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 ABSTRACT  We present a cohort of 41 patients with osimertinib resistance biopsies, including 

2 with an acquired  CCDC6–RET  fusion. Although  RET  fusions have been identifi ed 

in resistant  EGFR -mutant non–small cell lung cancer (NSCLC), their role in acquired resistance to EGFR 

inhibitors is not well described. To assess the biological implications of  RET  fusions in an  EGFR -mutant 

cancer, we expressed CCDC6–RET in PC9 ( EGFR  del19) and MGH134 ( EGFR  L858R/T790M) cells and 

found that CCDC6–RET was suffi cient to confer resistance to EGFR tyrosine kinase inhibitors (TKI). The 

selective RET inhibitors BLU-667 and cabozantinib resensitized CCDC6–RET-expressing cells to EGFR 

inhibition. Finally, we treated 2 patients with  EGFR -mutant NSCLC and  RET -mediated resistance with 

osimertinib and BLU-667. The combination was well tolerated and led to rapid radiographic response 

in both patients. This study provides proof of concept that  RET  fusions can mediate acquired resist-

ance to EGFR TKIs and that combined EGFR and RET inhibition with osimertinib/BLU-667 may be a 

well-tolerated and effective treatment strategy for such patients. 

  SIGNIFICANCE:  The role of  RET  fusions in resistant  EGFR -mutant cancers is unknown. We report 

that  RET  fusions mediate resistance to EGFR inhibitors and demonstrate that this bypass track can 

be effectively targeted with a selective RET inhibitor (BLU-667) in the clinic.  Cancer Discov; 8(12); 

1529–39. ©2018 AACR.        
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  INTRODUCTION 

 Osimertinib is a highly selective, central nervous system–
penetrant, third-generation EGFR tyrosine kinase inhibitor 
(TKI) which nearly doubles progression-free survival com-
pared with fi rst-generation EGFR TKIs and is now the stand-

ard front-line therapy for  EGFR -mutant non–small cell lung 
cancer (NSCLC; ref.  1 ). In addition, osimertinib remains the 
preferred second-line therapy for T790M-mediated resistance 
to fi rst- and second-generation EGFR TKIs ( 2 ). Despite high 
initial response rates, however, patients typically develop 
acquired resistance after about 1 to 2 years of treatment. 
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 Mechanisms of osimertinib resistance are under active 
investigation but thus far have primarily been studied in 
the second-line, T790M-positive setting because front-line 
use represents a more recent shift in the treatment para-
digm. Prior studies demonstrated overlap between resistance 
mechanisms to osimertinib and to fi rst- or second-generation 
EGFR TKIs, including bypass pathway activation (e.g.,  MET  
amplifi cation) and histologic transformation seen upon pro-
gression on all classes of EGFR inhibitors ( 3–6 ). One notable 
exception is the  EGFR  T790M mutation, which develops 
in 50% to 60% of patients progressing on the older drugs, 
whereas for osimertinib, T790M is a marker of sensitivity. 
Furthermore,  EGFR  C797S is recurrently observed in osi-
mertinib resistance, but not in resistance to fi rst-generation 
drugs, as expected based on the drug-receptor binding char-
acteristics ( 7–9 ). However, the number of osimertinib-resist-
ant cases reported to date remains limited, and a signifi cant 
proportion of osimertinib-resistant cases lack a clearly identi-
fi ed pathway driving resistance ( 4 ). 

 Acquired fusions, including those involving  RET , have 
recently been reported in a small number of patients pro-
gressing on osimertinib and other EGFR TKIs ( 4, 10–13 ). 
Historically, EGFR TKI resistance studies had not identifi ed 
 RET  fusions, but this may have been due to the use of lim-
ited genotyping platforms that likely did not include  RET.  

Fusions involving  RET , a recently described driver oncogene 
in NSCLC, can be diffi cult to detect using standard next-
generation sequencing (NGS) platforms. The functional role 
of  RET  and other fusions in EGFR TKI acquired resistance 
and the potential impact of RET-directed inhibitors in this 
population are unknown. 

