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Abstract. Landscape evolution models often utilize the stream power incision model to simulate river incision:

E = KAmSn, where E is the vertical incision rate, K is the erodibility constant, A is the upstream drainage

area, S is the channel gradient, and m and n are exponents. This simple but useful law has been employed with

an imposed rock uplift rate to gain insight into steady-state landscapes. The most common choice of exponents

satisfies m /n = 0.5. Yet all models have limitations. Here, we show that when hillslope diffusion (which operates

only on small scales) is neglected, the choice m /n = 0.5 yields a curiously unrealistic result: the predicted

landscape is invariant to horizontal stretching. That is, the steady-state landscape for a 10 km2 horizontal domain

can be stretched so that it is identical to the corresponding landscape for a 1000 km2 domain.

1 Introduction

The stream power incision model (SPIM) (e.g., Howard,

1994; Howard et al., 1994) is a commonly used physically

based model for bedrock incision. The incision rate, E, can

be written as

E = KAmSn, (1)

where K is the erodibility coefficient, A is the upslope

drainage area, S is the downstream slope, and m and n are ex-

ponents. This simple model is thoroughly reviewed in Whip-

ple and Tucker (1999) and Lague (2014), where they hypoth-

esize that m/n is between 0.35 and 0.60. This range is con-

sistent with results inferred from field work and map stud-

ies (Flint, 1974; Howard and Kerby, 1983; Tarboton et al.,

1989, 1991; Willgoose et al., 1990; Willgoose, 1994; Moglen

and Bras, 1995; Snyder et al., 2000). Furthermore, many re-

searchers specifically suggest, or offer as a default, the ratio

m/n ∼ 0.5 (Snyder et al., 2000; Banavar et al., 2001; Hobley

et al., 2017). The choice of this ratio is paramount in numer-

ical landscape evolution models (LEMs) that utilize SPIM,

such as the channel–hillslope integrated landscape develop-

ment model, CHILD (Tucker et al., 2001). The ratio m/n

is also used to describe the relationship between slope and

drainage area in describing stream long profiles (Flint, 1974).

All models using SPIM, including studies on drainage reor-

ganization and stability (Willett et al., 2014), tectonic his-

tories of landscapes (Goren et al., 2014b; Fox et al., 2014),

and persistent drainage migration (Pelletier, 2004), involve

the specification of this ratio. In addition, the specific val-

ues of m and n are important (Tucker and Whipple, 2002).

Here, however, we focus on the ratio itself, and we show a

somewhat unexpected result: when m/n = 0.5, SPIM-based

LEMs exhibit elevation solutions that are invariant to shape-

preserving stretching of horizontal domain. That is, except

for the finest scales on which hillslope diffusion becomes im-

portant, the model predicts the same solution for a landscape

with a total basin area of 10 km2 and one with a total basin

area of 1000 km2 under the constraint of identical horizontal

basin shape (e.g., square). The extremity of this result under-

scores a heretofore unrecognized unrealistic aspect of SPIM.
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In this paper, we perform a scaling analysis of SPIM. First,

we use a 1-D model to analytically derive steady-state river

profiles, to illustrate the problem of scale invariance, and to

delineate conditions for which elevation singularities occur

at the ridge. Then, using a 2-D numerical model, we demon-

strate the effects of horizontal scale on the steady-state relief

of landscapes and infer the conditions for which elevation

singularities occur at ridges.

2 Motivation

SPIM is a simple model that has been used to gain consider-

able insight into landscape evolution. Previous studies using

SPIM have shown how landscapes respond to tectonic and

climate forcing (e.g., Howard, 1994; Howard et al., 1994).

Yet like most simple models, SPIM is in some sense an over-

simplification. Here, we demonstrate this by showing that it

satisfies a curiously unrealistic scale invariance relation. By

demonstrating this limitation, we hope to motivate the for-

mulation of models that overcomes it.

The fundamental limitation on SPIM becomes apparent

when the ratio m/n = 0.5. Under this condition, SPIM alone

will predict the same steady-state relief for a 10 km2 do-

main as a 1000 km2 domain of the same horizontal shape,

as illustrated below. LEMs utilizing SPIM often sidestep

this problem with the use of a “hillslope diffusion” coef-

ficient (e.g., Passalacqua et al., 2006), a useful but rather

poorly constrained parameter that lumps together a wide

range of processes (Fernandes and Dietrich, 1997). Alter-

natively, the problem can be sidestepped with an externally

specified “hillslope critical length” (Goren et al., 2014a) that

essentially specifies the location of channel heads. For exam-

ple, the model simulations of Willett et al. (2014) employ the

specific value of 500 m for hillslope critical length in their

characterization of tendencies for drainage divide migration.

The prediction of the hillslope diffusion coefficient and the

location of channels are outstanding problems in the field of

geomorphology (Montgomery and Dietrich, 1988). The in-

trinsic nature of the SPIM model, however, is such that scale

invariance persists for the case m/n = 0.5 on scales larger

than a characteristic hillslope length scale, whether it be ex-

ternally specified or computed from a diffusion coefficient.

The existence of scale invariance exemplifies an unrealis-

tic aspect of SPIM, which we believe to be associated with its

omission of natural processes, such as abrasion due to sedi-

ment transport. Gilbert (1877) theorized two roles that sedi-

ment moving as bed load could play in bedrock incision: the

first as an abrasive agent that incises the bed via collisions

and the second as a protector that inhibits collisions of bed

load on the bed. These observations have been implemented

quantitatively by many modelers (e.g., Sklar and Dietrich,

2001, 2004, 2006; Lamb et al., 2008; Zhang et al., 2015),

some of whom have implemented them in LEMs (e.g., Gas-

parini et al., 2006, 2007). Egholm et al. (2013) have directly

compared landscape models using SPIM on the one hand and

models using a saltation–abrasion model on the other hand.

