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Abstract

Background: In the past two decades the east African highlands have experienced several major malaria

epidemics. Currently there is a renewed interest in exploring the possibility of anopheline larval control through

environmental management or larvicide as an additional means of reducing malaria transmission in Africa. This

study examined the landscape determinants of anopheline mosquito larval habitats and usefulness of remote

sensing in identifying these habitats in western Kenya highlands.

Methods: Panchromatic aerial photos, Ikonos and Landsat Thematic Mapper 7 satellite images were acquired for

a study area in Kakamega, western Kenya. Supervised classification of land-use and land-cover and visual

identification of aquatic habitats were conducted. Ground survey of all aquatic habitats was conducted in the dry

and rainy seasons in 2003. All habitats positive for anopheline larvae were identified. The retrieved data from the

remote sensors were compared to the ground results on aquatic habitats and land-use. The probability of finding

aquatic habitats and habitats with Anopheles larvae were modelled based on the digital elevation model and land-

use types.

Results: The misclassification rate of land-cover types was 10.8% based on Ikonos imagery, 22.6% for

panchromatic aerial photos and 39.2% for Landsat TM 7 imagery. The Ikonos image identified 40.6% of aquatic

habitats, aerial photos identified 10.6%, and Landsate TM 7 image identified 0%. Computer models based on

topographic features and land-cover information obtained from the Ikonos image yielded a misclassification rate

of 20.3–22.7% for aquatic habitats, and 18.1–25.1% for anopheline-positive larval habitats.

Conclusion: One-metre spatial resolution Ikonos images combined with computer modelling based on

topographic land-cover features are useful tools for identification of anopheline larval habitats, and they can be

used to assist to malaria vector control in western Kenya highlands.
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Background
Malaria is a major health problem in sub-Saharan Africa,
where it is estimated to be responsible for over 1 million
deaths every year in children younger than five and preg-
nant women [1]. Out of the total human population in
Africa, 15% live in highlands, where there are increasing
risks for epidemics [1]. Current strategies for malaria con-
trol involve treating infected individuals with anti-malar-
ial drugs to clear the parasites, and reducing human-
mosquito contact rates through vector control efforts.
Anti-malarial drugs have little impact on the intensity of
transmission at the community level because most drugs
do not reduce the production of Plasmodium gametocytes,
the parasite stage responsible for initiation of infection in
mosquitoes [2]. Individuals who receive treatment can
quickly become reinfected. Recent large field trials in
Kenya demonstrated that insecticide-treated bed nets
(ITN) can prevent 1 in 4 infant deaths in areas of intense
perennial malaria transmission, if bed nets are used prop-
erly and re-treated with insecticide at appropriate intervals
[3,4]. However, coverage and compliance are limited and
emergence of insecticide-resistance genes has hindered
the effectiveness of ITN programmes [5-8].

In recent years, there has been renewed interest in explor-
ing the possibility of anopheline larval control through
environmental management or larvicides as additional
means of reducing malaria transmission in Africa [9-12].
Historically, eradication of the accidentally introduced
African malaria mosquito Anopheles gambiae from north-
east Brazil in the 1930s and early 1940s succeeded,
through an integrated programme that relied overwhelm-
ingly upon larval control [13]. A larval control pro-
gramme successfully suppressed malaria for over 20 years
around a Zambian copper mine [14] and in Dar es Salaam
in Tanzania [15,16]. Source reduction through the modi-
fication of larval habitats was an important tool for
malaria eradication efforts in the United States, Israel, and
Italy [17]. However, the primary malaria vectors in sub-
Saharan Africa, An. gambiae and Anopheles arabiensis gen-
erally utilize small temporary habitats as breeding sites
[18-22], which creates difficulties for environmental man-
agement. Unfortunately, identifying these mosquito lar-
val habitats over a large geographic area based only on
field survey is time-consuming and labour intensive.
Therefore, better methods for rapid and accurate determi-
nation of larval habitat distribution are critical to enable
larval control using bio-insecticides or environmental
modification.

