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We show that the quantization ambiguities of loop quantum cosmology, when considered in wider
generality, can be used to produce discretionary dynamical behaviour. There is an infinite di-
mensional space of ambiguities which parallels the infinite list of higher curvature corrections in
perturbative quantum gravity. There is however an ensemble of qualitative consequences which are
generic in the sense that they are independent of these ambiguities. Among these, one has well
defined fundamental dynamics across the big bang, and the existence of extra microscopic quantum
degrees of freedom that might be relevant in discussions about unitarity in quantum gravity. We
show that (in addition to the well known bouncing solutions of the effective equations) there are
other generic type of solutions for sufficiently soft initial conditions in the matter sector (tunnelling
solutions) where the scale factor goes through zero and the spacetime orientation is inverted. We
also show that generically, a contracting semiclassical universe branches off at the big bang into a
quantum superposition of universes with different quantum numbers. Despite their lack of quanti-
tative predictive power these models offer a fertile playground for the discussion of qualitative and
conceptual issues in quantum gravity.

I. INTRODUCTION

Quantum field theories with local degrees of freedom generically suffer of divergences due to uncontrolled UV
contributions to amplitudes. At the mathematical level the latter can be traced to the fact that interactions involve
products of fields (operator valued distributions in quantum field theory) at the same spacetime point and that such
products are ill-defined if constructed naively. The standard procedure of renormalization eliminates infinities from
the physical amplitudes at the price of introducing counter terms with free parameters to be fixed by a series of
renormalization conditions taken from physical inputs. In certain simple situations one can instead take due care
in the definition of products of operator valued distributions and thus completely avoid from the very beginning
UV divergences (see for instance [1]). However, such procedure is not unique and free parameters arise too in the
regularization procedure. These parameters must be fixed (in order to produce physical amplitudes) by the same
number of renormalization conditions of standard textbook treatments. In this way there is a formal link between
the number of counter-terms necessary to eliminate UV divergences and regularization ambiguities.

A key difficulty of canonical approaches to quantum gravity is that such intrinsic ambiguity of standard quantization
recipes become in appearance out of control. This is associated to the non-renormalizability of the gravitational
interaction, which in the case of general relativity in metric variables, is illustrated by the fact that the family of
general covariant functionals of gab representing a possible action principle describing the quantum effective action
is infinite dimensional and that the parameter controlling the dimensionality of such free couplings is the quantum
gravity coupling itself. Namely,

S[gab] =
1

2κ

∫ √
|g|
(
R+ Λ + α1`

2
pR

2 + α2`
4
pR

3 + · · ·+ β1`
2
pRµνασR

µνασ · · ·
)
dx4, (I.1)

where only some representative terms have been written with dimensionless couplings α1, α2, · · · , β1, β2, · · · , etc.
Generic radiative corrections produce divergences that need to be cured by counter terms in correspondence with the
infinite number of elements in the previous general action, requiring infinitely many renormalization conditions, and
compromising the predictive power of the approach1. However, from the previous formal discussion, an equivalent
danger menaces non-perturbative formulations where UV divergences are avoided via clever choices of variables and
or mathematical structures, as the danger metamorphoses into that of ambiguities.

As a complementary remark one must keep in mind that the previous analysis sometimes strongly depends on
the ‘fundamental variables’ chosen for quantization. An example of this is the emblematic case of gravity in three
dimensions where a naive metric variable analysis would have led to similar conclusions as in four dimensions. However,

1 It is possible, however, that these couplings would flow under the renormalization group in a non trivial way toward some asymptotic
fixed point characterized by a finite amount of parameters. Such perspective, known as the asymptotic safety scenario [2], is the subject
of active investigations [3].
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when the most general action is written in terms of first order variables one discovers that there is only a finite
dimensional set of possibilities. Namely