Here, we shed light on an unrealistic behavior of SPIM with

the goal of motivating the landscape evolution community

to develop more advanced treatments that better capture the

underlying physics. A further goal is to emphasize the impor-

tance of scaling and nondimensionalization in characterizing

LEMs.

3 One-dimensional model: scale invariance and

singularities

An LEM can be implemented using the following equation

of mass conservation for rock/regolith subject to uplift and

denudation:

∂η/∂t = υ − E + D∇2η, (2)

where η is the local landscape elevation, t is time, υ is the

rock uplift rate, and D is the hillslope diffusion coefficient.

The term D∇2η accounts for hillslope diffusion (Somfai and

Sander, 1997; Banavar et al., 2001). The effect of diffusion

is commonly neglected at coarse-grained resolution (Som-

fai and Sander, 1997; Banavar et al., 2001; Passalacqua et

al., 2006), at which any resolved channels can be taken to

be fluvially dominated bedrock channels (Montgomery and

Foufoula-Georgiou,1993). In our analysis, we use Eq. (1) to

specify the incision term in Eq. (2). It should be noted that

SPIM refers to the incision in the direction normal to the bed,

implying that there are both horizontal and vertical compo-

nents of incision. In much of the literature using SPIM, how-

ever, the horizontal component is neglected in accordance

with the original formulation of Howard and Kerby (1983),

and incision is assumed to be purely vertical and downward.

Here, we preserve this simplification in order to better under-

stand the overall behavior of SPIM. Last, in correspondence

with most 2-D implementations of SPIM within LEM, we

neither resolve channels nor compute their hydraulic geome-

try in our 2-D implementation. The focus of this paper is the

most simplified form (e.g., Eq. 1) of SPIM. This way we can

analyze the most fundamental behavior of SPIM itself.

Equation (2) characterizes landscape evolution in 2-D; i.e.,

elevation η = η (x,y), where x and y are horizontal coordi-

nates. It is useful for some purposes, however, to simplify

Eq. (2) into a 1-D form. Neglecting hillslope diffusion, the

1-D conservation equation is

∂η/∂t = υ − KAm(−∂η/∂l)n, (3)

where l is the horizontal stream distance from the ridge, at

which l = 0. It should be noted that the negative sign appears

in front of the term ∂η/∂l because ∂η/∂l is negative in the

downstream direction, so that streambed slope S = −∂η/∂l.

In SPIM, slope S is assumed to be positive. In order to solve

Eq. (3), a relationship between A and l must be established.
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Here, we assume a generalized form of Hack’s Law (Hack,

1957):

A = Clh, (4)

where C and h are positive values. Hack’s Law assumes that

upslope area increases with lh. From empirical data, Hack

found the exponent h to be ∼ 1.67 (Hack, 1957).

Previous researchers have presented 1-D analytical solu-

tions for elevation profiles (Chase, 1992; Beaumont et al.,

1992, Anderson, 1994; Kooi and Beaumont, 1994, 1996;

Tucker and Slingerland, 1994; Densmore et al., 1998; Wil-

lett, 1999, 2010; Whipple and Tucker, 1999). In their solu-

tions, the effect of the horizontal scale, which in the 1-D

model we define as the total length of the stream profile,

L1-D, was neither shown nor discussed. Previous studies that

use Eq. (4) (Whipple and Tucker, 1999; Willett, 2010) in-

volve nondimensionalization of both the horizontal and ver-

tical coordinates by the total horizontal length of the profile,

L1-D. As we show below, this step obscures the effect of the

horizontal scale on the relief of the profile. In our study, we

nondimensionalize the vertical coordinate, η, by a combina-

tion of υ and the acceleration of gravity, g. Our nondimen-

sionalization of the coordinates is shown below.

η = υ2g−1η̂ t = υg−1 t̂ l = L1-D l̂ (5)

Substituting Eqs. (4) and (5) into Eq. (3) results in the fol-

lowing dimensionless conservation equation:

∂η̂/∂t̂ = 1 − P −n
1-D l̂hm

(

−∂η̂/∂l̂
)n

, (6)

where the dimensionless number P1-D, termed the 1-D Pills-

bury number herein for convenience, is given by the relation

P1-D = K−1/nC−m/nL
1−hm/n

1-D υ1/n−2g. (7)

At steady state, Eq. (6) becomes

P1-D = l̂hm/n
(

−∂η̂/∂l̂
)

. (8)

From this equation, we see that as we approach the ridge, i.e.,

l̂ → 0, the slope term
(

−∂η̂/∂l̂
)

always approaches infinity

for positive values of h, m, and n.

The value of the 1-D Pillsbury number P1-D increases with

stream profile length L1-D when hm/n < 1, is invariant to

changes in L1-D when hm/n = 1, and decreases with L1-D

when hm/n > 1. This can be further illustrated by integrat-

ing Eq. (8). To solve this first-order differential equation, we

need to specify a single boundary condition, shown below.

η̂
∣

∣

l̂=1
= 0 (9)

This boundary condition sets the location and elevation of the

outlet, where flow is allowed to exit the system. Integrating

Eq. (8) yields

η̂ =







−P1-Dln
(

l̂
)

if hm = n

(1 − hm/n)−1P1-D

(

1 − l̂1−hm/n
)

if hm 6= n
. (10)

Figure 1. One-dimensional analytical dimensionless solutions for

elevation profiles at steady-state equilibrium over a range of ra-

tios hm/n (Hack’s Law) = 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 and

P1-D = 1.0.