Remote sensing is a powerful tool for determining the
landscape features and climatic factors associated with the
risk of vector-borne diseases [23-28]. For example, ecolog-
ical parametres, particularly vegetation index, were found
to be significantly associated with Rift Valley fever viral

activity in Kenya through the National Oceanic and
Atmospheric Administration's polar-orbiting meteorolog-
ical satellites [29]. Climatic factors associated with
malaria risks in sub-Saharan Africa were identified using
climate data obtained from satellites and malaria trans-
mission distribution maps. The malaria transmission
maps were developed according to biological constraints
of climate on parasite and vector development [28,30].

Remote sensing also can be used for determining factors
affecting vector abundance (e.g., [31-34]) and mosquito
breeding sites [35]. For instance, Beck et al. [31] analysed
Landsat Thematic Mapper (TM) images of southern Chia-
pas, Mexico and found that transitional swamp and
unmanaged pasture were the most important landscape
elements for explaining vector abundance. Welch et al.
[33] showed that infrared aerial photos were useful in the
detection of potential oviposition sites of Psorophora
columbiae, such as ditches, low-lying areas and tyre tracks
in Texas. Roberts et al. [36] used aerial photos to deter-
mine that breeding sites located at low elevations in
flooded, unmanaged pastures were the most important
determinants of Anopheles albimanus adult abundance in
southern Mexican villages. In general, previous studies
demonstrate the utility of remote sensing technology in
the risk assessment of vector-borne diseases and vector-
population monitoring at a large spatial scale. Recently
developed remote sensors of high spatial resolution may
be particularly useful for determining mosquito larval
habitat distribution and for assisting malaria vector con-
trol. For example, the spatial resolution is 1–4 metres for
Ikonos [37], 0.61–2.44 metres for QuickBird [38], 1–4
metres for OrbView-3 [39] and 2.5–10 metres for SPOT 5
[40]. These resolutions compare favourably with 10–20
and 15–60 metres for Spot XS [40] and Landsat TM 7 [41],
respectively. However, the utility of high-resolution satel-
lite images for larval habitat identification and manage-
ment have not been evaluated in African highlands where
land-use pattern is highly heterogeneous and larval habi-
tat distribution is spatially clustered [22].

The objective of this study was to assess the potential of
aerial photos, Landsat TM 7 and Ikonos images for identi-
fying larval habitats of malaria vectors and for determin-
ing other topographic features associated with anopheline
larval habitats in western Kenya highlands where frequent
malaria outbreaks have been reported [42-46].

Materials and methods
Study site

The study site is a 4 × 4 km2 area in Iguhu village,
Kakamega District, Western Province, Kenya (34°45" E
and 0°10" N), at an elevation ranging from 1,420 m to
1,600 m above sea level. The study area contains about
2,500 households and includes a human population of
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about 11,000. The 1960–1999 average annual rainfall was
1,977 mm, with the long rainy season from April through
June and the short rainy season from October to Novem-
ber. The annual mean minimum/ maximum temperature
is 13.8/28.0°C, with the hottest months in January-Febru-
ary and the coolest months in July-August. The study area
transects the Yala River valley and includes a mosaic of
land-use types. Distinct landscape features in the western
Kenya highlands are numerous valleys and basin-like
depressions in a plateau and dramatic land-use changes
such as deforestation and cultivation of natural swamps
for farming. The hillside is mostly dotted with maize plan-
tations, patches of tea (Camellia sinensis). Several swamps
are located along the Yala River valley. A natural forest,
constituting about 15% of the total area, covers the east
side of the study area.

Anopheline larval habitat distribution data acquisition

Ground surveys were conducted in February (dry season)
and May (rainy season), 2003 to obtain data on all
aquatic habitats and anopheline larval habitat distribu-
tion in the study area. Potential aquatic habitats included
footprints and other depressions, drainage ditches, stream
edges, cultivated swamps, natural swamps, pools and
puddles. Occurrence of anopheline larvae in each habitat
was determined using a standard dipper (350 ml). Twenty
dipper collections were made in large (>0.5 m2 surface
area) habitats but fewer were made in small habitats. In
this study, anopheline larvae were not identified to spe-
cies. Minakawa et al. [47] reported species composition of
anophelines in the study area as 80.5% belonging to the
An. gambiae complex and 14.9% Anopheles funestus. The
coordinates of each habitat were recorded using the global
positioning system (GPS) in differential mode [48]. Each
habitat was characterized by size (width, length, and
depth), and land-cover type (forest, cultivated swamp,
natural swamp, farm, pasture, shrubs, and tea planta-
tions) as described by Minakawa et al. [47].