S[e, ω] =
1

2κ

∫
eI ∧ FIJ(ω)εIJK + Λ eI ∧ eJ ∧ eKεIJK + αSCS(ω), (I.2)

where eIa is a triad field, ωIJa is a Lorentz connection, and SCS(ω) is the Chern-Simons action. The theory is indeed
integrable, has only global or topological degrees of freedom, and its quantization is free of (infinite dimensional)
ambiguities [4, 5]. Strikingly, a similar finite dimensionality of the space of gravity actions is valid in first order
variables in four dimensions where one has that the most general gravitational action is given by

S[eAa , ω
AB
a ] =

1

2κ

∫ Einstein︷ ︸︸ ︷
εIJKLe

I ∧ eJ ∧ FKL(ω) +

Cosmological Constant︷ ︸︸ ︷
Λ εIJKLe

I ∧ eJ ∧ eK ∧ eL +

Holst︷ ︸︸ ︷
α1 eI ∧ eJ ∧ F IJ(ω) (I.3)

+ α2 (dωe
I ∧ dωeI − eI ∧ eJ ∧ F IJ(ω))︸ ︷︷ ︸

Nieh−Yan

+α3`
2
p F (ω)IJ ∧ F IJ(ω)

︸ ︷︷ ︸
Pontrjagin

+α4`
2
p εIJKLF (ω)IJ ∧ FKL(ω)

︸ ︷︷ ︸
Euler

,

where dωe
I is the covariant exterior derivative of eI and α1 · · ·α4 are dimensionless coupling constants. For non-

degenerate tetrads Einstein’s field equations follow from the previous action independently of the values of the α’s: the
additional terms are called topological invariants describing global properties of the field configurations in spacetime.
The α1-term is called the Holst term [6], the α2-term is the Nieh-Yan invariant, the α3-term is the Pontryagin
invariant, and the α4-term is the Euler invariant. Inspite of not changing the equation of motion these terms can
actually be interpreted as producing canonical transformations in the phase space of gravity 2.

The previous facts motivate the idea of the pertinence of such variables for the implementation of non-perturbative
quantization and thus can be viewed as natural rational behind the approach of loop quantum gravity [12] (although
the history of the subject cannot be reduced literally to such perspective but rather to the discovery of Ashtekar’s
new variables [13]). However, not surprisingly unlike the simple 3d case (which has no local degrees of freedom) the
absence of ambiguities in the quantum theory remains an open question. Indeed, at early stages of the development
of loop quantum gravity it was found that—thanks to the peculiar Hilbert space of quantum gravity adapted to
diffeomorphism invariance and the Ashtekar-Barbero connection variables—the quantum gravitational dynamical
equations (embodied by the Hamiltonian constraint that encodes both the gravity and matter interactions) where
free of UV divergences [14]. Nevertheless, the quantization of the Hamiltonian constraint suffers of ambiguities of an
infinite dimensional nature suggesting that the renormalizability issue is still present [15].

There is however an unresolved consistency check concerning the quantization of the constraints in loop quantum
gravity. This is the issue of anomalies. More precisely, the quantum dynamical equations are represented by a set
of quantum operators that must satisfy a commutation algebra inherited from the classical algebra of generators of
the surface deformation algebra. Checking the absence of anomalies has shown to be a remarkably hard question
suggesting that such consistency check could reduce the ambiguities in the definition of the quantum constraints [16–
18]. However, one should recognise that such hope is not clear from the general perspective of our initial discussion
as the algebra of surface deformations is a feature of any diffeomorphism invariant formulation of gravity. More
precisely, in the case of metric variables, the canonical analysis of the general action (I.3) would produce the same
surface deformation algebra independently of the values of the undetermined couplings.

The non-triviality of this question has motivated a recent interest in the application of renomalization group methods
to investigate (as in asymptotic safety scenarios) the possibility that the non-perturbative techniques of loop quantum
gravity could help uncover a non trivial UV completion of the theory [19–24].