The steady-state profiles defined by Eq. (10) are shown in

Fig. 1. Inspecting Eq. (10), we see that elevation is infinite at

the ridge (l = 0) when hm/n ≥ 1, and elevation is finite when

hm/n < 1. In addition, when hm/n = 1, P1-D is no longer de-

pendent on the horizontal scale, L1-D, and η̂ is independent of

the scale of the basin. Using the empirical value from Hack’s

original work (1957), i.e., h = 1.67, the ratio m/n must take

the value 0.6 for scale invariance. This ratio is within the

range reported in the literature (Whipple and Tucker, 1999).

4 Two-dimensional model: scale invariance

In 2-D, the conservation equation using SPIM and neglecting

hillslope diffusion can be written as

∂η/∂t = υ − KAm
[

(∂η/∂x)2 + (∂η/∂y)2
]n/2

. (11)

To understand the behavior of Eq. (11) in response to scale,

we need to use a dimensionless formulation in a fashion

similar to the previous 1-D analysis. Here, L2-D denotes the

horizontal length of the entire domain, which is taken to be

square for convenience. For the 2-D analysis, our nondimen-
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sionalization is

η = υ2g−1η̂ t = υg−1 t̂ A = L2
2-DÂ x = L2-Dx̂

y = L2-Dŷ. (12)

The form of Eq. (11) in which x, y, and A have been made

dimensionless using the definitions shown in Eq. (12) is

∂η̂/∂t̂ = 1 − P −n
2-DÂm

[

(

∂η̂/∂x̂
)2

+
(

∂η̂/∂ŷ
)2

]n/2
, (13)

where the dimensionless number P2-D, termed the 2-D Pills-

bury number, is given as

P2-D = K−1/nL
1−2m/n

2-D υ1/n−2g. (14)

At steady state, Eq. (13) becomes

P2-D = Âm/n
[

(

∂η̂/∂x̂
)2

+
(

∂η̂/∂ŷ
)2

]1/2
. (15)

The form of the parameter P2-D specified by Eq. (14) is

similar to the 1-D form, Eq. (7), but is different due to the

different dimensionality. The parameter, P2-D, scales with

the relief of the landscape; as it increases, the slope term

on the RHS (right-hand side) of Eq. (15) also increases.

The value of P2-D increases with L2-D for m/n < 0.5, re-

mains constant with L2-D for m/n = 0.5, and decreases with

L2-D for m/n > 0.5. For the ratio m/n = 0.5, the exponent

to which L2-D is raised in Eq. (14) becomes 0 and the relief

of the landscape becomes invariant to horizontal scale. When

m/n = 0.5, the same steady-state solution to Eq. (15) prevails

regardless of the value of L2-D. We note here that this scale

invariance, which is the key result of this paper, is intrinsic

to the model itself and is not a function of the discretization

scheme used in implementing numerical solutions.

Our 2-D model was solved using the following boundary

conditions:

η|y=0 = 0, (16)

∂η/∂y|y=L2-D
= 0, (17)

η|x=0 = η|x=L2-D
. (18)

The bottom (outlet) side of the domain presented in Fig. 2

is fixed at the base level η = 0 m, corresponding to an open

boundary where flow can exit the system while satisfying

Eq. (16). The top side of the domain is designated as an im-

permeable boundary to flow, i.e., the drainage divide satisfies

Eq. (17). Periodic boundary conditions satisfying Eq. (18)

are applied at the left and right boundaries. Flow, slope,

and drainage area are determined using the D8 flow al-

gorithm, where flow follows the route of steepest descent

(O’Callaghan and Mark, 1984). The initial condition is a gen-

tly sloped plane oriented towards the outlet with small ran-

dom elevation perturbations.

For the results of Fig. 2, we use regular grids that contain

1002 cells. The number of cells is constant, regardless of the

value of L2-D. This is in contrast to holding cell size con-

stant and instead increasing the number of cells with L2-D.

We argue that the former shows the fundamental behavior of

SPIM, while the latter obscures this behavior due to the ex-

istence of slope and elevation singularities near the ridges in

the landscape. The next sections show this singular behavior

in the 2-D numerical model.

Figure 2a shows steady-state solutions for m/n = 0.5 and

two values of L2-D using the same initial condition. At each

corresponding grid cell between the two solutions, the slope,

S, decreases as L2-D increases. However, the relief structures

of each landscape are identical. By relief structure, we are

describing the elevation value at each corresponding grid cell

in the two steady-state solutions. This is confirmed by nondi-

mensionalizing the horizontal scale of landscape without ad-

justing the vertical scale (Fig. 2b). Using the same numerical

methods and the parameters from Fig. 2a, the results of a sim-

ilar analysis using different ratios m/n = 0.4, 0.5, and 0.6 are

shown in Fig. 2c.

In Fig. 2c, the case of scale invariance can be seen when

m/n = 0.5. For m/n = 0.4, the relief of the entire landscape

increases with increasing L2-D, and for m/n = 0.6, the relief

decreases with increasing L2-D. When m/n 6= 0.5, the land-

scapes do not exhibit scale invariance. However, the over-

all planform drainage network structure shows resemblance

across scales. That is, the location of the major streams

and rivers in the numerical grid are similarly organized. It

should be noted that the landscapes are not identical. When

the landscapes are shown in dimensional space, as shown

in Fig. 2a, the landscapes appear to be quite different. In

the case of Fig. 2b, however, the smaller landscape can be

stretched horizontally to be precisely identical to the large

one. The drainage network structure described above persists

in each simulation due to the imprinting of the initial condi-

tion, which always consists of the same randomized pertur-

bations.

