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Landscape of finite-temperature equilibrium behaviour of curvature-inducing proteins on

a bilayer membrane explored using a linearized elastic free energy model

Neeraj J. Agrawala, Joshua Weinsteinby and Ravi Radhakrishnanb*

aDepartment of Chemical and Biomolecular Engineering; bDepartment of Bioengineering, University of Pennsylvania,
Philadelphia, PA 19104, USA

(Received 7 May 2008; final version received 23 July 2008)

Using a recently developed multiscale simulation methodology, we describe the equilibrium behaviour of bilayer
membranes under the influence of curvature-inducing proteins using a linearized elastic free energy model.
In particular, we describe how the cooperativity associated with a multitude of protein–membrane interactions
and protein diffusion on a membrane-mediated energy landscape elicits emergent behaviour in the membrane
phase. Based on our model simulations, we predict that, depending on the density of membrane-bound proteins
and the degree to which a single protein molecule can induce intrinsic mean curvature in the membrane, a range
of membrane phase behaviour can be observed including two different modes of vesicle-bud nucleation and
repressed membrane undulations. A state diagram as a function of experimentally tunable parameters to classify
the underlying states is proposed.

Keywords: biophysics; molecular dynamics; Monte Carlo; protein modeling; membrane dynamics

1. Introduction

Understanding and quantifying the coupling between

external signals and intracellular signal transduction is

crucial in many biological applications such as receptor

trafficking, internalization of targeted pharmacological

nanocarriers, cell–cell communication, etc. There is

growing appreciation that such processes are regulated

and transduced by the interaction of proteins and

membranes [1].
In the modeling of lipid-bilayer membranes,

previous studies have followed either a particle-based

simulation approach [2] or a field theoretic approach

[3–5]. In the latter approach, the energetics of

deformations in planar membranes as well as mem-

branes with intrinsic curvature has been extensively

described in previous works by using the Helfrich

Hamiltonian. Based on the Helfrich description and

through theoretical formalisms and simulation algo-

rithms, the dynamics of elastic membrane sheets in the

overdamped limit including hydrodynamic coupling to

surrounding solvent and arbitrary external forces have

been introduced in previous studies [6–10]. The

infinitely thin elastic sheet assumption has also been

relaxed and the inter-layer friction and slippage

between the lipid monolayers have been incorporated

[10–12]. Mechanistic models for cell membrane

deformation and vesicle budding in the cellular context

based on the elastic free energy formulations have also

been proposed [13,14].
On the experimental front, direct measurements of

bending-mediated force transduction and molecular

organization in lipid membranes based on interfero-

metry and fluorescence measurements have been

reviewed [15]. Different modes by which proteins

modulate the curvature of membranes have also been

discussed by McMahon and Gallop [16]: membrane

curvature can be modulated by changes in lipid

composition, the oligomerization of curvature scaf-

folding proteins and the reversible insertion of protein

regions that act like wedges or amphipathic sub-

domains in membranes. The molecular dynamics and

mosaic organization of the plasma membrane and their

implications in cellular physiology primarily focused

on studies involving fluorescent labeling and imaging

have recently been reviewed [17]. These timely reviews

of the experimental progress have motivated the

development of models for protein diffusion in ruffled

surfaces [18] and the simultaneous diffusion of protein

and membrane dynamics [19–22]. In such models, there

is one-way coupling between the membrane dynamics,

i.e. the protein dynamics as the membrane topology

impacts the diffusion of the proteins.

*Corresponding author. Email: rradhak@seas.upenn.edu
yCurrent address: Department of Bioengineering, Stanford University.

ISSN 0026–8976 print/ISSN 1362–3028 online

� 2008 Taylor & Francis

DOI: 10.1080/00268970802365990

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
d
h
a
k
r
i
s
h
n
a
n
,
]
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
P
e
n
n
s
y
l
v
a
n
i
a
]
 
A
t
:
 
1
4
:
2
7
 
1
0
 
O
c
t
o
b
e
r
 
2
0
0
8



Recently, we extended these simultaneous protein
diffusion and membrane motion models to treat the
case of curvature-inducing proteins diffusing on the
membrane [23]. The new aspect introduced in our
continuum membrane model is the two-way coupling
between the protein and membrane motion. In this
case, the membrane topology not only influences the
protein diffusion by presenting a curvilinear manifold,
but also presents an energy landscape for protein
diffusion. The protein diffusion in turn impacts
membrane dynamics because the spatial location of
the proteins determines the intrinsic curvature func-
tions and hence the elastic energy of the membrane
[23]. In this article, we apply this methodology and
explore the equilibrium behaviour of bilayer mem-
branes under the influence of cooperative effects
induced by the diffusion of curvature-inducing
proteins.