The perspective that we emphasize here is not new [15] but its full implications in quantum cosmology has been
somewhat underestimated. The problem of quantization ambiguities in the cosmological models inspired by the
full theory has been considered in various works [25]; however, under certain restrictive assumptions that reduce the
discussion to finite dimensional sectors of the space of ambiguities [26–30], it has been argued not to represent a menace
to the predictatbility of the framework. Our present analysis shows that, as long as the question of ambiguities remains
open in the full theory, polymerized symmetry reduced models cannot produce accurate quantitative predictions but
only qualitative insights. We will show here that the ambiguities inherited from the full theory have an important

2 In such a context the so-called Immirzi parameter [7] corresponds to the combination γ ≡ 1
(α1+2α2)

[8]. This parameter plays a central

role in the spectrum of quantum geometric operators, and controls, in the presence of Fermions, the strength of an emergent four-fermion
interaction [9–11].
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dynamical effect in these models that, naturally, compromises their predictive power. Nevertheless, due to their
simplicity, our analysis does not reduce in any way the great value of these models for illustrating qualitative features
of quantum gravity. Some of these features are, in these simple models at least, generic (i.e. independent of the
ambiguity issue) suggesting that they might represent robust features possibly realized in nature.

II. UNIMODULAR QUANTUM COSMOLOGY AS A SIMPLE TESTING GROUND

In order to show the influence of the regularization ambiguities on physical quantities one first needs to be able to
perform explicit calculations within the framework where these ambiguities appear. Even when quantum cosmology
models correspond to classical systems with finitely many degrees of freedom, the non-standard representation theory
used in the construction of the quantum theory makes these models sufficiently complicated (in some of its versions)
to prevent explicit calculations. For example, different choices of time variables (realized by different choices of
lapse functions) produce different quantum constraints which can present supplementary challenges when it comes to
analysing the quantum dynamics.

This is in part the reason why the technique of the so-called effective dynamics has been developed [31] where the
quantum evolution is approximated by modified classical equations of motion. These effective equations are affected
by the ambiguities in the definition of the quantum dynamics. In fact these modifications are supposed to encode the
quantum corrections to general relativity coming from quantum gravity. In this sense the quantization ambiguities
on which we focus here are expected to affect these quantum corrections. However, showing explicitly the form of the
effective equations can be challenging or (unnecessarily) more involved when different time variables are chosen. In
order to simplify our presentation we analyse cosmology in the unimodular version of general relativity. Unimodular
gravity is simply equivalent to standard general relativity if the matter coupling is diffeomorphism invariant [32].
When applied to cosmology, it has the advantage of resolving the problem of time as the lapse function is fixed by
the unimodular constraint. It is customary in the literature of quantum cosmology to modify the scalar constraint by
assuming different choices of the lapse function (a choice that it is often referred to as a ‘gauge choice’). Even when
unimodular gravity is not a gauge fixing of standard general relativity, from the previous perspective unimodular
cosmology could be characterized at the technical level by a choice of lapse. We will see that such choice makes the
Hamiltonian evolution particularly simple in the gravity sector, and thus allows for the most transparent and simple
derivation and resolution of the quantum as well as the effective dynamical equations. It should be clear that the
main point of this work will not change if one would use a different notion of lapse. The choice we make has a very
natural geometric interpretation that we describe in the following paragraph.

There is no preferred notion of time in general relativity. This implies that the dynamics is dictated by constraint
equations and leads to the so-called problem of time in quantum gravity: instead of Schroedinger like evolution
equations one has a timeless dynamics defined by the quantum constraints. This very complicated technical and
conceptual problem can be circumvented in quantum cosmology by the use of tools that have become customary
in the area. The commonly accepted prescription is the use of some (partial) observable as clock that allows for
the deparametrization of the dynamics that leads to a Schroedinger like evolution equation and the definition of the
so-called physical Hilbert space of quantum cosmology. Even when such procedure is not unique and thus might lead
to unitarily inequivalent theories, this additional source of potential ambiguity will not concern us here. The reason
why the problem of time does not seem so serious in quantum cosmology is the fact that for the study of dynamical
questions (sufficiently far form the Planckian regime) an effective classical description is available. Such classical
description allows for dealing with the problem of time in just the usual way that is familiar to us in cosmology:
via gauge fixing, i.e., particular choices with some clear interpretation ranging from co-moving time, harmonic time,
conformal time, or (our choice here) unimodular time.