 To characterize osimertinib resistance mechanisms includ-
ing acquired fusion alterations, we analyzed tumor tissue or 
circulating tumor DNA (ctDNA) from a cohort of patients 
progressing on osimertinib. We also assessed the functional 
implications of  RET  fusions in  EGFR -mutant cell line models 
and treated 3 patients with  EGFR -mutant NSCLC and acquired 
 RET  fusions with combined EGFR and RET inhibition.  

  RESULTS 

  Osimertinib Resistance Cohort 

 Our study began as a survey of osimertinib resistance mech-
anisms among patients at Massachusetts General Hospital 
(MGH). A total of 41 patients with  EGFR -mutant NSCLC were 
treated with single-agent osimertinib and underwent resist-
ance assessment at progression between July 2014 and August 
2018 ( Table 1 ). There were 26 women and 15 men, with 
median age of 64 (range, 40–87). One patient received fi rst-line 
osimertinib, 16 were treated in the second-line setting, and 

 Table 1.    Characteristics of the osimertinib-resistant cohort and the patients with fusion-positive  EGFR -mutant NSCLCs   

Characteristics of the osimertinib-resistant cohort (patients 1–41)

Factor  n  (%) unless otherwise noted

Gender

 Male 15 (37)

 Female 26 (63)

Age (years), median (range) 64 (40–87)

Founder  EGFR  mutation

 Exon 19 deletion 23 (56)

 L858R 18 (44)

Duration of osimertinib treatment (months), median (range) 11.6 (1–32.7)

Prior lines of therapy

 0 1 (2)

 1 16 (39)

 2 or more 24 (59)

Treated with another third-generation EGFR TKI pre-osimertinib

 Rociletinib 12 (29)

 Nazartinib 2 (5)

 ASP8273 1 (2)

 None 26 (63)

Type of post-osimertinib biopsy

 Tissue only 15 (37)

 Plasma only 9 (22)

 Both tissue and plasma 17 (41)

Number of post-osimertinib tissue biopsies

 One 29 (91)

 Two 3 (9)

(Continued on the following page)
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Characteristics of the patients with fusion-positive  EGFR -mutant NSCLC

Patient 

ID  a  

 Institu-

tion  T/P   b   Testing   c  

 Acquired 

fusion 

 Founder 

 EGFR  

mutation 

 Treatment 

history prior 

to detection 

of fusion 

 T790M 

status   d  

 Other 

molecular 

fi ndings   d  

 Treatment 

after fusion 

detection 

 Response 

(RECIST 

1.1) 

1 MGH T SFA   CCDC6–RET  Del19 1. Afatinib

2. Osimertinib

− − Osimertinib 

+ BLU-667

PR (−78%)

2 MGH T SFA   PCBP2–

BRAF  

Del19 1. Erlotinib

2. Carbo/pem

3. Osimertinib

−  TP53 − −

3 MGH T FO   AGK–BRAF  Del19 1. Erlotinib

2. Osimertinib

−  CTNNB1, APC, 

CDKN2A/B 

− −

33 MGH P G360   CCDC6–RET 

+ TPM3–

NTRK1  

Del19 1. Erlotinib

2. Osimertinib

−  EGFR  Amp , 

 BRAF  Amp , 

 MET  Amp , 

 CKD6  Amp , 

 CCNE1  Amp , 

 TP53, TERT 

− −

42 MGH T SFA   CCDC6–RET  Del19 1.  Cisplatin/

pemetrexed

2. Afatinib

−  TP53 Afatinib + 

cabozan-

tinib

SD (−6%)

43 MGH T SFA   BAIAP2L1–

BRAF  

Del19 1. Erlotinib

2. Osimertinib

3. Carbo/pem

4.  Osimertinib/

gemcitabine

+  SMAD4, PTCH1, 

TP53 

− −

44 UC-Irvine T SFA   NCOA4–RET  Del19 1.  Cisplatin/

pemetrexed 

(adjuvant)

−  RNF43, 

CDKN2A 

Osimertinib 

+ BLU-667

PR (−78%)

2.  Afatinib/

cetuximab

 Abbreviations: PR, partial response; SD, stable disease. 

    a Patients 1–41 correspond to patients in the osimertinib-resistant cohort, with molecular fi ndings shown in  Fig. 1 . Patients 42, 43, and 44 are not 
included in  Fig. 1  because their biopsies were obtained at progression on therapies other than single-agent osimertinib.   

  b T, tissue testing (from biopsies of progressing lesions); P, plasma ctDNA testing (as indicated in next column).   

  c Testing: SFA, MGH Solid Fusion Assay; FO, FoundationOne NGS Panel; G360, Guardant 360 ctDNA NGS Panel.   

  d T790M and other molecular fi ndings refer to the time of fusion detection.   