2. Methods

The models employed in this study were introduced
and described in detail in our previous work [23]. Here
we summarize the salient features of our model in
relationship with existing models in related published
studies.

2.1. Model for sampling membrane deformations in
the canonical ensemble

We describe the relaxation of the membrane via a time-
dependent Ginzburg–Landau (TDGL) model [3,24].
The membrane is represented in the Monge gauge,
i.e. as a function z¼ z(x, y, t), where z is the height of
the deformed membrane patch. The membrane energy
is represented by the Helfrich Hamiltonian E, which
treats the membrane as a single thin sheet with
the assumption of unrestricted internal fluidity [25].
A model treating the membrane as a pair of slightly
compressible monolayers bound together with non-
instantaneous lipid density relaxation has also been
proposed [11]. A full sophisticated model for cytoske-
leton fortified membranes has also been developed [26]
and applied to erythrocyte deformation [27]. This
model includes the shear elasticity of the cytoskeleton
in combination with the Helfrich Hamiltonian.
However, we have followed the work of Liu et al.
[14] and Lee et al. [28], who modeled the cytoskeleton
fortified membrane using the Helfrich Hamiltonian
with an effective bending rigidity five to 10 times larger
than that of the bare membrane and neglected the
contribution of shear elasticity of the cell membrane
arising due to the cytoskeleton.

The Helfrich Hamiltonian is a sum of three
contributions: the membrane bending energy due to
deviation of the membrane mean curvature from the
spontaneous curvature, the membrane energy due to
its Gaussian curvature, and the frame energy due to the
frame tension at the boundary of the membrane patch

E ¼

Z Z
�

2
ðH�H0Þ

2
þ �K

� �
dAþ �ðjA� AflatjÞ, ð1aÞ

where A is the total area of the membrane, dA is the
differential area element and Aflat is the projected area
of the membrane patch on a plane. The membrane
Hamiltonian depends on the frame tension �, the
bending rigidity �, the splay modulus �, and the
inhomogeneous intrinsic curvature field H0(x, y).
We consider only those membrane shapes for which
the membrane topology does not change and hence the
contribution of Gaussian curvature to the Helfrich
Hamiltonian is a constant and is neglected.

The linearized Helfrich Hamiltonian E in Monge or
Cartesian gauge, obtained by linearizing the expression
for mean curvature and the expression for the
differential area element in Equation (1a), associated
with membrane elasticity [3] is then given by [4]

E¼

Z Z
�

2
þ
�

4
H2

0

� �
ðrzÞ2þ

�

2
ðr2z�H0Þ

2
h i

dxdy: ð1bÞ

The values of �, � for a cytoskeleton fortified
phospholipid bilayer cell membrane are obtained
from prior studies [28]: �¼ 3 mNm–1, �¼ 400 kBT.
The value of intrinsic curvature H0 is taken to be
zero unless curvature-inducing proteins are membrane-
bound, see below. The fictitious dynamics of the
membrane is described in terms of a scalar mobility
factor M, thermal noise �, and the linearized mem-
brane Hamiltonian E functional associated with
membrane elasticity in Equation (1b), given by the
time-dependent Ginzburg–Landau (TDGL) model
[24]:

@z

@t
¼ �M

�E

�z
þ �: ð2Þ

Equation (2), described in terms of the scalar mobility
factor (M¼ 10–5 mm4 s–1 (kBT )–1 [29] in our simula-
tions), represents fictitious dynamics because it ignores
the important contribution from the hydrodynamic
interaction with the surrounding fluid as well as the
viscous dissipation within the membrane. However, for
the linearized elastic energy functional E, and by
making the choice that the noise term in Equation (2)
is generated by drawing a random number from
a Gaussian distribution with zero mean and
with variance depending on the temperature T and
mobility factor, i.e. h�i¼ 0, h�(0)�(t) i ¼ 2kBTM�(t), the
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membrane configurations generated by Equation (2)
are consistent with the canonical ensemble with
probability /exp(–E/kBT ). Moreover, we have
ensured that changing the value of M by one order
of magnitude does not change the equilibrium proper-
ties (such as radial distribution functions) we calculate.
We stress that, in the present study, we are only
interested in the equilibrium sampling of the deforma-
tions in the linearized elastic free energy model;
however, in the future, an extension to describe the
model dynamics of the membrane by including the
hydrodynamic interactions can be made by closely
following the formalisms briefly discussed in the
introduction [6–12].