Unimodular time is the time variable that naturally emerges from the description of cosmology in unimodular
gravity [33]. Instead of a gauge fixing, unimodular gravity can be thought of as a genuine modified theory of gravity
that is (apart from a subtlety in the cosmological constant sector) is completely equivalent to general relativity. We
will use unimodular quantum cosmology [34, 35] in what follows just because in this formulation the gravitational
part of the Hamiltonian takes a particularly simple form; indeed, the geometry degrees of freedom can be mapped
uniquely to those of a non-relativistic free particle. This feature allows for a very intuitive interpretation of both the
effective classical evolution equations as well as the quantum gravity equations. In most situations of interest the
problem of quantum or classical evolution of geometry coupled with simple forms of matter can be seen as a regular
scattering problem of a non-relativistic particle in an external potential. This makes the setting of the dynamical
system particularly appealing for its simplicity; however, it should be clear from our treatment that the implications
drawn are of general validity and should apply (qualitatively speaking) to any of the customary parametrizations of
loop quantum cosmology.
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When specializing to (spatially flat) homogeneous and isotropic cosmologies with metric

ds2 = −N2dt2 + a(t)2d~x2 (II.1)

the Einstein-Hilbert action supplemented with the unimodular constraint becomes

S = −κ−1

∫ (√
|g|R+ λ(

√
|g| − 1)

)
dx4 (II.2)

where κ = 16πG, and λ is a Lagrange multiplier imposing the unimodular constraint
√
|g| − 1 = 0, and we have put

an overall minus sign in front of the action for later convenience. Specializing to the FLRW metric II.1 one gets

S = κ−1V0

∫ (
6
aȧ2

N
− λ(N |a|3 − 1)

)
dt, (II.3)

where total derivative terms have been eliminated, and the 3-volume V0 of a fiducial cell has been introduced. Resolving
the unimodular constraint fixes N = |a|−3 and defines a preferred notion of time; from now on we denote this new
time variable as s and we call it unimodular time. The action becomes

S = κ−1V0

∫
6a4ȧ2ds, (II.4)

where s denotes from now on unimodular time. For further reference it is important to relate unimodular time with
the standard comoving time τ , namely

ds = −|a|3dτ. (II.5)

At this point we will change variables to more convenient ones that make the action look like that of a non-relativistic
free particle. The new configuration variable will be chosen to be given by the 3-volume density

x = a3, (II.6)

from which it follows that ẋ = 3a2ȧ and the action then is

S =

∫
1

2
mẋ2ds , (II.7)

with

m ≡ 4V0

3κ
, (II.8)

and where the dot denotes derivative with respect to the unimodular time s. Note that the minus sign in from of
(II.3) was chosen so that the kinetic term of the particle analog has the usual sign. Also notice that if we use comoving
time dτ = −ds/|a|3 we have

p = m

(
dx

ds

)
= −3m

1

|a|
da

dτ
= −3m sign(a)H. (II.9)

We see that the momentum variable in our parametrization is just proportional to the Hubble rate H in usual comoving
variables! Let us introduce a scalar field as a matter model. Then the matter action (with the same overall minus
sign convention that we are adopting) is

SM =
1

2

∫ √
|g| (∇aφ∇aφ+ U(φ))

= −1

2
V0

∫
Na3

(
1

N2

(
dφ

ds

)2

− U(φ)

)
ds = −1

2
V0

∫ (
a6

(
dφ

ds

)2

− U(φ)

)
ds. (II.10)

Therefore, the action including our simple matter model is

S(x, φ) =

∫ (
1

2
m

(
dx

ds

)2

− 1

2
V0x

2

(
dφ

ds

)2

− V0U(φ)

)
ds (II.11)
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The previous action can be written in Hamiltonian form as

S(x, φ) =

∫
p
dx

ds
+ pφ

dφ

ds
−
(
p2

2m
−

p2
φ

2V0x2
− V0U(φ)