Table 1. Characteristics of the osimertinib-resistant cohort and the patients with fusion-positive EGFR-mutant NSCLCs (Cont’d)

24 were treated as third-line or later. All had T790M-positive 
disease before osimertinib except the front-line patient. Fif-
teen patients had received another third-generation EGFR 
TKI before osimertinib [rociletinib ( 12  patients), nazartinib 
( 2  patients), and ASP8273 ( 1  patient)]. The median duration 
of osimertinib treatment was 11.6 months (range, 1–32.7). To 
assess osimertinib resistance mechanisms, 17 patients had 
both a tissue biopsy and ctDNA analysis, 15 had tissue only, 
and 9 had ctDNA only at clinical progression. Three patients 
had two distinct metastases sampled at osimertinib resistance.   

  Observed Osimertinib Resistance Mechanisms 

 A total of 35 tissue biopsies among 32 osimertinib-resist-
ant patients were analyzed ( Fig. 1 ). All had adenocarcinoma 
histology prior to osimertinib; two transformed to small cell 
lung cancer and one to squamous cell histology after progres-

sion on osimertinib. Molecular testing was performed on all 
cases, with the founder  EGFR  mutation detected in each spec-
imen. Six (19%) patients had acquired  EGFR  C797S, each in 
 cis  confi guration with T790M; 7 (22%) developed  MET  ampli-
fi cation (defi ned as MET: centromere 7 ratio ≥ 2.2 by  FISH ). 
In 12 (38%) cases, T790M was not identifi ed (11 previously 
T790M-positive) and no other resistance driver was detected, 
whereas in 3 (9%) cases, T790M was maintained without an 
identifi ed resistance mechanism.  

 Among 26 patients with ctDNA analysis at osimertinib 
resistance, the founder  EGFR  mutation was detected in 22 
samples; the remaining 4 lacked detectable  EGFR  and there-
fore were uninformative for resistance mechanisms, which 
were also likely below the limit of detection ( Fig. 1 ). Resist-
ance mechanisms detected via ctDNA were similar in spec-
trum to tissue samples with 7 (32%) C797S and 5 (23%)  MET
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amplifications (defined as mean plasma copy number ≥ 2.1). 
The number of samples with both tissue and informative 
ctDNA was too small for meaningful concordance analysis.

We observed intertumoral heterogeneity in all 3 patients 
who had two distinct metastatic foci biopsied. Two patients 
had C797S detected at one metastatic site, whereas the 
other was C797 wild-type; the third had MET amplification 
detected within a pleural fluid cell block but had normal 
MET copy number in a coincident lung biopsy. In each case, 
no other putative resistance mechanism was identified in the 
second biopsy site.

One patient with plasma-only osimertinib resistance analysis 
(#33) had both CCDC6–RET [mutant allele frequency (MAF) 
1.9%] and TPM3–NTRK1 fusion (MAF 0.1%) detected in ctDNA 
(EGFR del19; MAF 14.2%). Given this finding, we used the 
MGH Solid Fusion Assay (SFA), an RNA-based anchored mul-
tiplex polymerase chain reaction (AMP), developed to identify 
fusion events in tissue biopsies, and found that 24 of 34 (71%) 
osimertinib-resistant tissue biopsies had sufficient tissue for 
analysis (14). Among these, we detected a CCDC6–RET fusion in 
a progressing pleural metastasis in patient 1 and a PCBP2–BRAF 
fusion in a new liver metastasis which developed on osimertinib 
in patient 2 (Fig. 1; Table 1). In addition, patient 3 in our osi-
mertinib-resistant cohort underwent NGS of a growing omental 
nodule at Foundation Medicine, and an AGK–BRAF fusion was 
observed. In each case, there was concurrent T790M “loss,” and 
no other resistance mechanisms were identified in the tissue.