We note that while reducing the variational
problem to a partial-differential form, we assumed
that jrzj25 1, which states that the solution of
linearized TDGL (in Monge gauge) is valid only
when the difference in height of adjacent grid points
on the membrane is less than the spatial grid size.
Moreover, the Monge gauge (i.e. representing z as
a function x, y) does not support multi-valued topol-
ogies of z that are necessary to describe large
membrane deformations such as membrane overhangs.
Thus the model we are exploring is inherently limited
in only being able to describe early nucleation events
such as the formation of a vesicle-bud rather than
tracking the evolution of the entire vesicle. Still, we
consider it worthwhile to implement this linearized
membrane elastic model and combine it with diffusing
curvature-inducing functions (see Sections 2.2 and 2.3),
with the outlook that it will enable us to widely explore
the tunable parameter space and to classify the
emergent membrane response in this approximate,
but tractable, benchmark model.

2.2. Model for protein–protein interaction and
protein–membrane interaction

Protein molecules are approximated as structureless
hard spheres and non-specific protein–protein interac-
tions are considered only as size exclusions
(i.e. repulsive interactions on the scale of the size of
the solvated protein). The three-dimensional space is
discretized into a lattice using a rectilinear grid with
grid size corresponding to the size exclusion parameter,
a0¼ 20 nm. Consistent with the evidence in the
literature [30], specific interactions between the pro-
teins (i.e. protein–protein binding) are not considered
and the parameter for size exclusion is obtained from
crystallographic data [30]. The lattice points are
categorized as either belonging to the extracellular
domain, intracellular domain, or the membrane. This
division is time-dependent because the membrane can

undulate, deform, and stretch as a function of time, in
response to thermal fluctuations and protein-mediated
interactions. The density of proteins bound to the
membrane is given by the dimensionless number
�*¼Nbounda0

2/A. Here, A is the total projected area
of the membrane, a0 is the lattice spacing, �* is the
reduced surface density, and Nbound

i is the number of
membrane-bound proteins.

Proteins such as epsin and Ap180 interact with the
membrane by inducing curvature in the membrane
[30,31]. To capture this protein-mediated membrane
deformation, in the vicinity of a membrane-bound
protein, the membrane is assumed to have an intrinsic
curvature H0(x, y). The form of this localized function
is assumed to be Gaussian, with a range R and
a magnitude C0; i.e. for a protein located at (x0, y0) on
the membrane, H0(x, y)¼C0 exp[�2{(x�x0)

2
þ( y�

y0)
2}/R2]. We note that the range R¼ 2*�, where � is

the standard deviation (characteristic length) of the
decay of the curvature-inducing Gaussian function.
A multitude of R and C0 values are explored in our
simulations. R is the range of the curvature induction
(reported in units of nm or in scaled form R*¼R/a0,
where a0 is the lattice length). C0 is the maximum
curvature (1/radius) reported in units of mm–1.

At first glance, the hardsphere nature of protein–
protein interactions considered in our model appears
too simplistic. However, there are several factors
unique to the protein–membrane system that justify
the use of such a simplistic assumption. The equili-
brium behaviour of the system is dominated by
the membrane-mediated protein–protein interaction
dictated by R rather than by direct protein–protein
interactions (which is constituted by van der Waals,
electrostatic, hydrogen-bond terms) dictated by a0. To
support these claims, Figure 1 shows that the
membrane-mediated interaction is dominated by
repulsion at range R, while Figure 2 shows that,
owing to this repulsion, the distance of closest
approach between two protein molecules on the
membrane is R and not a0. Thus, the nature of
the short-range potential is not expected to dictate the
thermodynamic behaviour, as long as there is no
overwhelming short-range attraction through specific
interactions between two proteins. The fact that
curvature-inducing proteins such as epsins have no
specific interactions with each other (i.e. no over-
whelming attraction at short range) was established by
a prior experiment that reported that these proteins act
as monomers [30]. Together, these facts justify the use
of the hard-sphere potential, as they imply that the
system behaviour at the mesoscale is impervious to the
nature of direct short-range protein–protein interac-
tions at the nanoscale.
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2.3. Model for protein diffusion