Remote sensing data acquisition

Images of the study area were obtained from three remote
sensors: panchromatic aerial photos, Landsat TM 7, and
Ikonos satellites. Ideally, remote sensing images should
be taken in the same seasons as the mosquito larval sam-
plings; however, suitable satellite images of the study site
were not available for the period of the field samplings.
Using satellite images taken at different times than the lar-
val samplings helps address the general utility of satellite
images for identifying land-cover types and larval habitats
across different seasons and years. Panchromatic aerial
photographs were taken in February 2002 (dry season)
with a ground scale of 1:10,000. The aerial photographs
were scanned and geo-rectified based on 250 ground con-
trol points with GPS coordinates collected from differen-
tial GPS units. These photos were assembled into a mosaic

using ERDAS Imagine software [49]. A Landsat TM 7 was
taken in February 2001. A subset of the scene for the 4 × 4
km2 study area was extracted from the image. A multispec-
tral (blue, green, red, and infrared) Ikonos image [37] was
taken in April 2002 (the end of dry season), with one-
metre ground resolution. The image was geometrically
and radiometrically corrected to account for topographic
distortions and atmospheric effects [50].

Digital elevation model (DEM) and retrieval of 

topographic parametres

A digital elevation model of the study area was con-
structed based on a contour map of 1:50,000 with a con-
tour interval of 20 m. The purpose of DEM construction
was to extract topographic parametres that may be associ-
ated with mosquito larval habitat formation, such as ele-
vation, wetness index, flow distance to stream, aspect of
land-surface and curvature. Elevation is directly related to
temperature, which affects mosquito survivorship. Wet-
ness index or topographic index represents land surface
moisture content. It was calculated as ln(A/TanB) where A
was the upslope contributing area and TanB was the local
slope. Parametres A and TanB were derived using a multi-
ple flow-direction algorithm [51]. Flow distance-to-
stream may affect availability of the aquatic habitat and is
calculated as the distance from a grid cell moving down-
stream to a stream grid cell defined by the Stream Raster
grid [52]. The advantage of using flow distance-to-stream
rather than simple distance-to-stream is that flow distance
takes flow direction and landscape profile into considera-
tion. Aspect of land surface is the terrain orientation and
it ranges from 0 to 360 degrees. It is thus related to solar
exposure, which may affect mosquito larval survivorship.
Curvature is the measurement of the rate-change of the
slope per unit distance [53], which may affect the stability
of the aquatic habitat. The Terrain Analysis Using Digital
Elevation Model (TauDEM) in ArcGIS was used to retrieve
these parametres [52]. Due to its great range in values, the
curvature was arctangent-transformed before conducting
regression analysis. A three-dimensional model of the
study area was constructed based on the DEM using Arc-
Scene extension of ArcGIS [54].

Determination of an appropriate DEM scale is critical due
to the effects of scale on the land-surface representation
[55]. The DEM and topographic parametres were calcu-
lated for five different scales (20 – 60 m with an interval
of 10 m), using the linear interpolation technique built in
the ArcGIS spatial analyst module. To better differentiate
presence and absence of habitat independent sample t-
tests, were conducted to determine the most appropriate
scale for each topographic parametre. In addition, sea-
sonal consistency was considered so the models could be
applicable to different seasons. The following were, con-
sequently, chosen: wetness index at 30 m, aspect at 60 m,
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and curvature at 50 m, for both dry and rainy seasons. For
flow distance, 20 m and 40 m were chosen for wet and dry
seasons, respectively.