To broaden our cohort of patients with EGFR-mutant 
NSCLC with acquired fusion events, we retrospectively ran the 
SFA on a subset of EGFR-mutant tissue biopsies obtained at 
MGH over the past 10 years (Table 1). Many of these older biop-
sies were obtained upon progression on erlotinib, afatinib, and 
gefitinib and did not originally undergo SFA. Among them, 
we identified 1 additional afatinib-resistant patient who had a 
CCDC6–RET fusion (#42; described in more detail below) and 
1 patient (#43) with a BAIAP2L1–BRAF fusion detected after 
progression on chemotherapy/osimertinib. We also included 
1 patient from the University of California, Irvine (UCI), who 
acquired an NCOA4–RET fusion on FoundationOne NGS tis-
sue testing obtained upon progression on first-line afatinib/
cetuximab therapy (#44; described in further detail below).

CCDC6–RET Expression in EGFR-Mutant NSCLC 
Cell Lines Confers Resistance to EGFR Inhibitors

Next, we sought to determine whether gene fusions observed 
in the patients described above are sufficient to cause acquired 
drug resistance. We initially focused on the CCDC6–RET fusion 
gene. CCDC6–RET-expressing cell lines were generated by len-
tiviral infection of PC9 (EGFR del19) and MGH134 (EGFR 
L858R/T790M) cells (Supplementary Fig. S1). Cells expressing 
CCDC6–RET grew similarly to parental cells in the absence of  
EGFR inhibitor. When treated with osimertinib, PC9CCDC6–RET  
and MGH134CCDC6–RET cells continued to proliferate, in con-
trast to parental cells which showed a net decrease in cell 
viability (Fig. 2A). Of note, the proliferation rate of CCDC6–
RET-expressing cells decreased in osimertinib, suggesting that 
RET activation does not fully compensate for EGFR signaling 
loss, although it is sufficient to drive acquired resistance.

We next examined the consequences of CCDC6–RET 
expression on downstream signaling pathway activation in 

PC9 and MGH134 cells. Compared with parental cells, which 
did not express detectable RET protein, phosphorylated RET 
was detected in both PC9CCDC6–RET and MGH134CCDC6–RET 
cells (Fig. 2B; Supplementary Fig. S2A). CCDC6–RET expres-
sion alone did not lead to increased activation of downstream 
MAPK (phospho-ERK1/2) or PI3K (phospho-AKT) signaling 
at baseline; however RET, ERK1/2, and AKT phosphoryla-
tion was retained in the presence of afatinib or osimertinib 
in both PC9CCDC6–RET and MGH134CCDC6–RET cells (Fig. 2B; 
Supplementary Fig. S2A). Thus, expression of the CCDC6–
RET fusion is sufficient to confer resistance to EGFR TKIs in 
EGFR-mutant NSCLCs.

Acquired Resistance Resulting from  
CCDC6–RET Expression Can Be Overcome  
by EGFR plus RET Inhibition

Acquired resistance resulting from activation of other 
bypass signaling pathways can be overcome via dual path-
way suppression (15, 16). To determine whether a similar 
strategy might overcome CCDC6–RET-mediated acquired 
resistance, we treated PC9CCDC6–RET cells with the selective 
RET inhibitor BLU-667 (17) in the absence or presence of 
EGFR TKIs. Treatment with BLU-667 alone suppressed 
RET phosphorylation but did not decrease downstream 
ERK or AKT phosphorylation (Fig. 2B). Combined treat-
ment with BLU-667 and either osimertinib or afatinib com-
pletely suppressed both phospho-ERK and phospho-AKT 
and decreased cell viability to a similar level as parental 
cells treated with EGFR TKI (Fig. 2C). Similar results were 
observed in MGH134CCDC6–RET cells (Supplementary Fig. 
S2). In addition, PC9CCDC6–RET and MGH134CCDC6–RET cells 
were sensitive to EGFR TKI + cabozantinib, a multikinase 
inhibitor with RET activity (Supplementary Figs. S2, S3A, 
and S3B). Taken together, these data demonstrate that 
acquired resistance resulting from the CCDC6–RET fusions 
can be overcome by dual EGFR plus RET blockade.