Our model for sampling different protein conforma-

tions is via the simulation of probabilistic hopping

between discrete ‘lattice’ sites. The hopping steps are

generated via a kinetic Monte Carlo (KMC)

scheme [32] on the discretized lattice, in which each

hop of each protein (or diffusion) to a neighbouring

lattice site is treated as an elementary chemical reaction

with an associated rate prescribed by

rate, a� ¼
4D

a20ð1þ ðrzÞ
2
Þ
exp �

�E

kBT

� �
: ð3Þ

Here, 4D/a20 is the bare hopping rate (due to free

diffusion in a planar manifold in two dimensions), the

term 1þ (rz)2 corrects for the curvilinear manifold due

to membrane deformation to the first-order approx-

imation, and the exponential factor accounts for the

protein diffusion in an energy landscape. The energy

term in the exponential represents the work done as

the protein drags the intrinsic curvature field to the

neighbouring lattice location for the fixed membrane

configuration, where the term �E (for protein hop

along the x-direction) is given by

�E ¼
@E

@x0i
�x0i ¼

4�C0�x0i
R2

Z Z
A

e�2f½ðx�x0iÞ
2
þð y�y0iÞ

2
�=R2g

� H0 þ
H0ðrzÞ

2

2
� r2z

� �
ðx� x0iÞ dx dy,

H0 ¼
X
i

C0 e
�2f½ðx�x0iÞ

2
þð y�y0iÞ

2
�=R2g: ð4Þ

The term �E in Equation (4) prescribes the energy
landscape for the diffusion of curvature-inducing
proteins in the linearized elastic model and summarizes
the two-way coupling present in this model, which is
not present in the related continuum elastic membrane
models in the literature. Through the �E and the
1þ (rz)2 terms, the membrane deformation influences
protein diffusion. Through the H0 function (which
depends on the positions of all membrane-bound
curvature-inducing proteins i, namely x0i, y0i), the pro-
teins influence membrane relaxation in Equation (2).
Together, these effects summarize the two-way cou-
pling between protein motion and membrane motion
on the equilibrium behaviour.

The bulk and lateral membrane-bound diffusion
coefficients (D) for translation are taken from experi-
mental data [28,33,34] (bulk diffusion coefficient
D¼ 10 mm2 s�1, membrane-bound bare diffusion coef-
ficient D¼ 1 mm2 s�1). The initial distribution of
proteins on the membrane surface is random, consis-
tent with size exclusion. We carry out KMC simula-
tions for N��t/(a20/D) steps (such that the total time
elapsed in the KMC simulations is equal to �t, the
time-step of TDGL integration, we choose �t¼ 10�3 s)
and we determine the steady-state profiles hH0iN (by
time-averaging over the course of the N steps of the
KMC simulations) at every time-step of integration
involving the membrane dynamics (TDGL) equations.
Thus, the TDGL equations are propagated in time,
based on time-averaged interactions dictated by hH0iN
resulting from the KMC simulations. The tempera-
tures T in the TDGL and KMC schemes are made
equal to ensure thermal equilibrium. Details of the
complete model, numerical simulation, implementa-
tion, and stability analysis associated with our KMC-
TDGL simulations are available in our recent publica-
tion [23]. The simulation results in the propagation of
the protein as well as membrane degrees of freedom
in the canonical ensemble (see Movie S1 of the
Supplementary Material for the visualization of the
KMC-TDGL integrated membrane and protein
dynamics (available on the online article webpage)).

2.4. Spatial and temporal correlation functions

To capture and quantify the emergent response of the
membrane dynamics under the influence of the
proteins, we compute several correlation functions.

(1) Radial distribution function (see Figure 2, top
row). The spatial organization of the proteins
bound to the membrane is recorded by
calculating the radial distribution function
g(r)¼ �*(r)/h�*i, where the quantity in the

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

x0 [nm]

E
ne

rg
y 

[J
]

×10–17

Interaction energy in the
absence of  dynamics 

Figure 1. Interaction energy (total energy when two mem-
brane-bound proteins are separated by a distance r minus
twice the energy of the membrane with one protein bound)
between two membrane-bound stationary proteins at differ-
ent distances of relative separation, r. Each protein induces
curvature according to the H0 function in Equation (4); here
C0¼ 20m–1 and R¼ 40 nm.
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numerator is the surface density of membrane-
bound proteins at a particular location and that
in the denominator is its spatial average.

(2) Orientational correlation function [35] (see
Figure 2, middle row). This is defined
as h��6(0)�6(r)i, where �6(r) is given byP

j exp(i6�j(r)). Here, i¼ (–1)1/2, the index j
runs from 1 to the number of nearest neigh-
bours to any given membrane-bound protein at
location r, and �j(r) is the angle formed by the
projection of the line joining the nearest
neighbours (termed the nearest neighbour
bond) on the xy plane with the x axis.
Nearest neighbour pairs are identified as
those pairs of molecules separated by
a distance that falls in the range of the first
peak of the g(r) function. The quantity
h��6(0)�6(r)i, therefore, measures the persis-
tence of bond-orientational correlations (or
hexagonal ordering) among the membrane-
bound proteins.

