings in (3.3) and (4.3) imply that the parameters

move as long as the product of the number of iterations with

the step size is non-vanishing.

Note also that the parameters of layers ℓ = 0 and ℓ =

L, i.e., {θ(0)
i1

}i1∈[N ] and {θ(L)
iL

}iL∈[N ], stay fixed to their

initial values. This is done for technical reasons. In fact,

by computing the backpropagation equations, one obtains

that θ
(0)
i1

and θ
(L)
iL

evolve at a time scale of 1/N , which

makes it challenging to analyze their trajectories. We regard

the parameters θ
(0)
i1

and θ
(L)
iL

as random features (Rahimi &

Recht, 2008) close to the input and the output.

Given a neural network with parameters θ and subsets

A1, . . . ,AL of [N ], the dropout network with parameters
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θS is obtained by setting to 0 the outputs of the neurons

indexed by [N ] \ Ai at layer i and by suitably rescaling

the remaining outputs. With an abuse of notation, denote

by ŷ|A| (x,θS) and L|A|(θS) the output of the dropout net-

work and its expected square loss, respectively. In formulas,

the dropout version of activations z
(ℓ+1)
iℓ+1

(x,θS) of layer

ℓ ∈ [L− 1] for iℓ+1 ∈ Aℓ+1 are given by

1

|Aℓ|
∑

iℓ∈Aℓ

a
(ℓ)
iℓ,iℓ+1

⊙ σ(ℓ)
(
z
(ℓ)
iℓ

(x,θS) ,w
(ℓ)
iℓ,iℓ+1

)
,

the output of dropout network ŷ|A| (x,θS) takes the form

1

|AL|
∑

iL∈AL

a
(L)
iL

⊙ σ(L)
(
z
(L)
iL

(x,θS) ,w
(L)
iL

)
,

and, consequently, the expected square loss is defined by

L|A|(θS) = E

{∥∥y − ŷ|A| (x,θS)
∥∥2
2

}
,

where z
(1)
i1

(x,θS) = z
(1)
i1

(x,θ) for i1 ∈ A1. The defini-

tions of dropout stability and connectivity are analogous to

those for two-layer networks: (i) θ is εD-dropout stable if

(3.5) holds; and (ii) θ and θ′ are εC-connected if they are

connected by a continuous path in parameter space such that

(3.6) holds.

4.2. Results

We make the following assumptions on the learning rate sk,

the data distribution (x,y) ∼ P, the activation functions

σ(ℓ), and the initializations ρ
(ℓ)
0 :

(B1) sk = αξ(kα), where ξ : R≥0 → R>0 is bounded by

K1 and K1-Lipschitz.

(B2) The response variables y are bounded by K2.

(B3) For ℓ ∈ {0, . . . , L}, the activation function σ(ℓ) is

bounded by K3, with Fréchet derivative bounded by K3 and

K3-Lipschitz.

(B4) The initializations {ρ(ℓ)0 }Lℓ=0 have finite first moment

and they are supported on ‖a(ℓ)
iℓ,iℓ+1

(0)‖2 ≤ K4 for ℓ ∈
[L− 1], and ‖a(L)

iL
(0)‖2 ≤ K4.

We are now ready to present our results, which are proved

in Appendix C in the supplementary material.

Theorem 2 (Multilayer). Assume that conditions (B1)-(B4)

hold, let θ(k) be obtained by running k steps of the SGD

algorithm (4.3) with data {(xj ,yj)}kj=0
i.i.d.∼ P and initial-

izations {ρ(ℓ)0 }Lℓ=0, and define T = kα > 0. Then, the

following results hold:

(A) Pick A1, . . . ,AL ⊆ [N ] independent of θ(k). Then,

with probability at least 1−e−z2

, θ(k) is εD-dropout stable

with εD equal to

K(T, L)

(√
d+ z√
Amin

+

√
logN

N
+
√
α
(√

d+ logN + z
)
)

(4.4)

where Amin = mini∈[L] |Ai|, d = maxℓ∈{0,...,L+1} dℓ and

the constant K(T, L) depends on T, L and on the constants

Ki of the assumptions.

(B) Let θ′(k′) be obtained by running k′ steps of the

SGD algorithm (4.3) with data {(x′
j ,y

′
j)}k

′

j=0
i.i.d.∼ P and

initializations {(ρ(ℓ)0 )′}Lℓ=0 that satisfy (B4), and define

T ′ = k′α > 0. Then, with probability at least 1 − e−z2

,

θ(k) and θ′(k′) are εC-connected with εC equal

K(Tmax, L)

(√
d+ logN + z√

N
+
√
α
(√

d+ logN + z
))

(4.5)

where Tmax = max(T, T ′).