5 Two-dimensional model: quasi-theoretical

analysis of singular behavior

Like the 1-D model of Eq. (8), the 2-D model, Eq. (15),

has slope, S, approaching infinity as area, A, approaches 0

at steady state. In contrast to the 1-D model, however, gen-

eral steady-state solutions for elevation in the 2-D model,

Eq. (15), cannot be determined analytically. However, the ra-

tio m/n for which elevation singularities occur can be deter-

mined by analyzing the behavior of the 2-D numerical model

in close proximity to a ridge. Here, we first develop a quasi-

theoretical treatment to study near-ridge behavior, and we

then use it to infer singular behavior in the numerical model.

Converting the coordinate system from Cartesian to a system

that follows the stream-wise direction, we rewrite Eq. (11) as

∂η/∂t = υ − KAm(−∂η/∂s)n, (19)

Earth Surf. Dynam., 5, 807–820, 2017 www.earth-surf-dynam.net/5/807/2017/
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Figure 2. (a) Two-dimensional numerical landscapes at steady state using a ratio of m/n = 0.5, n = 1.0, υ = 4 mm yr−1,

K = 2.83 × 10−11 s−1, M2 = 1002 cells, and L2
2-D

= 125 and 2000 km2. For each case, the 2-D Pillsbury number was the same: 2.73 × 1021.

(b) Results of panel (a) expressed in terms of dimensionless horizontal scale. Each basin is made dimensionless by its basin size, L2-D.

(c) Nine 2-D numerical simulations at dynamic equilibrium for three different values of L2-D and three different values of m/n. The

value of K has been chosen to be different for each value of m/n for clarity in the figures. From left to right, L2
2-D

= 5 × 102, 5 × 104,

and 5 × 106 km2. To make the relief of the landscapes comparable, the 2-D Pillsbury number, P2-D, is set to 2.73 × 1021 for solu-

tions of all m/n ratios with L2
2-D

= 5 × 102 km2. To achieve this for υ = 4 mm yr−1, K = 2.10 × 10−10 m0.2 s−1, 2.83 × 10−11 s−1, and

3.82 × 10−12 m−0.2 s−1 for m/n = 0.4, 0.5, and 0.6, respectively.

where s is the distance along the path of steepest descent

away from the ridge. From dimensional considerations, A

[L2] must scale with s2 [L2] near the ridge (s = 0), and there-

fore,

A = βs2 as s → 0, (20)

where β is the scaling factor. For this analysis, our nondi-

mensionalization is

η = υ2g−1η̂ t = υg−1 t̂ s = LRŝ, (21)

where LR is the horizontal ridge scale. Near the ridge,

Eq. (19) can be nondimensionalized into

∂η̂/∂t̂ = 1 − P −n
R ŝ2m

(

−∂η̂/∂ŝ
)n

, (22)

where PR is another dimensionless Pillsbury number, here

denoted as

PR = K−1/nβ−m/nL
1−2m/n

1-D υ1/n−2g. (23)

At steady state (∂η/∂t = 0), Eq. (22) becomes

PR = ŝ2m/n
(

−∂η̂/∂ŝ
)

. (24)

From Eq. (24), we see that at the ridge (ŝ = 0), there is a

singularity in slope, i.e., the slope (−∂η̂/∂ŝ) goes to infin-

ity. Integration of Eq. (24) using the downstream boundary

condition, η̂
∣

∣

ŝ=1
= 0, allows for the delineation of the condi-

tions for elevation singularities in the 2-D model. The profile

is given as

η̂ =

{

−PRln
(

ŝ
)

if 2m = n

(1 − 2m/n)−1PR

(

1 − ŝ1−2m/n
)

if 2m 6= n
. (25)

Instead of the elevation singularity occurring when hm/n ≥

1 as seen in the 1-D model, Eq. (10), this analysis for the

2-D model shows an elevation singularity at the ridge when

m/n ≥ 0.5.

www.earth-surf-dynam.net/5/807/2017/ Earth Surf. Dynam., 5, 807–820, 2017
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Figure 3. Nine 2-D numerical simulations at steady state for three different values of M2 and three different values of m/n. In this figure,

the horizontal scale is kept constant: L2-D = 10 km for all solutions. The value of K has been chosen to be different for each value of m/n

for clarity in the figures. From left to right, the number of cells M2 = 402, 802, and 1602. To make the relief of the landscapes comparable,

the 2-D Pillsbury number, P2-D, is set to 3.10 × 1023 for solutions of all m/n ratios with L2-D = 10 km. To achieve this for υ = 1 mm yr−1,

K = 6.31 × 10−12 m0.2 s−1, 1.00 × 10−12 s−1, and 1.58 × 10−13 m−0.2 s−1 for m/n = 0.4, 0.5, and 0.6, respectively. Relief increases with

the number of cells because the ridge singularity is resolved at finer resolution.

6 Two-dimensional model: numerical analysis of

singular behavior

In Figs. 3 and 4 we present results which serve to distin-

guish the fundamental behavior of SPIM from the numeri-

cal behavior associated with a varying density of discretiza-

tion. Figures 3 and 4 each show nine steady-state simula-

tions, each using three values of M2 and three values of m/n,

i.e., 0.4, 0.5, and 0.6. In both figures, the number of cells

is quadrupled from column to column. The leftmost column

contains 402 cells, the middle column contains 802 cells, and

the rightmost column contains 1602 cells. Figure 3 shows

simulations where the horizontal length scale, L2-D, is held

constant in all simulations. By increasing the number of cells,

the grid size decreases. In all cases of m/n, the maximum re-

lief increases with the number of cells. However, our quasi-

theoretical analysis predicted the absence of an elevation sin-

gularity at the ridge for m/n < 0.5. To illustrate this point, we

take a different approach, shown later in this section.