)
ds , (II.12)

where

pφ = −V0x
2 dφ

ds
. (II.13)

1. Changing variables to match the standard setup

The previous (x, p) variables in the gravity sector where chosen to emphasize the simple link between unimodular
gravity in the FLRW context and the dynamics of a point particle. A simple rescaling of these variables leads to the
standard parametrization of the phase space in loop quantum cosmology in the so-called µ̄-scheme. The variables
customarily used are called (b, v) and are defined as

b ≡ − γ

3m
p = −γ

3

dx

ds
= −γa2 da

ds
, (II.14)

and

v ≡ 3m

γ
x =

V0a
3

4πGγ
. (II.15)

Thus one has

{b, v} = 1. (II.16)

With these variables, the Hamiltonian is

H =
V0

2πGγ2

(
3

4
b2 −

p2
φ

16πGv2
− 2πGγ2 U(φ)

)
, (II.17)

which is proportional to the scalar constraint C as written in reference [36] (equation 2.19) simply rescaled by the
use of the unimodular time lapse, namely H = V0C/(πG|v|). The advantage of using unimodular variables resides in
the remarkable fact that the gravity part of the Hamiltonian depends only on the variable b (like a free particle in
classical mechanics). This simple fact simplifies several technical as well as conceptual discussions of the classical and
quantum features of the model.

III. REGULARIZATION AMBIGUITIES OF THE HAMILTONIAN

There are two aspects of the Hamiltonian that call for a modification of its classical expression in order to promote
it to a well defined self-adjoint operator in the special Hilbert space of loop quantum cosmology. One of them is that
only quasi-periodic functions of b but not b itself can be quantized. The second is that inverse volume contributions to
the Hamiltonian (entering through the matter coupling) are also modified by means of the use of classical expressions
that eliminate unboundedness of these at small volumes. Both modifications are ambiguous by nature and lead
to dynamical effects that we analyze in what follows. Interest in this issue from the observational perspective has
resurfaced recently in [37], here we concentrate on further theoretical implications. There are other approaches for
the definition of the quantum dynamics for cosmology where one starts from a more fundamental perspective at the
quantum level and infers from it the symmetry reduced model [38–40], we note that similar ambiguities are present
in these perspectives as well. For simplicity we concentrate on the loop quantum cosmology formulation where the
problem is embodied in the notion of regularization.
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A. Holonomy corrections

Due to the peculiar choice of representation in the quantization of the model (inspired by the structure of Loop
Quantum Gravity), there is no b operator in the Hilbert space of loop quantum cosmology but only operators corre-
sponding to finite v translations [36, 41]; from here on referred to as shift operators

exp(iλb) .Ψ(v) = Ψ(v − λ), (III.1)

where λ is some arbitrary length scale. As the classical Hamiltonian explicitly depends on b, it needs regularization
in order to be promoted to a self-adjoint operator in the Hilbert space of loop quantum cosmology. Consequently we
replace (II.17) by

H =
V0

2πGγ2

(
3f(λb)2

4λ2
−

p2
φ

16πGv2
− 2πGγ2 U(φ)

)
, (III.2)

where

f(λb) =
∑

n∈Z
fne

inλb. (III.3)

To be explicit about the regularization choice we write the substitution rule as

b2 → f(λb)2

λ2
. (III.4)

This operation is called polymerization in the loop quantum cosmology literature. The only conditions that consistency
with the classical dynamics imposes are: On the one hand, that f(x) = f̄(x) which translates into the condition

fn = f̄−n. (III.5)

On the other hand one needs that

〈f(λb)〉 = λb0 + O[(λb0)2] (III.6)

for λb0 � 1 when expectation values are computed in suitable semiclassical states peaked at the classical momentum
b0. This second condition is necessary to recover the semiclassical dynamics of standard cosmology at low Hubble rates
or the low density regime. This leaves an infinite dimensional freedom in the choice of the regularized Hamiltonian to
be promoted to an operator in the Hilbert space of our system. The standard choice in the loop quantum cosmology
literature is fn = iδ1

n/2, namely

b2 → sin2(λb)