(3) Dynamical correlation functions (see Figure 2,
bottom row). These yield the membrane
relaxation times and reflect the dynamical
state of the system. The membrane height
autocorrelation function (see Figure 2, bottom

row) is defined as h�z(0)�z(t)i, where �z(t) (see
Figure 3) is the standard deviation of the height

profile z(x, y) of the membrane at each spatial

location. In our definition, the average of the

height is always 0, i.e. the global translation is

removed from the trajectories at time t. The

membrane height autocorrelation function is

sensitive to any global rearrangement in

membrane geometry and yields the relaxation

time associated with such reorganization.

Again, we note that time t is fictitious as we

ignore hydrodynamic interactions and the

calculation of correlation functions is merely

a numerical tool to assess convergence.

Even though it is more traditional to perform

a Fourier analysis and compute the spectral intensity

function hjz(q)j2i – here z(q) is the Fourier transform of

the membrane surface z(x, y) – such a scaling function

is only available when the curvature-inducing proteins

act independent of one another and not coupled to

membrane dynamics [36] and is not available from

theory for the case we are considering, namely when

the curvature-inducing functions are themselves diffus-

ing and coupled to membrane motion through

Equation (4). In the absence of curvature-inducing

Figure 2. (Top row): Radial distribution functions showing liquid-like order with the packing determined by the range R.
(Middle row): Orientational correlation functions up to 4R. (Bottom row): Height correlation functions showing the relaxation
time associated with the dominant membrane undulation mode. (a) �*¼ 0.03, R/nm¼ 40, C0� mm¼ 15; (b) �*¼ 0.008,
R/nm¼ 60, C0� mm¼ 60; (c) �*¼ 0.016, R/nm¼ 100, C0� mm¼ 20; (d) �*¼ 0.012, R/nm¼ 80, C0� mm¼ 30; (e) �*¼ 0.03,
R/nm¼ 80, C0� mm¼ 5.
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functions, hjz(q)j2i scales as [37] kBT/[�q
4
þ �q2], and

we have indeed verified this scaling by performing

the TDGL of the free membrane and subsequently

the Fourier analysis (data not shown); in fact, the

successful reproduction of this scaling was taken as an

indication of the correctness of the implementation of

our numerical TDGL code. We also note that the

KMC code was validated by ensuring that the mean-

squared displacement of the bound proteins on the flat

membrane under zero intrinsic curvature followed

a linear relationship with time.

3. Results and discussion

3.1. Potential of mean force between two
membrane-bound proteins

Most of the previous analyses have shown that
membrane-deformation-mediated energies tend to be
repulsive and should prevent, rather than promote,
the formation of protein dimers or clusters. Aranda-
Espinoza et al. have previously calculated the
membrane-mediated interaction between curvature-
inducing proteins [38]. The authors used
a combination of integral equation theory to describe

Figure 3. Standard deviation of the height profile as a function of simulation time, t. (a)–(e) correspond to cases (a)–(e) of
Figure 2. Insets in each panel depict the contours of the membrane height profile (as well as a snapshot of the membrane profile)
at the indicated simulation time. Adjacent contour lines have a height difference of 0.5 Å.

1918 N.J. Agrawal et al.
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the spatial distribution of the membrane-bound
proteins and the linearized elastic free energy model
(considered in this work) and reported that the
interaction between two membrane-bound curvature-
inducing proteins is dominated by a repulsive interac-
tion. Consistent with these published reports, the
calculated binding energy between two membrane-
bound proteins (see Figure 1) from our model is also
dominated by repulsive interactions governed by the
range of the curvature-inducing function R. The profile
for the interaction energy in Figure 1 closely matches
the calculations of Aranda-Espinoza et al. [38]; this
agreement serves as a validation of our model and
calculations.

Recently, Kozlov has discussed how the effect of
fluctuations can change the repulsive nature of the
interactions [39]. The author’s discussion is based on
the premise that any membrane protein locally restrains
thermal undulations of the lipid bilayer. Such undula-
tions are favoured entropically, and so this increases the
overall free energy of the bilayer. Neighbouring
proteins collaborate in restricting the membrane undu-
lations and reduce the total free energy costs, yielding
an effective (membrane-mediated) protein–protein
attraction. Indeed, for the linearized free energy
model, we can compute the second variation of
energy (note that, at equilibrium, the first variation is
zero, while the second variation governs the stiffness of
the system against fluctuations) to explicitly show that
the presence of a protein (or, equivalently, a curvature-
inducing function) leads to a localized suppression of
membrane fluctuations. Namely,

�2Eðz, 	Þ ¼
d2

d"2

Z Z
dx dy

�

2
fr2ðzþ "	Þ �H0g

2

�
,

þ
�

2
þ
�

4
H2

0

� �
frðzþ "	Þg2

i
,

which reduces to

�2Eðz, 	Þ ¼

Z Z
dx dy �fr2	g2 þ � þ

�

2
H2

0

� �
fr	g2:

ð5Þ

For any real-valued function 	, the integrand is always
positive and, hence, the second variation of energy is
positive, which implies that, at equilibrium, the energy
is indeed minimized. Equation (5) also suggests that
the second variation of energy increases with increasing
H0, thus a larger spontaneous curvature leads to higher
stiffness of the membrane and would result in smaller
height fluctuations. This provides for the possibility
that our linearized free energy model can support
an entropically mediated protein–protein attraction.
The outcome of the interplay between the attractive

entropic forces and the repulsive energetic forces is

context specific as both have the same dependence on
the protein–protein distance, and their absolute
values differ only by coefficients with similar values.

Thus, based on Equations (1b) and (5), we expect that
the potential of mean force between membrane-bound
proteins (which is governed by this balance) will be
strongly dependent on the magnitude and range of the

curvature-inducing function (i.e. C0 and R) as well as
on the density �*; in particular, for a certain regime
spanned by these parameters (for which entropic

effects dominate over the energetics) we can expect
a net attractive force favouring protein clustering
(see Section 3.3). We emphasize that these results are
not new to our work and have been discussed before

[2,38,39] in other contexts and we have taken the
agreement in trends between our calculations and these
prior works as a validation of our model and
simulations. It is also worth mentioning for complete-

ness that Chou et al. [40] have extended the energetic
analysis to membrane-bound proteins that have a non-
circular cross-sectional shape and to local membrane

deformation with a saddle shape (negative Gaussian
curvature) and have shown that, in such cases, the
interactions can be attractive even without considering
fluctuations.

3.2. Emergent membrane response to curvature-
inducing proteins

Exploring a range of values of �*, R (a lower valued
range mimics the curvature induced by an individual
protein or protein multimers, while a higher valued

range mimics the curvature induced by a clathrin coat
assembly) and C0 in a series of KMC-TDGL simula-
tions (other parameters, namely �, �, M, and T,

are fixed at values corresponding to a cytoskeleton-
fortified phospholipid bilayer membrane at T¼ 300K),
we find varying system behaviour with respect to the
membrane-height fluctuations; see Figures 3(a)–(e) and

Movies S2–S5 of the Supplementary Material (avail-
able on the online article webpage), which we use to
delineate regions in parameter space with markedly
different emergent behaviour.

The parameter regime [0.0� �*� 0.03, 20�

R/nm� 80, 10�C0� mm� 40] represents the condi-
tions under which regular thermal undulations of the
membrane are captured and no nucleation of a vesicle-
bud is observed. The evolution of the standard

deviation in membrane height, i.e. �z(t) typical of the
emergent membrane-height fluctuations in this regime,
is provided in Figure 3(a). The insets depict the

membrane-height profile as a contour plot (points
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along a contour have the same height z and adjacent

contours differ by 0.5 Å in z) at a single snapshot of the
simulation time indicated by the corresponding arrows.
In particular, the insets show regular undulations
and no systematic patterns in the membrane-height

profile. In contrast, the membrane-height profiles in
the parameter regime [0.008� �*� 0.016, 40�R/nm�
100, 40�C0� mm� 60] show patterns of systematic
vesicle-bud formation even under a low density of
membrane-bound proteins; a profile of the emergent

membrane response typical of this regime is depicted
in Figure 3(b); in particular, the system evolves from
a state of low �z in which no vesicle-bud is formed (left
inset) to one of high �z in which a vesicle-bud appears
(right inset). Thus tracking the transition of the �z
value appears to be a reasonable indicator (order
parameter) in identifying regimes that support vesicle-
bud formation (see also Movie S2). The parameter
regime [0.012� �*� 0.024, 80�R/nm� 100, 10�C0�

mm� 30] also supports vesicle-bud formation (see

a typical scenario in Figure 3(c) and Movie S3), but
at lower values of C0 and higher values of R, �* relative
to the previous case discussed. However, in contrast to
the previous case (namely, Figure 3(b) and Movie S2),
the relatively higher density of membrane-bound

proteins needed to elicit the transition (Movie S3) is
suggestive of a cooperative process leading to vesicle-
bud formation (see Section 3.3). We note that the
simulations in the regime [0.008� �*� 0.012,
R/nm¼ 80, 20�C0� mm� 30] also supported vesicle-

bud formation, but unlike the previous two cases
discussed (in which the vesicle-bud once formed was
stable for the rest of the simulation), the bud was only
metastable, suggestive of a metastable state. The
typical profile of this behaviour is depicted in

Figure 3(d) and Movie S4. Finally, in the parameter
regime [0.024� �*� 0.03, 60�R/nm� 80, 0�C0�

mm� 10] (see a typical profile in Figure 3(e) and
Movie S5), the evolution of the membrane-height
profile suggested a state of repressed membrane

undulations at a high density of membrane-bound
proteins.