The results are similar in spirit to those of Theorem 1, but

the analysis is more involved. We remark that, differently

from the two-layer case, the ideal particles are not indepen-

dent, see Remark 5.6 of (Araújo et al., 2019). We exploit

a bound on the norm of the weights during training (see

Lemma C.1 in Appendix C.1) and a bound on the maximum

distance between SGD weights and weights of ideal par-

ticles. Our analysis improves upon (Araújo et al., 2019),

where the bound is on the average distance between SGD

and ideal-particle weights (compare (C.23) in Appendix C.1

and (10.1) in (Araújo et al., 2019)). This improvement is

essential to show dropout stability. In fact, dropout stability

requires dropping all weights associated to a subnetwork

(and not just a given fraction of weights). The stronger

guarantee on the distance to ideal particles leads to an extra

logN in our bounds (compare Theorem 2 in this paper and

(5.1) in (Araújo et al., 2019)). As concerns the proof of con-

nectivity, we generalize the approach of (Kuditipudi et al.,

2019), in order to analyze the model (4.1).

The bounds in Theorem 2 are not dimension-free (as in

the two-layer case), but the dependence on the dimension

d is only linear. In fact, the loss change in (4.4) vanishes

as long as Amin ≫ d, and α ≪ 1/(d + logN). The

condition Amin ≫ d implies that Amin needs to scale at

least linearly with d, but does not scale with N . Furthermore,

as in the two-layer case, the condition α ≪ 1/(d+ logN)
implies that the number of samples k needs to scale only

logarithmically with N .

Compared to the two-layer case where there is no assump-

tion on the initialization for wi, here we require a mild

condition (finite first moment for ρ
(ℓ)
0 ) in order to simplify

the proof.
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Figure 1. Comparison of population risk and classification error between the trained network (blue dashed curve) and the dropout network

(orange curve). In the full scale plot, we show the average values, and in the zoomed version we also provide the error bar.
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Figure 2. Change in loss after removing half of the neurons from each layer, as a function of the number of neurons N of the full network.

5. Numerical Results

We consider two supervised learning tasks: (a) MNIST clas-

sification with the two-layer neural network (3.1); and (b)

CIFAR-10 classification with the three-layer neural network

(1.1). For MNIST, the input dimension is d = 28 × 28 =
784 and we normalize pixel values to have zero mean and

unit variance. For CIFAR-10, the input is given by VGG-16

features of dimension d = 4× 4× 512 = 8192. These fea-

tures are computed by the convolutional layers of the VGG-

16 network (Simonyan & Zisserman, 2015) pre-trained on

the ImageNet dataset (Russakovsky et al., 2015). More

specifically, we rescale the images to size 128 × 128, we

rescale pixel values into the range [−1, 1], and we feed them

to the pre-trained VGG-16 network to extract the features.

Qualitatively similar results (with larger classification error)

are obtained by using fully connected networks directly on

CIFAR-10 images.

For both tasks, the neural networks have ReLU activation

functions, SGD aims at minimizing the cross-entropy loss,

and the gradients are averaged over mini-batches of size 100.



Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks

−10 0 10
θ1 (bimodal init)

100

102

104

106

−10 0 10
θ2 (unimodal init)

100

102

104

106

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Cl
as

sif
ica

tio
n 

er
ro

r

error on path
upper bound

(a) MNIST, two-layer

−25 0 25
θ1 (bimodal init)

100

103

106

−25 0 25
θ2 (unimodal init)

100

103

106

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n 

er
ro

r

error on path
upper bound

(b) CIFAR-10, three-layer

Figure 3. Classification error along a piecewise linear path that connects two SGD solutions θ1 and θ2, with N = 3200. As predicted by

the theory, the error along the path (blue curve) is no larger than the error of the two SGD solutions plus the change in loss due to the

dropout of half of the neurons (red dashed curve).

In contrast with the setting of Section 4, all the layers of

the neural network are trained. The scaling of the gradient

updates follows (3.3) and (4.3): for the first and last layer,

the gradient of the loss function is multiplied by a factor of

N ; for the middle layers, the gradient of the loss function

is multiplied by a factor of N2. This scaling ensures that

the term in front of the learning rate sk does not depend

on N , i.e., it is Θ(1) as N goes large. The learning rate

sk = αξ(kα) does not depend on the time of the evolution,

i.e., ξ(t) = 1. Furthermore, we set α = α0/N , where α0

is a constant independent of N . We also set the number of

training epochs to k0 ·N , where k0 is a constant independent

of N . In this way, the product between the learning rate

and the number of training epochs is the constant T =
k0 · α0, which does not depend on N . The initializations of

the parameters of the neural network are i.i.d. and do not

depend on N , as in the setting described for the theoretical

results. The population risk and the classification error are

obtained by averaging over the test dataset. To measure

statistics in the plots, i.e., average value and error bar at

1 standard deviation, we perform 20 independent trials of

each experiment.