λ2
. (III.7)

A possible justification for this choice is that of simplicity. The link between such choice in relation to the lowest
non-vanishing eigenstate of the area operator in loop quantum gravity, and the special status given to the fundamental
representation of the gauge group, is sometimes evoked as a further reason to pick (III.7) (See [36]). This argument
connects the regularization of a certain quantum operator in loop quantum cosmology to the features of a particular
state (the state with minimal area-eigenvalue) in loop quantum gravity. Even when accepting such possibility it is
unclear how the lowest area eigenstate should play such a central role. Indeed, in quantum theory the principle
of superposition rather suggests that states would typically be made of arbitrary superpositions of different area
eigenvalues. Consideration of such aspects in full generality brings us back to the infinite dimensional landscape of
polymerizations in (III.4).

When expressed in terms of the v-basis the evolution equation (related to the Hamiltonian constraint) contains
a finite difference term, which, with the so-called traditional choice (III.7) becomes a discrete version of a second
derivative in v. For an arbitrary choice (III.4) the finite difference term can be put in correspondence with a linear
combination of the discretization of higher derivative terms in v. If one were looking for eigenstates of the Hamiltonian
(III.2) one would be confronted with a growing multiplicity of formal solutions of the eigenvalue equation as the order
of the corresponding difference equation grows when considering general functions f(b) with arbitrarily high Fourier
components. This question can be studied in the simpler context of the pure gravity case which in the analogy with
the point particle system corresponds to the asymptotic large universe regime where standard matter contributions
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can be neglected in a logic analogous to that of scattering theory. In such simpler setting, most of these extra solutions
related to the higher order character of the difference equation for arbitrary f(b) can be shown not to be normalizable,
and hence not to be part of the spectrum.

In the Wheeler-DeWitt standard representation of quantum cosmology, eigenstates of the Hamiltonian are doubly
degenerate in correspondence with the two possible equal ‘energy’ classical solutions corresponding to an expanding
and/or contracting universe for a given cosmological constant: the two are related to the discrete symmetry ẋ→ −ẋ
involving the initial conditions of the theory written in the variables (II.11). Therefore, any additional degeneracy
of energy eigenvalues would have no classical correspondence and its associated conserved quantity would reveal the
existence of new (microscopic) degrees of freedom. We will see that this is the case in a subtle way but we postpone
this discussion until Section IV.

The formal similarities with higher curvature corrections of the Einstein-Hilbert action due to quantum effects is
manifest even when a rigorous statement in this sense is made difficult by the breaking of explicit covariance by the
Hamiltonian formulation (in the first place), and the further (possibly explicit) breaking of covariance introduced
by the polymerization itself (see [42]). In perturbative quantum gravity, higher derivative terms arise from higher
curvature corrections and this changes the number of degrees of freedom as seen from a classical perspective. As higher
curvature (higher derivative) terms appear multiplied by increasing powers of `2p, all these corrections are taken to
be negligible at energy scales well below the Planck scale. We believe that this analogy is interesting, thus making
polymer models a nice simplified arena where difficult questions related to renormalization and the definition of the
continuum limit can be explored in the highly simplified context of a model that (at least classically) starts with a
finite number of degrees of freedom.

Finally, it is possible to exhibit the direct relation between the function f(λb) and the cosmological constant as
follows. Standard considerations in unimodular gravity imply that [43, 44]

Λ = 8πG
E

V0
, (III.8)

where E is the eigenvalue of (II.17) or (III.2). The discussion is simplified if we assume that we are in the massless
scalar field case U(φ) = 0. If a non trivial self interaction is present then a more careful analysis is needed. We restrict
to initial conditions given at v = ±∞ (large universes) where the contribution of the scalar field to the Hamiltonian
(III.2) vanishes. In this limit the system is the analog of a non relativistic free particle where eigenvalues of the energy
can be labelled by eigenvalues of momenta3. Therefore, one obtains from (III.2) the relation

Λ =
3f2(b∞)

γ2λ2
, (III.9)

where b∞ is the asymmptotic value of b for v = ±∞.