Data analysis

Land-use and land-cover classification

In order to determine whether these three remote sensing
tools are able to identify aquatic habitats and land-cover
types that affect the survivorship of anopheline larvae
[56], the remote sensing images were classified for land-
cover types using a supervised classification method. A
total of seven land-cover classes were used: farmland, pas-
ture, natural swamp, forest, river/stream, road, and
shrubs. Farmland was characterized either by the presence
of an agricultural crop or bare ground that had been pre-
pared for planting crops. Pasture was grassland-used for
grazing or an area with a mixture of grass and shrubs. Nat-
ural swamp was characterized by the presence of emergent
aquatic plants. Forest referred to areas with dense tree
cover, normally with a closed canopy. Streams were clas-
sified as waterways less than one metre wide while rivers
were more than one metre wide. Roads were surfaces
reserved for motor vehicles and could either be tar-
marked or not. Shrubs were short mature trees that were
less than two metres tall. Each of the seven land-cover
classes was determined based on their spectral signatures
(expressed in terms of colour or greyness), texture (the
smoothness of the object) and structure (the spatial
arrangement). For example, healthy forest appears red on
the image while the water is black dark in terms of reflect-
ance under the combination of red, green, infrared bands.
The main difference between forest and shrubs is in the
spatial arrangement and smoothness of the crowns. Prior
to classification being conducted, 10 random samples
(plots) were visited for each of the seven land-cover
classes in order to relate particular land-cover types to
their specific spectral signatures, texture and structure. The
images were classified and digitized using ArcView 3.3
[54].

Ground truthing of land-use and land-cover

Ground truthing was conducted in both dry and rainy sea-
sons by direct field inspection of 185 points randomly
selected by a script for random points generation in
ArcView software. A misclassification matrix, which
assesses the accuracy of land-use and land-cover classifica-
tion, was calculated by comparing image classification
and field observation results. Surface area of each land-
cover type was estimated by first projecting the land-cover
layer into WGS_84 UTM, Zone 36 N, and then using an
Avenue script that calculates the surface area in ArcView.

Identification of aquatic habitats

Potential breeding habitats of anopheline mosquitoes in
this study area included pools, ponds, trenches, aban-
doned gold mining sites, animal foot-prints, tyre tracks
and others. Ten aquatic habitats for each habitat type were
visited to ascertain their reflectance range, texture and
structure on the imageries (aerial photos, Ikonos and
Landsat 7). Identification of aquatic habitats was then
performed based on the imageries. The classification accu-
racy was determined by overlaying all ground-identified
and geo-referenced habitats in the dry season to the
retrieved habitats from the imageries using ArcView. The
number of correctly identified aquatic habitats was calcu-
lated for each land-cover type for the dry season only,
because all the remote sensing images were taken during
the dry season. The χ2 tests were used to determine
whether misclassification rates of aquatic habitats were
significantly different among the three remote sensing
types, whether some land-cover types had significantly
more aquatic habitats and anopheline-positive habitats
than expected based on the area size, and whether the pro-
portion of anopheline-positive habitats differed among
the land-cover types.

Aquatic habitats and anopheline-positive larval habitats
are estimated based on parametres extracted from remote
sensing images and DEM. A stepwise logistic regression

Table 1: Area size of land-cover types and percentage of area size of each land-use and land-cover types being classified correctly using 

images from three remote sensors.

Land-cover Area size (percentage)* Aerial photos Landsat TM 7 Ikonos

Farmland 8,733 (64.7) 88.9 84.1 96.8

Forest 1,533 (11.4) 76.9 23.1 92.3

Pasture 1,750 (13.0) 50.0 22.7 72.7

River/streams 136 (1.0) 70.6 63.2 86.4

Road 119 (0.9) 82.1 21.3 88.6

Shrubs 1,117 (8.3) 37.5 0.0 56.3

Swamp 105 (0.8) 33.3 0.0 33.3

Total 13,493 (100) 77.4 60.8 89.2

* Area size is in thousand square metres
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analysis was used to determine important topographic
features. The dependent variable was presence or absence
of aquatic habitats. The independent variables were five
topographic parametres derived from DEM: elevation,
wetness index, flow distance to stream, aspect of land sur-
face, and curvature. For this analysis, an equal number of
"dummy" control sites were created in the study area that
were not aquatic. The locations of these control sites were
selected randomly, with the one criterion that they are at
least 50 m from any observed aquatic habitat. This
ensured that the control sites represented the same back-
ground environment as the observed aquatic habitats.

The probability of a grid cell suitable for aquatic habitat

(P) was calculated by applying the resulting logistic model

to the topographic parametres, using the relationship

 where f(Topography,

Landcover) refers to the final equation of the stepwise

logistic regression on topographic parametres and land-

use/land-cover variables. A map illustrating the predicted

probability of aquatic habitat occurrence was generated

using the map calculator function in the ArcGIS software.