Figure 4 contains simulations where grid size is held con-

stant at 125 m. Here, the horizontal length scale, L2-D, in-

creases with the number of cells. In Fig. 4, the leftmost col-

umn contains 402 cells with L2-D = 5 km, the middle column

contains 802 cells with L2-D = 10 km, and the rightmost col-

umn contains 1602 cells with L2-D = 20 km. Regardless of

the m/n ratio and whether L2-D or grid size is kept constant,

the maximum relief of the landscape increases as the number

of cells increases. Relief increases in both sets of simulations

because with more grid cells, we are numerically sampling

closer to ridges, and by sampling closer to ridges, we are

resolving the ridge singularity on a finer scale. We empha-

size, however, that the issue of dependence of the solution

Earth Surf. Dynam., 5, 807–820, 2017 www.earth-surf-dynam.net/5/807/2017/
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Figure 4. Nine 2-D numerical simulations at steady state for three different values of M2 and three different values of m/n. In this figure,

the grid size, L2-D/M = 125 m, is used in all the solutions. The value of K has been chosen to be different for each value of m/n for

clarity in the figures. From left to right, the number of cells M2 = 402, 802, and 1602. To make the relief of the landscapes comparable,

the 2-D Pillsbury number, P2-D, is set to 3.10 × 1023 for solutions of all m/n ratios with L2-D = 10 km. To achieve this for υ = 1 mm yr−1,

K = 6.31 × 10−12 m0.2 s−1, 1.00 × 10−12 s−1, and 1.58 × 10−13 m−0.2 s−1 for m/n = 0.4, 0.5, and 0.6, respectively. Like Fig. 3, relief

increases with the number of cells because the ridge singularity is resolved at a finer resolution.

on grid size is separate from the issue of scale invariance for

m/n = 0.5, the latter result being deduced from the govern-

ing equation itself (Eq. 15) before any discretization is im-

plemented and illustrated in Fig. 2c.

Our quasi-theoretical analysis infers the conditions for sin-

gular behavior in the 2-D model. If elevation singularities

exist, the model will not satisfy grid invariance, causing the

relief between the ridge and outlet to increase indefinitely as

grid size decreases. In contrast, in simulations where singu-

larities do not exist, the relief between the ridge and outlet

can be expected to converge as the grid size decreases. In

both cases, understanding ridge behavior in the 2-D model

requires studying solution behavior as grid size approaches

0.

We do this by extracting river profiles from 13 landscape

simulations of different scales for each of three values of

m/n, i.e., 0.4, 0.5, and 0.6. The largest simulation is for

L2
2-D = 106 km2; simulations were also performed at pro-

gressively 1 order of magnitude less in area down to L2
2-D =

10−6 km2. The number of grid cells, M2, is held constant at

252. In each simulation, then, the closest distance to the ridge

that can be resolved is one grid cell, given by

1li = 10(7−i)/2/25 [km] i = 1,2. . .13. (26)

From each of the simulations, we construct two synthetic

river profiles: one that intersects the highest point of the basin

divide (high profile) and one that intersects the lowest point

of the basin divide (low profile). The choice of these two
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elevations was made so as to bracket the possible range of

behavior; analogous results would be obtained from starting

points along the basin divide at intermediate elevations. We

use these synthetic profiles to characterize whether or not the

numerical model is tending toward a singularity near ridges.

We do this because the numerical model itself cannot di-

rectly capture singular behavior. We outline the details of the

methodology for the high profile only, as the case of the low

profile involves a transparent extension.

The 13 simulations result in 13 elevation profiles ηi , where

i = 1, 2... 13, each extending from 1li (i.e., one grid point

from the divide) to a downstream value lDi that is some-

what larger than the value 103−(i/2) km (because the down-

channel path of steepest descent does not follow a straight

line). We assemble a synthetic channel profile, ηS(l), from

these as follows. The first leg of ηS(l) is identical to η1(l) and

extends from l = 1l1 to lD1. We extend the synthetic profile

by translating the second profile upward until its elevation at

its downstream point lD2 matches with ηS(lD2), as shown in

Fig. 5a. The profile ηS(l) now extends from 1l2 to lD1. As

shown in Fig. 5a, we repeat this process until all 13 profiles

have been used to assemble the synthetic profile, which now

extends from 1l13 to lD1.

This procedure results in a high synthetic profile encom-

passing all 13 profiles (circles) and in a low synthetic pro-

file (crosses) (Fig. 5b). One-dimensional analytical solutions,

Eq. (10), are then fitted to the profiles of the 2-D simulations

using the 1-D Pillsbury number, P1-D, as a fitting parame-

ter. To account for the difference in dimensionality, the 1-D

steady-state profiles with hm/n = 0.8, 1.0, and 1.2 are fitted

to the 2-D data for m/n = 0.4, 0.5, and 0.6, respectively. The

scatter in the synthetic profile is due to the randomness in the

pathway, as dictated by the initial conditions.

Figure 5b shows good fit between the 2-D results and the

corresponding 1-D steady-state profiles. This allows us to

make inferences concerning asymptotic behavior at a ridge.