B. Inverse volume corrections

Inverse volume terms in the Hamiltonian introduce potential singularities in the quantum theory. Such potential
divergencies are present as well in the full theory of loop quantum gravity and need regularization when constructing a
well defined quantum scalar constraint operator. Thiemann introduced [45] a natural regularization of such potential
UV divergences by realizing that inverse volume terms can be obtained from the Poisson algebra between well defined
geometric operators and the holonomy of the connection. In the case of cosmology the idea can be illustrated, for
example, by the following simple classical identity4

1√
|v|

=
2i

λ
sgn(v) exp (iλb) {exp (−iλb),

√
|v|} (III.10)

which suggests a natural regularization of quantities depending on the inverse volume using ‘holonomies’ and com-
mutators in the quantum theory. Using a symmetrized factor ordering, for instance

1̂√
|v|
→ 1

~λ
sgn(v)

(
exp (iλb) [exp (−iλb),

√̂
|v|] + [exp (−iλb),

√̂
|v|] exp (iλb)

)
(III.11)

3 More precisely, in our context these correspond to the eigenvalues of the shift operators (IV.2), yet the key point is that they are still
labelled by a value of b.

4 This is a particular case of a more general identity leading to additional ambiguities [46]. For simplicity we concentrate on the one given
in [36].
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This choice regularizes the singular behaviour of the inverse volume at v = 0—where the previous expression vanishes
by construction—and produces a well defined operator in the Hilbert space of loop quantum cosmology. However,
the choice is by no means unique. In fact (in addition to factor ordering and other sources of ambiguities, such as the
choice of the power of v inside the Poisson bracket in (III.10)) on has an infinite dimensional space of regularizations
that is similar in spirit to the one identified for the regularization of curvature in (III.2) given by

1̂√
|v|
→ sgn(v)

2~
∑
m∈Z cm

∑

n∈Z

cn
λn

(
exp (iλnb) [exp (−iλnb),

√̂
|v|] + [exp (−iλnb),

√̂
|v|] exp (iλnb)

)
, (III.12)

for arbitrary coefficients cn. This implies that in addition to the infinite dimensional family of curvature regularizations
one has an (at least) equally large family of inverse volume regularizations which would generically enter in the
construction of the matter coupling when defining the quantum Hamiltonian. One can show that the action of the
previous operator is simply given by (see [36])

1̂√
|v|

Ψ(v) =
Ψ(v)

~
∑
m∈Z cm

∑

n∈Z

cn
λn

(√
|v + λn| −

√
|v − λn|

)

≡ Ψ(v)∑
m∈Z cm

∑

n∈Z
cn

[
1√
|v|

]

n

, (III.13)

where we have introduced the definition
[

1√
|v|

]

n

≡ 1

~λn

(√
|v + λn| −

√
|v − λn|

)
. (III.14)

One has that

√
|v|
[

1√
|v|

]

n

= 1 +
1

16

n2λ2

v2
+

7

128

n4λ4

v4
+ O

(
n6λ6

v6

)
, (III.15)

which shows that for sufficiently large volume one recovers the classical expected limit. Notice that the regularization
(III.13) vanishes at v = 0. One can use the previous series expansion and chose the coefficients cn in order to improve
the convergence to the classical value. For example with the following choice

c1→ 9.42267, c2→ −13.1273, c3→ 6.31659, c4→ −1.93791, c5→ 0.355751, c6→ −0.0297957 (III.16)

one gets the regularization to coincide with 1/
√
|v| up to order O

(
n10λ10/v10

)
(plotted in blue in Figure 1)! One can

continue improving convergence by killing higher order deviations from 1/
√
v, it simply boils down to solving a linear

system of equations with increasing dimension. One might think that such process would produce a sequence of cn
converging pointwise to the Wilson-Ewing regularization [46, 47] of the inverse volume which is given by 1/

√
|v| for

all v 6= 0 while it vanishes at v = 0. By plotting a few members of the above approximating sequence we see that this
will not be the case. In fact, the previous sequence, while it gets better and better in approximating 1/