The study area was represented by a 4 km × 4 km rectangle

or 133 rows by 133 columns, for a total of 17,689 grid

cells. The misclassification rate of the model was calcu-

lated by comparing the observed habitat sites with those

predicted by the model, using a cut-off probability of 0.5.

That is, a site is considered to have an aquatic habitat if the

predicted probability is ≥ 0.5, whereas aquatic habitats are

considered absent if P < 0.5. This cut-off threshold proba-

bility gives an equal penalty for an actual habitat being

classified as negative as for a negative site being classified

as positive.

A stepwise logistic regression analysis was also used to
determine whether the occurrence of anopheline positive
larval habitats was associated with environmental varia-
bles. The dependent variable was the occurrence or
absence of anopheline larvae in a habitat. The independ-
ent variables were the five topographic parametres
obtained from DEM, the normalized difference vegetation
index (NDVI), and the land-cover types. The NDVI value
for each grid was obtained from the multispectral Ikonos
image, using the standard method [50]. The probability of
a grid cell containing anopheline-positive larval habitats
was calculated using the formula described above. The
misclassification rate of the model was calculated by com-
paring the observed habitat sites with a model prediction
using a cut-off probability of 0.5.

Results
Identification of land-cover types

Supervised classification of land-cover types, based on the
Ikonos image after ground truthing, revealed that farm-
land constituted 64.7% of the total area in the study area,
while forest, pasture, shrubs and swamps represented

P
e f Topography Land er

=

+

1

1 ( , cov )

Example of Ikonos image (A) and panchromatic aerial photos (B) of the study areaFigure 1
Example of Ikonos image (A) and panchromatic aerial photos (B) of the study area.

Aquatic habitat without A. gambiae larvae Aquatic habitat with A. gambiae larvae

500 m500 m

A. Ikonos image B. Aerial photo
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11.4%, 13.0%, 8.3%, and 0.8% of the land surface area,
respectively (Table 1). Landsat TM7 identified farmland
and river/streams with good accuracy (63.2–84.1%), but
it showed low accuracy for the other land-cover types (0–
23.1%). The Ikonos image provided a high degree of accu-
racy for identifying farmland, forest, pasture, river/
streams, and road (72.7–96.8%), but it exhibited low

accuracy for determining swamps and shrubs (33.3–
56.3%). Overall, the misclassification rate of land-cover
types in terms of area size was 10.8% based on Ikonos
imagery, 22.6% for panchromatic aerial photos, and
39.2% for Landsat TM 7 imagery (Table 1). The Ikonos
image provided more accurate identification of land-cover
types than those based on panchromatic aerial photos or
Landsat TM 7 images because the Ikonos image has a
higher spatial resolution (1 metre) and is multispectral
(Figure 1). Thus, the identification of the patchy and het-
erogeneous land-use types encountered in the western
Kenya highlands can be better determined by Ikonos
images.

Distribution of aquatic habitats and anopheline-positive 

habitats among land-cover types

Ground survey found that the number of aquatic habitats
increased 2.9 fold during the rainy season over the dry sea-
son (1,911 vs. 673). In both dry season and rainy season,
river/streams and swamp had significantly more aquatic
habitats than expected from the area size of each land-
cover type in the study area, while farmland and forest
had significantly fewer aquatic habitats (χ2 = 4,418, df = 6;
P < 0.0001 for the dry season; χ2 = 2,455; df = 6; P <
0.0001 for the rainy season; Table 2). This was expected
because depressions along river/streams and swamps
facilitated stagnant water accumulation while farmland is
mostly located on the hillside where water rarely stag-
nates. A total of 273 aquatic habitats (40.7%) were visu-
ally identifiable with the Ikonos image, 78 (11.6%) with
the aerial photos, and 0 (0%) with the Landsat TM 7
image in the dry season. The combination of blue, green,
and infrared on the multi-spectral Ikonos image facili-
tated the identification of water bodies even when water
bodies were mostly covered by forest canopy.

Distribution of anopheline larval habitats with respect to the distance to the nearest stream in the dry season (A) and rainy season (B)Figure 2
Distribution of anopheline larval habitats with respect to the 
distance to the nearest stream in the dry season (A) and 
rainy season (B).
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Table 2: Distribution of aquatic habitats and anopheline-positive habitats in each land-use and land-cover type and percentage of 

aquatic habitats being correctly identified.