The analytical curves for elevation that best fit the 2-D data

for m/n < 0.5 converge to finite values as l approaches 0 and

infinity for m/n ≥ 0.5. While these results do not constitute

analytical proof of this asymptotic behavior, they provide

compelling evidence for it.

7 Scale behavior in other landscape evolution

models

We offer here an example of a landscape model that does

not necessarily satisfy horizontal-scale invariance, i.e., that

of Gasparini et al. (2007). They incorporate the formulation

of Sklar and Dietrich (2004) for bedrock abrasion due to wear

in their model. The rate of erosion E is given as

E = KGA (1 − Qs/Qt)Qs/W, (27)

where KGA is the abrasion coefficient, Qs is the bed load

sediment flux, W is the channel width, and Qt is the bed load

transport capacity. Gasparini et al. (2007) use the following

relation for Qt:

Qt = KtA
mtSnt , (28)

where Kt is a transport constant and mt and nt are exponents.

At steady state, the total sediment flux at any point in the

landscape must equal the production rate of sediment due to

rock uplift:

Qs = KBAυ, (29)

where KB is the fraction of sediment produced that con-

tributes to bed load (the remainder being moved out of the

system as wash load). For channel width, they use a relation

of the form

W = kwQb, (30)

where Q is the water flow discharge, kw is the hydraulic ge-

ometry constant, b is the hydraulic geometry exponent (e.g.,

Finnegan et al., 2005). The value of b has been found to vary

between 0.3 and 0.5 for bedrock rivers (Whipple, 2004); Gas-

parini et al. (2007) use b = 0.5 in their model. They also es-

timate discharge as an effective precipitation rate, kq , multi-

plied by a drainage area to the power of c, where c ≤ 1:

Q = kqAc. (31)

The resulting relation for steady-state slope is

S =
[

(∂η/∂x)2 + (∂η/∂y)2
]1/2

=
(

KBK−1
t υA1−mt

)1/nt

(

1 − kb
qkwK−1

B K−1
GAAbc−1

)−1/nt

. (32)

Using the nondimensionalization terms from Eq. (12), we

nondimensionalize Eq. (32) to

[

(

∂η̂/∂x̂
)2

+
(

∂η̂/∂ŷ
)2

]1/2

= PG1Â
1/nt−mt/nt

(

1 − PG2Â
bc−1

)−1/nt

, (33)

where PG1 and PG2 are two dimensionless Pillsbury num-

bers:

PG1 = υ−2g
(

KBK−1
t υL

2−2mt+nt

2-D

)1/nt

, (34)

PG2 = K−1
B K−1

GAL2bc−2
2-D . (35)

Horizontal-scale invariance results only when both dimen-

sionless numbers are independent of the horizontal length

scale, L2-D. Gasparini et al. (2007) use mt = 1.5 and nt = 1.0.

This parameter does indeed make the exponent 2 − 2mt +nt,

equal to 0, so that PG1 is independent of L2-D. The parameter

PG2 is invariant to the horizontal scale when the product of b

and c is equal to 1. However, realistic values of b are between

0.3 and 0.5 (Whipple, 2004) and the value of c is less than or

equal to 1. This means that the maximum value of bc is 0.5.

It follows that PG2 is not independent of the horizontal scale

and that the model of Gasparini et al. (2007) does not satisfy

horizontal-scale invariance.
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Figure 5. (a) Construction of the synthetic profile, ηS(l). The opaque points represent the synthetic profile, and the transparent points

represent the untranslated profiles. The green points represent the profile for i = 1, blue represents i = 2, and red represents i = 3. After

η13(l) has been utilized in ηS(l), the synthetic profile is complete. (b) One-dimensional steady-state equilibrium analytical solutions fitted to

2-D numerical results using P1-D. Each m/n ratio contains two profiles: one generated from a flow path from the highest point on the ridge

corresponding to the basin divide (HP) and one from the lowest point on the basin divide (LP). The circles (HP) and crosses (LP) represent the

2-D model data, and the red (HP) and blue (LP) lines represent the 1-D analytical model. For each m/n ratio, υ = 3 mm yr−1, M2 = 252 cells,

n = 1.0, and L2
2-D

= 10−6 to 106 km2. (I) Using K = 5.00 × 10−12 m0.2 s−1, m/n = 0.4 (2-D), and hm/n = 0.8 (1-D), P1-D = 6.45 × 1021

(LP) and P1-D = 7.89 × 1021 (HP). (II) Using K = 2.83 × 10−11 s−1, m/n = 0.5 (2-D), and hm/n = 1.0 (1-D), P1-D = 5.79 × 1021 (LP) and

P1-D = 6.47 × 1021 (HP). (III) Using K = 3.82 × 10−12 m−0.2 s−1, m/n = 0.6 (2-D), and hm/n = 1.2 (1-D), P1-D = 2.13 × 1023 (LP) and

P1-D = 2.15 × 1023 (HP).