MEK but Not BRAF Inhibitors Overcome Acquired 
Resistance Resulting from PCBP2–BRAF Fusion

To expand our investigation beyond the CCDC6–RET 
fusion, we examined whether the novel PCBP2–BRAF fusion 
observed in patient 2 was driving resistance. We established 
a cell line (MGH845-1) from a core needle liver biopsy of the 
patient (Supplementary Fig. S4A and S4B) and confirmed 
the presence of the PCBP2–BRAF fusion gene and EGFR 
T790M loss (Supplementary Fig. S4C and S4D). Knockdown 
of BRAF in MGH845-1 using siRNAs targeting the BRAF cod-
ing sequence retained within the PCBP2–BRAF fusion had a 
modest effect on cell viability and further sensitized cells to 
osimertinib (Supplementary Fig. S5A and S5B). Consistent 
with a prior report examining de novo BRAF fusions in mela-
noma (18), the MGH845-1 cells were sensitive to the MEK 
inhibitor trametinib but not to the RAF inhibitors dabrafenib 
and LXH245 (Supplementary Fig. S5C).

Treatment of EGFR-Mutant Acquired RET Fusion–
Positive Patients with EGFR plus RET Inhibition

The preclinical results showing that combining EGFR and 
RET inhibitors can overcome resistance conferred by CCDC6–
RET were sufficiently compelling to suggest patient treatment 
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Figure 1.  Summary of anatomic and molecular pathology findings from osimertinib-resistant cohort. This heat map summarizes the findings of tissue 
(top) and ctDNA (bottom) analysis obtained at the time of clinical progression on osimertinib. Key resistance mechanisms are highlighted (see legend). 
Note that for patients with multiple tissue biopsies (4A/B, 5A/B, and 14A/B), the same plasma results are shown below each tissue biopsy result.
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Figure 2.  The CCDC6–RET fusion is sufficient for conferring resistance to EGFR TKIs and can be overcome by combined EGFR and RET inhibition.  
A, PC9 and MGH134 cells expressing the CCDC6–RET gene fusion or empty vector (EV) were treated with 1 µmol/L osimertinib (OSI) or vehicle (VEH) 
and cell proliferation determined over the course of 5 days (ratio compared with the beginning of treatment). Data shown are the mean ± SEM of three 
independent biological replicates. B, PC9EV and PC9CCDC6–RET cells were treated with 100 nmol/L afatinib, 1 µmol/L osimertinib, BLU-667, or combinations 
for 6 hours and harvested for western blotting with the indicated antibodies. The arrow indicates the phospho-RET band. C, PC9EV and PC9CCDC6–RET cells 
were treated with BLU-667, or afatinib or osimertinib in the absence or presence of 1 µmol/L BLU-667, and cell viability was determined after 72 hours. 
The same BLU-667 data are replotted in both panels for comparison purposes. Data are shown as a percentage of vehicle-treated control and are the 
mean ± SEM of three independent biological replicates.
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should be explored. The first MGH patient identified with an 
acquired RET fusion (Table 1; patient 42) was a 44-year-old 
man with del19 EGFR-mutant advanced NSCLC who received 
front-line cisplatin/pemetrexed and second-line afatinib (1 year), 
and then underwent a bronchoscopic biopsy of a growing 
lung lesion showing a CCDC6–RET fusion by SFA. Baseline 
tissue was not available for RET testing. He was treated with 
erlotinib 150 mg daily combined with off-label cabozantinib 
60 mg daily. Scans after 1 month showed stable disease 
(RECIST 1.1), but subsequent scans after 2.5 months showed 
disease progression and prompted treatment discontinuation 
(19). He had grade 1 diarrhea, rash, and aspartate aminotrans-
ferase elevation.

A 60-year-old woman with del19 EGFR-mutant advanced 
NSCLC (patient 1) received front-line afatinib (1 year), acquired 
T790M, and was treated with osimertinib (18 months). She 
then underwent a pleural biopsy revealing a CCDC6–RET 
fusion via SFA. Baseline tissue was insufficient for SFA, but 
RET FISH was negative, suggesting the CCDC6–RET fusion 
was indeed acquired. Given the suboptimal response the first 
patient had using the multitargeted TKI cabozantinib and 
the successful experience with the selective RET TKI BLU-667 
in NSCLCs harboring RET fusions as the primary oncogenic 
driver, we wrote an individual patient investigational new 
drug (IND) protocol for osimertinib plus BLU-667 (17). She 
began osimertinib 80 mg daily and BLU-667 200 mg daily, and 
then increased BLU-667 to 300 mg after 2 weeks of treatment. 
Her dyspnea improved within days of therapy initiation. Scans 
after 8 weeks revealed a marked response with RECIST tumor 
shrinkage of 78% (Fig. 3A). The combination was well toler-
ated with only grade 1 toxicities including fatigue, leukopenia, 
hypertension, xerostomia, and transaminitis. Treatment is 
ongoing at the time of this writing (3.5 months on treatment).