Dry season Rainy season No. aquatic habitats correctly identified in the dry 
season

Land-cover No. habitat 
(percent)

No. anopheline-
positive habitats 

(percent)

No. habitat 
(percent)

No. anopheline-
positive habitats 

(percent)

Aerial photos 
(percent)

Landsat 
(percent)

Ikonos 
(percent)

Farmland 249 (37.0%) 123 (38.9%) 817 (42.7%) 402 (51.5%) 14 (5.6%) 0 (0%) 90 (36.3%)

Forest 55 (8.2%) 19 (6.0%) 107 (5.6%) 21 (2.7%) 2 (3.7%) 0 (0%) 24 (44.6%)

Pasture 87 (12.9%) 52 (16.5%) 481 (25.2%) 237 (30.4%) 20 (23.0%) 0 (0%) 45 (51.7%)

River/streams 133 (19.8%) 62 (19.6%) 87 (4.6%) 19 (2.4%) 26 (19.5%) 0 (0%) 53 (39.8%)

Road 3 (0.4%) 1 (0.3%) 147 (7.7%) 21 (2.7%) 0 (0%) 0 (0%) 0 (0%)

Shrubs 38 (5.6%) 16 (5.1%) 145 (7.6%) 30 (3.8%) 0 (0%) 0 (0%) 8 (21.1%)

Swamp 108 (16.0%) 43 (13.6%) 127 (6.6%) 50 (6.4%) 16 (14.8%) 0 (0%) 53 (49.1%)

Total 673 (100%) 316 (100%) 1,911 (100%) 780 (100%) 78 (11.6%) 0 (0%) 273 (40.7%)
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A total of 316 and 780 anopheline-positive habitats were
observed in the dry and rainy seasons, respectively. The
distribution of anopheline-positive habitats among the
seven land-cover types was proportional to the aquatic
habitat distribution (χ2 = 6.61, df = 6, P = 0.36). In the
rainy season, however, significantly more anopheline-
positive habitats were found on farmland and in pasture
than expected based on the aquatic habitat distribution
and significantly fewer anopheline-positive larval habitats
were found in forest, river/stream, road, and shrubs (χ2 =
82.21, df = 6, P < 0.0001; Table 2).

Anopheline larval habitats were generally clustered near
the streams. For example, 78.1% and 68.3% of anophe-
line-positive habitats were located within 50 metres of
streams in both the dry and rainy seasons (Figure 2). The
average distance of anopheline larval habitats to the near-

est stream in the dry season (mean = 44.3 m, standard
error [SE] = 4.4) was significantly shorter than that in the
rainy season (mean = 58.6 m, SE = 3.0, t = 2.53, df = 1098,
P < 0.01). Anopheline-positive habitats were more con-
centrated in lower areas than in uphill areas. For example,
65.8% and 82.9% of anopheline-positive habitats were
found on the valley bottom, between 1,400–1,440 metre
elevation, during the rainy season and dry season, respec-
tively. This became evident when the spatial distribution
of the anopheline larval habitats was superimposed on
the 3-dimensional image of the study area (Figure 3).

Among the 673 aquatic habitats observed in the dry sea-
son, 273 habitats (40.6%) were identified from the
Ikonos image whereas aerial photos identified 10.6% and
the Landsat TM 7 image did not identify any habitat
(Table 3). The Ikonos image was better able to identify

Three-dimensional map of the study area with all aquatic and anopheline-positive larval habitats overlaid in the dry season (A) and rainy season (B)Figure 3
Three-dimensional map of the study area with all aquatic and anopheline-positive larval habitats overlaid in the dry season (A) 
and rainy season (B).
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large habitats; for example, 70.9% of habitats larger than
100 m2 were correctly identified, but only 22.2% of habi-
tats less than 0.5 m2 were correctly identified (Table 3).

Computer-assisted identification of aquatic habitats and 

anopheline-positive habitats

Among the aquatic habitats, stepwise logistic regression
analysis indicated that elevation, wetness, flow distance to
river/streams, and curvature were significantly associated
with the occurrence of aquatic habitats during the dry sea-
son (Table 4). Using the predicted probability of 0.5 as a
cut-off point for misclassification, a total of 153 observed
aquatic habitats were found to be misclassified, giving a
misclassification rate of 22.7% (Figure 4). Similarly, dur-
ing the rainy season, elevation, wetness, aspect, flow dis-
tance to river/streams, and curvature were significantly
associated with the occurrence of aquatic habitats (Table
4). A total of 396 habitats out of 1,912 (20.3%) were mis-
classified in the rainy season (Figure 4).