8 Sensitivity of relief to hillslope length and profile

length

In the river profiles of Figs. 1 and 5b, we see that a sizable

proportion of the relief is confined to the headwaters, i.e.,

near a ridge. In our 1-D model, for hm/n ≥ 1, ridge elevation

is infinite, thus formally implying infinite relief. This prob-

lem has been sidestepped by introducing a critical hillslope

length lc, upstream of which it is assumed that there is no

channel (e.g., Goren et al., 2014a). This point may be thought

of as loosely corresponding to the channel–hillslope transi-

tion in the slope–area relation discussed by Montgomery and

Dietrich (1988, 1992). Here, then, we let the hillslope zone

cover the range 0 ≤ l ≤ lc, where lc is an appropriately small

fraction of profile length L1-D. Modifying Eq. (10) accord-

ingly, we can determine the total relief, R, of the channel

profile as follows:

R̂ =







−P1-Dln
(

l̂c

)

if hm = n

(1 − hm/n)−1P1-D

(

1 − l̂c
1−hm/n

)

if hm 6= n
, (36)

where

R = υ2g−1R̂ lc = L1-D l̂c. (37)

We remind the reader that according to Eq. (7),

P1-D ∼ L
1−hm/n

1-D . (38)

We now consider the scale-invariant case, hm/n = 1, and

inquire as to how the relief of the basin might change. In-

creasing L1-D does not increase relief because the parameter

P1-D ∼ L0
1-D. It is thus seen from Eqs. (36) and (37) that re-

lief can be increased only by decreasing l̂c. But from Eq. (36),

R̂ → ∞ as l̂c → 0. It follows that relief is extremely sensi-

tive to the choice of l̂c. Based on our previous analysis, we
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expect that this result carries over to the case m/n = 0.5 for

the 2-D model.

We next provide an example illustrating the dependence of

relief on hillslope length and profile length when hm/n 6= 1.

Specifically, we consider the case hm/n = 0.9, with a dimen-

sionless hillslope length l̂c = 0.01. According to Eq. (36), a

halving of l̂c to 0.005 increases the relief by 11.4 %. In or-

der to achieve the same increase in relief by changing profile

length L1-D while holding l̂c constant, L1-D would have to be

increased by 196 %. It is thus seen that relief of the channel

profile can be more sensitive to a relative change in dimen-

sionless critical channel length than it is to a relative change

in horizontal scale.

9 Discussion and conclusion

Our 1-D analytical solutions, Eq. (10) and Fig. 1, character-

ize the scale behavior of 1-D SPIM, with horizontal-scale in-

variance satisfied when hm/n = 1.0. Our 2-D numerical so-

lutions shown in Fig. 2 illustrate our analytical result that 2-

D SPIM shows horizontal-scale invariance when m/n = 0.5.

That is, 2-D models using SPIM with m/n = 0.5 show the

same relief structure regardless of the horizontal scale. This

scale invariance has been previously demonstrated for nei-

ther the 1-D nor the 2-D SPIM model. Our result calls into

question the common usage of the ratio m/n = 0.5 in land-

scape evolution models (Gasparini et al., 2006). For example,

the Python-based landscape modeling environment, Landlab

(Hobley et al., 2017) offers a default m/n ratio of 0.5. Our

result also motivates further investigation as to why analy-

sis of field data commonly yields values of m/n ∼ 0.5 (e.g.,

Snyder et al., 2000). It should be noted that local empirical

measurements indicating m/n = 0.5 do not necessarily mean

m/n = 0.5 should be used as a universal ratio in SPIM. Gas-

parini and Brandon (2011) used multiple incision laws, other

than SPIM, to simulate steady-state landscapes and were able

to fit E, A, and S in Eq. (1) to find empirical values of m′ and

n′ (prime denotes an empirical value). They found that the

ratio of m′/n′ was sensitive to the incision model’s parame-

ters as well as the rock uplift pattern in each landscape. This

implies that both m′ and n′ have dependency on landscapes

properties and are not universal from landscape to landscape.

In addition to the horizontal-scale invariant case

m/n = 0.5 for the 2-D SPIM model, we also empha-

size the relationship between the steady-state landscape

relief and horizontal when m/n 6= 0.5. Equations (14) and

(15) and the results in Fig. 2c show that the relief structure of

the landscape scales with P2-D. Within P2-D, the horizontal

length scale term is L
1−2m/n

2-D . For the m/n ratio range 0.35 to

0.6 (Whipple and Tucker, 1999), the corresponding exponent

range in the horizontal length scale term is −0.2 to 0.3. This

means that over the stated range of m/n, the relief structure

has a weak dependence on the horizontal length scale. For

m/n < 0.5, relief weakly increases with horizontal scale.

For m/n > 0.5, relief weakly but unrealistically decreases

with horizontal scale. The underlying physics of channel

and hillslope processes that might dictate such behavior

are, at present, unhelpfully opaque. In natural systems,

larger landscapes would yield longer rivers. Since elevation

monotonically increases with upstream distance, one would

expect relief to increase with horizontal scale. The results

of SPIM, where m/n ≥ 0.5, clearly contradict this intuitive

understanding.

Our work neglects the effect of hillslope diffusion because

our intent is to study the behavior of SPIM itself. Without

hillslope diffusion, SPIM causes singular behavior at ridges

in both the 1-D and 2-D formulation. Indeed, both the 1-D

and 2-D models exhibit singularities in slope at ridges for all

hm/n ratios (1-D) and all m/n ratios (2-D). For hm/n ≥ 1

(1-D) and m/n ≥ 0.5 (2-D), the models exhibit singular be-

havior in elevation at ridges as well. When relief is limited

by a hillslope length lc, elevation and slope do indeed reach

finite values at the channel heads, but the effects of the sin-

gularity persist. For example, for the case hm/n ≥ 1 in the

1-D model, relief approaches infinity as hillslope length ap-

proaches 0. Our analysis of ridge singularities in SPIM shows

that the choice of hillslope parameterization plays a key role

in determining the relief of natural landscapes.