Finally, we collaborated with colleagues at UCI who iden-
tified a similar patient (Table 1, patient 44). A 67-year-old 
woman underwent surgery and adjuvant cisplatin/pem-
etrexed for a stage IIIA del19 EGFR-mutant lung adenocar-
cinoma, with subsequent recurrence. She received afatinib/
cetuximab (2 years) and then underwent a lung biopsy, which 
demonstrated an acquired NCOA4–RET fusion by Foun-
dationOne NGS testing (not present in the pretreatment 
biopsy). An individual IND protocol was again utilized. She 
took osimertinib 80 mg daily and BLU-667 200 mg daily for 
2 weeks, then 300 mg daily for 2 weeks, and then ultimately 
escalated to 400 mg daily. Scans after 8 weeks also revealed a 
marked response with RECIST tumor shrinkage of 78% (Fig. 
3B). Grade 1 toxicities including fatigue, diarrhea, anemia, 
thrombocytopenia, and dysguesia, and grade 2 leukopenia 
and neutropenia were observed. Treatment is ongoing at the 
time of this writing (4 months on treatment).

DISCUSSION

Here we examine mechanisms of acquired resistance to 
osimertinib with a focus on RET fusions, demonstrating in 
engineered cell lines that they can mediate acquired resist-
ance to EGFR TKIs and providing proof-of-principle clinical 
data that targeting this bypass track with a selective RET 
inhibitor like BLU-667 can be highly effective in patients. 
Both patients treated with osimertinib plus BLU-667 had 

rapid and impressive improvements in their cancer. This has 
immediate clinical implications for EGFR-mutant patients 
and suggests that testing for RET fusions should become 
part of standard panels used upon acquired EGFR resistance. 
Importantly, osimertinib and BLU-667 were well tolerated 
in these 2 patients, and further study of this combination in 
additional patients is warranted.

The paradigm of testing for bypass track activation at 
acquired resistance to EGFR TKIs has precedence in MET 
amplification, a resistance mechanism first described in 2007 
(15). Ten years later, the clinical validity of inhibiting EGFR 
plus MET in patients with MET amplification–driven resist-
ance was demonstrated through the combination of osimer-
tinib and the MET inhibitor savolitinib (20). Prior EGFR plus 
MET TKI combinations were tested, but success was limited, 
likely due to trial designs lacking a focus on true MET ampli-
fication as the resistance driver, as well as the poor tolerability 
of prior regimens built primarily on an erlotinib backbone 
(21–23). Just as osimertinib, a well-tolerated third-generation 
EGFR TKI, has led to better-tolerated combinations with MET 
inhibitors, our experience suggests that we may see similar ease 
of building combination regimens for RET-mediated acquired 
resistance. The high RET selectivity of BLU-667 may also be 
a contributing factor to the tolerability of this combination. 
BLU-667 has been shown to be >15 times more potent on RET 
than any other kinase and >10 times more potent on RET than 
approved multitargeted kinase inhibitors like cabozantinib 
(17). The overall tolerability of osimertinib plus BLU-667 in 
both of our patients is an early sign of the high selectivity of 
BLU-667 and the feasibility of combining the two agents.

Preclinical modeling demonstrated that CCDC6–RET fusion 
expression resulted in sustained MAPK and PI3K signaling in 
the presence of EGFR inhibition and, in both models tested, 
was sufficient to cause EGFR TKI resistance. However, in both  
PC9CCDC6–RET and MGH134CCDC6–RET cells, EGFR TKIs exhibited 
partial activity in suppressing downstream signaling and slowing 
cell proliferation. Although we cannot rule out the possibility 
that differences in expression levels of the CCDC6–RET fusion 
may contribute, these results suggest that CCDC6–RET may not 
fully recapitulate EGFR signaling such that resistant cells harbor-
ing this fusion retain partial dependency on EGFR signaling.