Stepwise logistic regression analysis found that elevation
showed a negative association, and flow distance a posi-

tive correlation with the occurrence of anopheline-posi-
tive habitats during the dry season (Table 4). Forest land-
cover had a significantly negative association with the
presence of anopheline-positive habitats while farmland
and pasture showed a positive correlation. Using the pre-
dicted probability of 0.5 as a cut-off point for misclassifi-
cation, 79 out of a total of 316 larval habitats (25.1%)
were misclassified. During the rainy season, only land-
cover type was significantly associated with the occurrence
of anopheline-positive larval habitats (Table 4). In partic-
ular, the occurrence of anopheline-positive habitats was
negatively associated with forest, river/streams, road,
shrubs, but positively associated with farmland and pas-
ture. A total of 141 habitats out of 780 (18.1%) were mis-
classified.

Discussion
The aim of using remote sensing is to identify geographic
features associated with mosquito breeding habitats, and
ultimately to predict the spatial distribution of aquatic
habitats, especially anopheline-positive habitats, for vec-
tor control programmes. Remote sensing images with dif-

Table 4: Stepwise logistic regression coefficients on the association between occurrence of aquatic habitats, occurrence of anopheline-

positive habitats, and environmental variables.

Independent variable Dependent Variable Dry season Rainy season

Occurrence of aquatic habitats Elevation -0.031 -0.042

Wetness index 0.009 0.011

Aspect - 0.002

Curvature -0.290 -0.293

Flow distance -106.751 -30.004

Constant 44.803 60.927

Occurrence of anopheline-positive habitats Elevation -0.568 -

Flow distance 0.215 -

Farmland 0.586 0.400

Forest -0.213 -0.978

Pasture 0.747 0.403

River/streams 0.391 -0.843

Road 0.273 -1.360

Shrub 0.317 -0.921

Constant -0.527 -0.432

Table 3: Distribution of larval habitat size in dry season and number of habitats correctly identified by three remote sensors.

Habitat surface area size 
(m2)

No. habitats (%) Aerial photo (%) Landsat (%) Ikonos (%)

< 0.1 4 (0.6) 0 (0) 0 (0) 0 (0%)

0.1–0.5 45 (6.7) 0 (0) 0 (0) 10 (22.2)

0.5–1.5 104 (15.5) 11 (10.6) 0 (0) 34 (32.7)

1.5–5 174 (25.9) 18 (10.4) 0 (0) 55 (31.6)

5–10 105 (15.6) 18 (17.1) 0 (0) 45 (42.9)

10–100 186 (27.6) 19 (10.2) 0 (0) 90 (48.4)

>100 55 (8.2) 12 (21.8) 0 (0) 39 (70.9)

Total 673 78 (11.6) 0 (0) 273 (40.6)
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ferent spatial and spectral resolutions are available.
Among the satellite sensors used in this study, Landsat TM
7 has a spatial resolution of 30 × 30 metres and seven
spectral bands (15 metres when using the panchromatic
band), while Ikonos has a 1 × 1 metre sensor and four
spectral bands. It was demonstrated that supervised classi-
fication based on Ikonos images had improved accuracy
in determining land-use and land-cover types – a geo-
graphic feature significantly associated with the occur-
rence of anopheline larval habitats [47,57] – than aerial
photos and Landsat TM 7 images. Eighty-nine percent of
the area in this study site was correctly classified using
Ikonos, while only 77% and 61% of the area was correctly
identified by aerial photos and a Landsat TM 7 image,
respectively. When aquatic habitats were visually identi-
fied using these three types of images, the Ikonos image
had a high spatial and spectral resolution. About 41% of
the aquatic habitats were identifiable based on the Ikonos
image while only 11.6% were correctly identified using
aerial photos and none were correctly identified using the
Landsat TM 7 image. Landsat TM image under the 15 m
panchromatic band could not be used for identification of
aquatic habitats because most of habitats (81.8%) in this
study site were less than 100 m2 (Table 3), much less than
the one-pixel size of Landsat image (225 m2). In principle,
the detectable object has to be 1.5 the size of one pixel.
Although more stable aquatic habitats are more produc-
tive to An. gambiae mosquitoes, An. gambiae larval habitats
are generally smaller than the habitats identifiable by
Landsat TM image (58, 59). These results suggest that the
Ikonos sensor is superior to Landsat TM 7 image and aer-
ial photos for determining potential anopheline larval
habitats.