Numerical solutions of the 2-D model indicate that it can-

not be grid-invariant for m/n ≥ 0.5. In the absence of hill-

slope diffusion, ridges reach infinite elevation as grid size

becomes vanishingly small. This result underlines the criti-

cal role of hillslope diffusion in obtaining meaningful results

from the 2-D model. Field estimates of hillslope diffusion

have been obtained on the hillslope scale, but there are unan-

swered questions about their application to large-scale mod-

els (Fernandes and Dietrich, 1997). Our results suggest that

for the ratio m/n < 0.5, there are steady-state grid-invariant

solutions. However, the grid size below which grid invari-

ance is realized may be so small, e.g., sub-meter scale, that

the validity of Eq. (1) is called into question. Issues with

SPIM when used on large scales include the following. Stud-

ies commonly neglect the effect of hillslope diffusion when

the scale of the grid is larger than the hillslope scale (Somfai

and Sander, 1997; Banavar et al., 2001; Passalacqua et al.,

2006). On coarse-grained scales, increasing the size of the

numerical domain, while keeping the number of cells con-

stant, will result in the behavior shown in Fig. 2. In Fig. 4 we

see that adding more cells to compensate for the increase in

size of the domain, such that the grid size remains constant,

produces heavily biased (i.e., ever more singular) behavior

near the ridges.

Our analysis illustrates that SPIM has two important lim-

itations: (a) unrealistic scale invariance when m/n takes the

commonly used value 0.5, so that a 10 km2 basin has identi-

cal relief to a 1000 km2 basin, and (b) singular behavior near

the ridges for m/n ≥ 0.5 that makes maximum relief entirely

and unrealistically dependent on grid size. SPIM has been

shown to be of considerable use in the study of the general
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behavior of landscapes (e.g., Howard, 1994; Howard et al.,

1994). We believe, however, that the time has come to move

on to more sophisticated models. While scientific questions

remain that can be answered with the stream power incision

model, there are many more questions that require a more

advanced formulation (e.g., Gasparini et al., 2007; Crosby

et al., 2007; Egholm et al., 2013). The development of al-

ternative, more physically based models for incision (e.g.,

Sklar and Dietrich, 2004; Lague, 2014; Zhang et al., 2015)

and their application to landscape evolution (e.g., Davy and

Lague, 2009; Gasparini et al., 2006, 2007) offer exciting

prospects for the future.

Code and data availability. The datasets used in this paper are

available at https://doi.org/10.13012/B2IDB-7434833_V2 (Kwang,

2017). The exact version of the code used by the authors can be

requested by contacting Jeffrey Kwang at jeffskwang@gmail.com.

However, open-source modeling toolkits, such as Landlab (see http:

//landlab.github.io/#/), can also be used to reproduce our results.
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Appendix A: Notation

A upslope drainage area (L2)

b exponent defining relation between channel width and flow discharge (Gasparini et al., 2007) (–)

B profile width (L)

c exponent defining relation between flow discharge and drainage area (Gasparini et al., 2007) (–)

C Hack’s law constant (L2−h)

D hillslope diffusion coefficient (L2 / T )

E local erosion rate (L /T )

g acceleration of gravity (L /T 2)

h Hack’s law exponent (–)

K erodibility coefficient (L(1−2m) / T )

KB fraction of sediment produced that contributes to bed load (Gasparini et al., 2007) (–)

KGA constant defining relation for the general abrasion model (Gasparini et al., 2007) (L−1)

kq effective precipitation rate (Gasparini et al., 2007) (L(3−2c) / T )

Kt constant defining relation for bed load transport capacity (Gasparini et al., 2007) (L(3−2mt) / T )

kw constant defining relationship between channel width and flow discharge (Gasparini et al., 2007) (L(1−3b)T b)

i index denoting the profile, 1, 2... 13 (–)

l horizontal distance from the ridge in the 1-D profile (L)

l̂ dimensionless horizontal distance from the ridge in the 1-D profile, l/L1-D (–)

lc critical hillslope length (L)

l̂c dimensionless critical hillslope length, lc/L1-D (–)

lDi total length of profile, i (L)

li horizontal distance from the ridge of profile, i (L)

L1-D horizontal length scale, profile length (L)

L2-D horizontal length scale, basin size (L)

LR horizontal length scale, ridge (L)

m exponent above A in SPIM (–)

mt exponent above A in sediment transport capacity equation (Gasparini et al., 2007) (–)

M2 number of numerical cells (cells2)

n exponent above S in SPIM (–)

nt exponent above S in sediment transport capacity equation (Gasparini et al., 2007) (–)

P1-D Pillsbury number for the 1-D analysis (–)

P2-D Pillsbury number for the 2-D analysis (–)

PG1 first Pillsbury number for the Gasparini et at. (2007) analysis (–)

PG2 second Pillsbury number for the Gasparini et at. (2007) analysis (–)

PR Pillsbury number for the 2-D ridge analysis (–)

Qs bed load sediment flux (L3 / T )

Qt bed load transport capacity (L3 / T )

R total relief of the channel profile (L)

R̂ dimensionless total relief, Rg/υ2 (–)

s distance from the ridge (L)

ŝ dimensionless distance from the ridge, s/LR (–)

S stream gradient (–)

t time (T )

t̂ dimensionless time, tg/υ (–)

W channel width (L)

x horizontal coordinate orthogonal to y (L)

x̂ dimensionless horizontal coordinate, x/L2-D (–)

y horizontal coordinate orthogonal to x (L)

ŷ dimensionless horizontal coordinate, y/L2-D (–)

β ridge scaling constant (–)

1li grid size for profile, i (L)

η elevation (L)

η̂ dimensionless elevation, ηg/υ2 (–)

ηi elevation of profile, i (L)

ηS elevation of synthetic profile (L)

υ uplift rate (L /T )
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