Other groups have also found RET fusions in EGFR-
mutant patients with TKI resistance (4, 10–13). Reckamp and 
colleagues studied nearly 33,000 samples undergoing clinical 
plasma ctDNA testing at Guardant Health and identified 
116 patients with NSCLC with RET fusions, including 17 
with co-occurring EGFR mutations (10). Five EGFR mutants 
had available information about their clinical course, and 
all 5 had received prior first- or second-generation TKIs, 
whereas three had also received osimertinib before the RET 
fusion was identified. Schrock and colleagues assessed over 
3,500 EGFR-mutant patients undergoing tissue sampling at 
Foundation Medicine for fusions and identified 19 patients 
with a RET fusion, including one afatinib-resistant L858R 
EGFR-mutant patient with an NCOA4–RET fusion, who had 
stable disease for 7 months on cabozantinib plus afatinib 
(11). This patient anecdote is especially interesting in the 
context of the 3 patients treated with EGFR plus RET inhibi-
tors we present here, as there are now at least two reported 
cases treated with cabozantinib that had stable disease as 
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a best response, in stark contrast with two reported cases 
treated with BLU-667 and osimertinib that had dramatic 
and rapid responses.

With broad NGS panels steadily gaining popularity, we 
believe it is feasible for the oncology community to start 
testing for RET and other oncogene fusions in postresistance 
EGFR-mutant biopsies. However, there are some notewor-
thy caveats. Translocation breakpoints may be present at 
any point in the genomic DNA and often occur in intronic 
regions; thus, focused NGS panels that examine only exons 
may miss these aberrations. Larger NGS libraries and align-
ment tools allowing mapping of DNA sequences to two 
different genomic sites can help overcome this obstacle. At 

MGH, our molecular pathology group has developed an RNA 
AMP technology to identify gene rearrangements without 
prior knowledge of the fusion partner (14). This SFA can 
detect chimeric transcripts at the RNA level which also ena-
bles prediction of the involved (transcribed) exons, typically 
fused at exon–intron junctions. In addition, SFA technology 
is compatible with the often short and fragmented nucleic 
acids input from formalin-fixed paraffin-embedded speci-
mens. We acknowledge that, although the SFA can identify 
RET fusion partners by sequence, other technologies with 
specific advantages also exist. For example, FISH preserves 
the tissue context and enables gene fusion assessment on very 
small samples.

A

B

Figure 3.  Responses observed in the 2 patients treated with osimertinib and BLU-667. A, Treatment response of patient 1 to osimertinib and BLU-
667. Serial coronal contrast-enhanced computed-tomography images of the thorax demonstrate a right bottom lobe lung mass and pleural nodularity 
(red arrows) seen at baseline (left) with partial response after 8 weeks of treatment with BLU-667 and osimertinib (right). B, Treatment response of 
patient 44 to osimertinib and BLU-667, with significant improvement in left top and left bottom lobe pulmonary opacities (right; circled) compared with 
baseline (left).
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Our cohort adds to the growing body of knowledge about 
osimertinib acquired resistance. Acquired RET fusions should 
be considered a potentially actionable finding at osimertinib 
resistance, but treatment options remain unclear for acquired 
BRAF fusions, which will require more detailed mechanistic 
studies to unravel the complexities of RAF signaling in these 
patients. In addition to the fusion cases discussed, we observed 
C797S in 27% of patients, consistent with other experiences 
(4). Because all cases were found in cis with T790M, there is 
not currently a targeted treatment strategy clinically available 
for these patients, though preclinical concepts are emerging 
(24–26). In addition, we saw MET amplification in 24% of 
patients, which is encouraging given the promising treatment 
strategies available now for these patients (20).

Our study is limited by its assessment of osimertinib 
primarily in the second-line (or beyond) T790M-positive set-
ting; we acknowledge that our findings may not be directly 
applicable to patients who receive osimertinib for newly diag-
nosed EGFR-mutant NSCLC. However, the patients we and 
others have identified with RET fusions after first- or second-
generation EGFR TKIs lead us to believe that RET fusions 
will likely be recurrent findings after front-line osimertinib. 
Small numbers, especially only 2 patients treated with the 
osimertinib plus BLU-667, also limit our study. Further study 
of osimertinib plus BLU-667 will be needed to define clinical 
activity in a larger cohort of patients. Finally, 8 of the patients 
in our cohort were on osimertinib for less than 6 months 
prior to undergoing progression biopsies, and hence the find-
ings in those cases may reflect an intrinsic resistance clone.