Several studies have used remote sensing to identify
potential mosquito breeding habitats. Anyamba et al. [60]
found that normalized vegetation difference index anom-
alies were associated with the availability of Aedes mos-
quito breeding habitats and Rift Valley Fever risks in
Kenya. Sithiprasasna et al. [61] delineated stream net-
works from Ikonos satellite images and found that the risk
of malaria infections was negatively correlated with dis-
tance-to-streams in Thailand. In Egypt, Hassan and Onsi
[62] combined limited ground surveys with remote sens-
ing techniques to identify mosquito breeding habitats in
the Natroun Lakes area. In several past studies, vegetation
cover, landscape structure, and distribution of water bod-
ies were found to be associated with malaria risks [32]. In
this study, it was shown that most aquatic habitats were
close to streams and rivers (< 100 m). For example, 78.1%
out of 314 and 68.3% out of 779 of anopheline-positive
habitats were located within 50 metres of streams in the
dry and rainy seasons respectively. The Ikonos image was
able to identify 86.4% of the rivers and streams. Although
Ikonos could only visually identify 40.7% of the aquatic
habitats, the image and topographic derivatives could be
used to improve the identification rates of aquatic habi-
tats significantly. The computer model derived from top-
ographic maps and remotely sensed parametres showed
improved accuracy in determining the spatial distribution
of aquatic habitats. The spatial distribution of more than
75% of aquatic habitats was predicted correctly. Whether
these results are site-specific and whether they could be
extrapolated to wide areas in the highlands is of interest.

Each remote sensor type has advantages in availability
and utility for mosquito vector habitat determination.

Predicted spatial distribution of aquatic habitats in the study area in the dry season (A) and rainy season (B)Figure 4
Predicted spatial distribution of aquatic habitats in the study area in the dry season (A) and rainy season (B).
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Aerial photos can be obtained for any area of interest, and
they are generally not limited by cloud coverage because
aerial photos can be taken when the sky is clear. Flying
closer to the ground or using appropriate lens can increase
the ground resolution of aerial photos. However, each
photo covers a small area, image assembly based geo-ref-
erenced ground points is required to produce a mosaic of
images for a large area, and thus may introduce geo-refer-
ence errors. In addition, aerial photos may suffer edge dis-
tortions caused by inappropriate camera position.
Landsat TM 7 images are easily available at low cost in dig-
ital formats and a single scene covers a large area (swath
width = 185 km), but the resolution is coarse. Ikonos
images have the best spatial resolution for identification
of major breeding habitats and human settlements, but
they are more costly and often the availability of images is
limited in areas where cloud coverage is significant and
frequent. Each remote sensor type also had its limitations.
The utility of panchromatic aerial photos is limited by the
lack of infrared band capability, which is particularly use-
ful for the identification of water bodies, especially when
they are partially or completely covered by vegetation.
While the Landsat TM 7 images have seven spectral bands,
their 30 × 30 m ground resolution undermines their util-
ity for identifying the patchy and discontinuous land-use
characteristic of the western Kenya highlands. Although
the Ikonos images have the advantage of high spatial and
spectral resolution, this advantage is eroded when identi-
fying land-cover types with similar spectral reflectance
(e.g., fallow land vs. pasture, young forest vs. shrubs). Rec-
ognizing the advantages and disadvantages of these
remote sensor types can help the selection of appropriate
remote sensing images so that assist mosquito vector con-
trol efforts.

Successful prediction of the spatial distribution of
anopheline mosquito habitats would allow vector control
efforts to target the most productive larval habitats, result-
ing in a reduction of operational costs [25]. The statistical
model used showed an 18–25% misclassification rate for
anopheline-positive habitats. This classification error for
anopheline-positive habitats could be due to inadequate
understanding of factors regulating habitat productivity.
Further knowledge of the underlying mechanisms of hab-
itat productivity will help predict the spatial distribution
of anopheline larvae in Africa.
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