Figure 1 compares the performance of the trained network

(blue dashed curve) and of the dropout network (orange

curve), which is obtained by removing the second half of

the neurons from each layer (and by suitably rescaling the

remaining neurons). On the left, we report the results for

MNIST, and on the right for CIFAR-10. For each classifica-

tion task, we plot the population risk and the classification

error for N = 800 and N = 3200. The networks are

trained until the training loss has reached a plateau (0.062
for MNIST and 0.415 for CIFAR-10 when N = 3200). As

expected, the performance of the dropout network improves

with N , and it is very close to that of the trained network.

For N = 3200, the classification error of the trained net-

work is < 2% for MNIST and < 14% on CIFAR-10, and

the classification error of the dropout network is ≈ 3% on

MNIST and < 16% on CIFAR-10.

Figure 2 plots the change in loss when only half of the

neurons remain in the network, as a function of the total

number of neurons N . For each classification task, we plot

the change in loss at the beginning of training (0 · T ), at an

intermediate point where the population risk is still not too

small ({0.65, 0.7} · T ), and at the end of training (1 · T ),

where T stands for the product of the learning rate and the

total number of training epochs. The dependence between

the change in loss and N is essentially linear in log-log scale,

as demonstrated by our theoretical results. Furthermore, the

dependence on the time of the dynamics is quite mild.

Figure 3 shows that the optimization landscape is approx-

imately connected when N = 3200. We plot the classi-

fication error along a piecewise linear path that connects

two SGD solutions θ1 and θ2 initialized with different dis-

tributions: the initial distribution of θ1 is bimodal, while
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Figure 4. Change in classification error after removing half of the

neurons from each layer, as a function of the number of neurons

N of the full network, at the end of training.

the initial distribution of θ2 is unimodal. We also show

the histograms of θ1 and θ2, in order to highlight that one

SGD solution cannot be obtained as a permutation of the

other. As expected, the classification error along the path is

roughly constant, since the network is dropout stable. More

specifically, the error along the path (blue curve) is upper

bounded by the error at the extremes plus the change in loss

after dropping out half of the neurons of the network (red

dashed curve).

Figure 4 plots the degradation in classification error due

to the removal of half of the neurons from each layer. We

consider neural networks at the end of training (1·T ) and we

report the performance degradation as a function of the num-

ber of neurons N of the full network. We compare different

architectures (two-layer, three-layer and four-layer neural

networks) and classification tasks (MNIST and CIFAR-10).

In all the cases considered, the performance degradation

rapidly decreases, as the width of the network grows. When

N = 12800, the classification error increases only (i) by

0.35% for a two-layer network trained on MNIST, (ii) by

0.4% for a three-layer network trained on MNIST, (iii) by

1% for a three-layer network trained on CIFAR-10, and (iv)

by 3.6% for a four-layer network trained on CIFAR-10.

Additional experiments are presented in Appendix D in the

supplementary material for the following learning tasks:

classification of isotropic Gaussians with the two-layer neu-

ral network (3.1); MNIST classification with the three-layer

neural network (1.1); CIFAR-10 classification with the four-

layer neural network (1.1).

6. Discussion and Future Directions

The optimization landscape of neural networks can exhibit

spurious local minima (Yun et al., 2018; Safran & Shamir,

2018), and its minima can be disconnected (Freeman &

Bruna, 2017; Venturi et al., 2019; Kuditipudi et al., 2019).

In this work, we show that these problematic scenarios

are ruled out with SGD training and over-parametrization.

In particular, we prove that the optimization landscape of

SGD solutions is increasingly connected as the number of

neurons grows. The explanation to this phenomenon has

been hypothesized by some recent work: the SGD solutions

have degrees of freedom to spare (Draxler et al., 2018)

or, equivalently, they are dropout stable (Kuditipudi et al.,

2019). We give theoretical grounding to this conjecture by

proving that SGD solutions are dropout stable, i.e., that the

loss does not change much when we remove even a large

amount of neurons. In order to have meaningful bounds, the

number of neurons does not need to be of the same order of

the number of samples (cf. (Nguyen & Hein, 2017; 2018;

Nguyen et al., 2019; Nguyen, 2019b)). Furthermore, our

bounds are dimension-free for two-layer networks and they

scale linearly with the dimension for multilayer networks

(cf. (Freeman & Bruna, 2017)). Our analysis builds on a

recent line of work showing that the dynamics of SGD tends

to a mean field limit as the number of neurons increases

(Mei et al., 2018b; 2019; Araújo et al., 2019). We believe

that with these tools one could prove similar results also for

noisy SGD and projected SGD.

The notion of dropout stability is closely related to the fact

that neural networks have many redundant connections, and

therefore they can be pruned with little performance loss,

see, e.g., (Guo et al., 2016; Molchanov et al., 2017; Frankle

& Carbin, 2019; Liu et al., 2019). However, it is difficult

even to compare the relative merits of the different pruning

techniques (Gale et al., 2019), let alone to understand the

fundamental reasons leading to sparsity in neural networks.

Thus, it would be interesting to investigate whether mean

field approaches provide a more principled way of pruning

deep neural networks.
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