3.3. Cooperativity in protein–protein interaction

In order to relate the context-dependent nature of the
membrane-mediated protein–protein interaction (dis-

cussed in Section 3.1) on the emergent membrane-
height profile evolution (Section 3.2), we further
investigate the form of the potential of mean force
(i.e. effective free energy of membrane-mediated
interaction) between two membrane-bound curvature-

inducing proteins by calculating the two-dimensional

radial distribution functions (see Figure 2 (top row)
for the range of parameters �*, R, and C0 explored
in Section 3.2). The radial distribution functions are
characterized by repulsion between membrane-bound
proteins at distances of R at which the range of the
intrinsic curvature functions overlap. This parameter
sets the dominant scale for the spatial localization and
packing of the proteins on the membrane, and in
a density-dependent fashion we observe liquid-like
structuring. We note that, at very short distances
(equal to the protein exclusion diameter a0), there is
repulsion due to protein–protein overlap; however, due
to the repulsion at R, which is greater than a0, this
regime is seldom explored in protein conformations
(see Figures 2(a) and (b)). However, at moderate-
to-high densities and moderate values of C0

(Figures 2(c)–(e)), the g(r) is non-zero for r5R and
the repulsive energetic barrier is overcome to localize
the protein molecules at these short distances: for these
cases, we observe correlations between proteins at
two length scales, namely that of the exclusion
diameter a0 and that of the range of interaction R.

It is notable that, under the conditions
of Figure 2(b), which support stable vesicle-bud
formation, the localization of proteins at distances
less than R is not a necessity. Moreover, the vesicle-
bud formation is sustained even without any signifi-
cant clustering of proteins, as evidenced by the lack
of structure in the g(r) function. These characteristics
suggest that the vesicle-bud formation under these
conditions does not require any significant degree of
cooperativity in protein–protein interaction and that,
in fact, the large curvature (C0) induced by each
individual protein is the primary driver of vesicle-bud
formation. Hence, we term this mode of nucleation
‘NWC’ or nucleation without cooperativity.

In contrast to the NWC regime, it is clear that the
nucleation of the vesicle-bud in Figures 2(c) and (d) is
accompanied by significant spatial correlations, as
evidenced by the peaked g(r) functions, suggesting
protein–protein cooperativity as the orchestrator
of the nucleation events. In order to determine if the
induction of spatial ordering leads to spatial patterning
of the membrane-bound protein molecules, we calcu-
late the orientational correlation functions (see middle
row of Figure 2). Intriguingly, the orientational
correlations are pronounced and significant only for
Figures 2(c) and (d) and are practically absent in
Figures 2(a), (b), and (e). It is clear that the presence
of orientational correlations under the regime of
moderate C0 and �* correlates with the induction of
vesicle-bud nucleation. Moreover, the nucleation event
leads to the formation of a stable bud only if the
orientational correlation persists beyond r0, the
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location of the first peak in g(r) (Figure 2(c) and Movie

S3), but the nucleated bud is only metastable and the

system returns to the undulating membrane phase

when this persistence is absent (Figure 2(d) and Movie

S4). We therefore conclude that, in addition to protein

co-localization, spatial patterning that sustains short-

range orientational order beyond the first coordination

shell is a necessary condition for the stabilization of the

nucleated vesicle-bud. We term this regime of vesicle-

bud nucleation as nucleation via orientational ordering

or ‘NVOO’. The requirement of sustained spatial

and orientational correlations, which necessitates the

involvement of multiple membrane-bound proteins,

is indeed suggestive of a cooperative phenomenon

associated with the NVOO nucleation event. We note

that this notion of cooperativity emerging from our

simulations is consistent with the analysis of Kim et al.

[41], who have shown using an energetic analysis that,

in the zero temperature limit, clusters of larger than

five membrane-bound curvature-inducing proteins can

be arranged in energetically stable configurations.

Among the regimes exhibiting no orientational corre-

lations (namely, Figures 2(a), (b), and (e)), the regime

associated with Figure 2(e) is unique because the

orientational correlations are absent despite the

strongest manifestation of spatial correlations.

Moreover, at the high density of membrane-bound

proteins in this regime, the membrane-height fluctua-

tions are repressed (see Figure 3(e) and Movie S5), and

the membrane autocorrelation function is flat, suggest-

ing a suppressive behaviour in membrane undulations

(see Figure 2, bottom row). We term this state of

membrane fluctuations as ‘RU’ for repressed
undulation.