In conclusion, RET fusions are a bona fide acquired resist-
ance mechanism among EGFR-mutant cancers, and treat-
ment with osimertinib plus BLU-667 may be a well-tolerated 
and effective therapy for this group.

METHODS

Patients

All sequential patients with EGFR-mutant NSCLC seen at MGH 

who underwent a tissue biopsy and/or ctDNA analysis after clinical 

progression on osimertinib and had sufficient tissue for molecular 

analysis were included. The sites of biopsy were selected by the treat-

ing physician; progressing lesions were biopsied whenever feasible. We 

identified additional patients with EGFR-mutant NSCLC and fusions 

detected by SFA, regardless of prior therapy. All patients provided 

signed informed consent under an Institutional Review Board (IRB)–

approved protocol which allows chart review for research, NGS, and 

exploratory research on tissue biopsies. The study was conducted in 

accordance with the principles of the Declaration of Helsinki.

Molecular Testing of Tissue Biopsies

All osimertinib-resistant tissue biopsies were analyzed by Clinical 

Laboratory Improvement Amendments–certified assays performed in 

the MGH Center for Integrated Diagnostics or Foundation Medicine 

using methods which have been described previously, including the 

MGH SNaPshot NGS panel, MGH SFA, FoundationOne NGS panel, 

and FISH for MET and EGFR amplification (14, 27). SNaPshot uses 

AMP to detect single-nucleotide variants, insertions/deletions, and 

copy-number alterations in genomic DNA using the ArcherDX plat-

form and Illumina NextSeq NGS. During this project, the SNaPshot 

assay platform was broadened from a 39-gene panel (NGS-V1) to 

a 91-gene panel (NGS-V2). The SFA is an AMP-based platform for 

targeted fusion transcript detection using NGS. The list of genes 

covered by each assay is provided in Supplementary Table S1. Tissue 

MET and EGFR amplification was tested by FISH, with amplification 

defined as a ratio of MET or EGFR to centromere 7 of > 2.2.

Plasma ctDNA Testing

All plasma samples were analyzed by the Guardant360 NGS plat-

form (Guardant Health) as described previously (28). Further details 

of the Guardant platform are available upon request.

Treatment with Osimertinib plus BLU-667

Study of the osimertinib plus BLU-667 combination was con-

ducted via single patient IND and clinical protocol (Supplementary 

Data) that was reviewed and approved by the FDA and the local 

IRB of each site. Prior to treatment, written informed consent was 

obtained from each patient.

Cell Culture

The PC9 and MGH134 cell lines have been previously described 

(29). MGH845-1 cells were generated from a core needle biopsy of 

a liver metastasis from a patient progressing on osimertinib using 

methods that have been previously described (16).

Generation of CCDC6–RET-Expressing Cell Lines

A CCDC6–RET fusion construct was synthesized by GenScript and 

ligated into the pLENTI6/V5-D-TOPO vector using the ViraPower 

Lentiviral Directional TOPO Expression Kit (Life Technologies). 

Lentivirus was generated by transfecting the pLENTI6 constructs 

and packaging plasmids into 293FT cells (Life Technologies). Virus 

production, collection, and infection were completed following the 

manufacturer’s protocol. Transduced cells were selected in blastici-

din (10–20 mg/mL) for 1 week.

Cell Viability Assay

For drug dose–response assays, cells were seeded into 96-well plates 

24 hours before addition of drug. Cell proliferation was determined by 

CellTiter-Glo assay (Promega) 72 to 120 hours after adding drug, using 

standard protocols. For time-course experiments, multiple plates were 

seeded and drugged in identical fashion. At the indicated time points, 

plates were frozen at −80°C. All plates in an experiment were developed 

with CellTiter-Glo simultaneously. Luminescence was measured with 

SpectraMax i3x Multi-Mode Microplate Reader (Molecular Devices).

Please see Supplementary Methods for additional information.
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