4. Conclusion

The trace of short-range positional and orientational

order in response to parameter variation is plotted in
Figure 4(a): the plot depicts the values of g(r¼ r0) and
�6(r¼ r0), where r0 is the location of the first peak of
g(r). The different symbols represent different mani-

festations of membrane dynamics; the unfilled circles
[0.012� �*� 0.024, 80�R/nm� 100, 10�C0�

mm� 30] correspond to NVOO, squares [0.008� �*�
0.012, R/nm¼ 80, 20�C0� mm� 30] to NVOO with

only a metastable bud, and the filled hexagons
[0.008� �*� 0.016, 40�R/nm� 100, 40�C0�

mm� 60] correspond to NWC. The diamonds [0.0�

�*� 0.03, 20�R/nm� 80, 10�C0�mm� 40] repre-
sent conditions under which no nucleation (or
‘NoN’) is observed, and the triangles [0.024� �*�
0.03, 60�R/nm� 80, 0�C0� mm� 10] correspond to

RU. The traces in Figure 4(a) further support the
previously stated trend that the induction of spatial
correlation at larger densities of membrane-bound
proteins [0.012� �*5 0.024] leads to the induction of

short-range orientational ordering only under certain
conditions (see unfilled circles and squares) and that,
for large values of curvature induction (i.e. C0�

mm� 40), vesicle budding occurs even in the absence
of positional and orientational order (filled hexagons
in Figure 4(a)).

Subject to the well appreciated approximations of
the linear elastic model (described in Section 2), the

analysis of the collective behaviour of protein-
mediated membrane-height profile fluctuations leads
to the development of a global state diagram when
classified and plotted in terms of the tunable para-

meters, namely C0, R, and �* (see Figure 4(b)). The
state boundaries (dotted lines) are drawn approxi-
mately to separate symbols (regions) of distinct
emergent dynamic behaviour. The different symbols

in Figure 4(b) have a one-to-one correspondence with
those in Figure 4(a) and the dotted lines are a guide to
the eye rather than representing co-existence lines; free

energy estimates or the challenging task of equating
chemical potentials have not been carried out. The
state diagram depicts two regimes showing nucleation
of vesicle-buds via distinct mechanisms (NVOO and

NWC), the regime showing repressed undulations of
the membrane at high protein density (RU), and an
intervening regime showing no nucleation (NoN) with

only regular thermal undulations in the membrane.

1 3

0.2

0.4

0.6

0.8

1.0

g(r=r0)

Ψ
6(

r=
r0

)

C0/µm–1

R
/n

m

20 40 600

20

40

60

80

100

NWC
NVOO

No

RU

(a) (b)

N

2

Figure 4. (a) Trace of spatial and orientational correlations
in response to changes in tunable system parameters �*, R,
and C0. (b) Global state diagram for classifying membrane
state behaviour based on the observations recorded in (a).

�* R [nm] C0 (mm
–1) Symbol

a (0, 0.03] [20, 80] [10, 40] Diamond
b [0.008, 0.016] [40, 100] [40, 60] Filled hexagon
c [0.012, 0.024] [80, 100] [10, 30] Unfilled circle
d [0.008, 0.012] [80] [20, 30] Squares
e [0.024, 0.03] [60, 80] (0, 10] Triangle
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Several measures for experimental validation of the

reported palette of membrane behaviour and the

predicted state diagram are possible. In particular,

the surface density �* can be tuned by varying the

protein concentration, and C0 and R by studying

different protein variants (wildtype vs. mutants) of

epsin, AP180. The physical characteristics of the

protein–membrane interaction (i.e. C0 and R values)

may be characterized by a combination of microscopy

and diffraction experiments [42,43]. In addition to the

C0 and R values, the frequency response of the system

can be obtained from dielectric relaxation spectroscopy

[44,45]. Direct observation of membrane undulation

and vesicle budding can also be obtained via defocus-

ing microscopy [46,47]. Collectively, these measures

can yield an experimental phase diagram analogous to

Figure 4(b).
In future work, we plan to address the case of

extreme curvatures by relaxing the linearization

assumption in the elastic free energy and also extend

our methodology to simulate the dynamics by includ-

ing hydrodynamic interactions. These extensions will

facilitate the application of our methodology to study

the bioenergetics of cellular biochemical processes

such as receptor internalization via clathrin-mediated

endocytosis [48], where it is well established that

the curvature-inducing proteins associate with a

hexagonal-lattice forming protein clathrin to orches-

trate vesicle formation, however, the precise sequence

of events and mechanism remain unknown.
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