√
v for large

v, it differs more and more from the function 1/
√
v at around v = ±λ (see Figure 1)

There are two important features that we would like to emphasize here. The first one is that the regularization of
the inverse volume operator would lead to a function of v that is not everywhere differentiable due to the presence of
the absolute value in the formulas. This is of course not a problem from the perspective of the quantum theory where
(for the quantum dynamics) only the evaluation of the regularization on a discrete lattice plays a role. However, at
the non differentiable points the effective equations can simply not be trusted. The second important feature is that
the regularization is a continuous function and thus bounded. We insist on the point that (even when some choices
might seem natural given some subjective criteria) there is no well defined rule that would actually eliminate the
vast set of possibilities here either. We will discuss some further consequences of inverse volume corrections later, in
particlar we will see in Section VI C their role in the violation of the null energy condition near the big bang.

IV. THE QUANTUM THEORY: EVOLUTION ACROSS THE SINGULARITY

Let us discuss the main features of the quantum dynamics, before discussing the validity of the effective dynamical
approach that we will use later for further interpretation—where the quantum dynamics is approximated by looking at
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Figure 1: Inverse volume corrections of the classical function 1/
√
|v| (shown in black). The blue curve represents the best

approximation for large volumes which coincides with the classical expression up to order (λ/v)10. However, as the approxi-
mations get better for large volume they get worse at Planckian volumes as the plotted sequence illustrates which deviations
becoming the largest at low integer values times λ.

the evolution of semiclassical states. One great advantage of the unimodular gravity formulation is that (at least in the
FLRW context) the theory has a well identified time evolution (in unimodular time (II.5)) and the Kinematical Hilbert
space of loop quantum cosmology is the physical Hilbert space. In other words the problem of time is trivialized and
the physical interpretation of the quantum theory becomes closer to that of standard quantum mechanics 5. However,
an important difference with standard quantum mechanics is the use of an unconventional representation of the basic
phase space variables which brings into the system a central property of the full theory of loop quantum gravity:
fundamental discreteness. Concretely, instead of the standard Schroedinger representation on a gravitational Hilbert
space of square integrable wave functions where v acts by multiplication and b = −i∂v, one introduces a Hilbert space
where only the exponentiated version of b, the shift (or holonomy) operators exp iλb (for arbitrary λ ∈ R) are well
defined. This is called sometimes the polymer representation and the procedure of using this exotic representation
(well motivated from the full theory) is called polymerization.

Consequently, there is no operator corresponding to b in the loop quantum cosmology polymer representation but
only the operators corresponding to finite v translations [41]; from here on referred to as shift operators defined as

exp(iλb) .Ψ(v) = Ψ(v − λ). (IV.1)

There are states diagonalizing the shift operators, denoted |b0; Γελ〉, which are labelled by a real value b0 and where
Γελ is a 1d lattice of points, a graph, in the real line of the form v = nλ+ε with ε ∈ [0, λ) and n ∈ N. The corresponding
wave function of these eigenstates is given by Ψb0(v) ≡ 〈v|b0; Γελ〉 = exp (−ib0v)δΓελ where the symbol δΓελ evaluates
to one when v ∈ Γελ and vanishes otherwise. Assuming that k = mλ, it follows from (IV.1) that

exp(ikb) . |b0; Γελ〉 = exp (ikb0) |b0; Γελ〉 . (IV.2)

The states |b; Γελ〉 are eigenstates of those shift operators which preserve the lattice Γελ. The fact that these states are
supported on discrete lattices (polymer-like excitations) is what motivated the name of the representation. Notice
that the eigenvalues are independent of the parameter ε, i.e., they are infinitely degenerate and span a non separable
subspace of the quantum cosmology Hilbert space Hlqc.

5 Closer but not quite exactly the same. Here we are making reference to the unconfortable questions related to the meaning of a quantum
theory of the universe as a whole. These questions are indeed very important and remain open to a large extent. In order to concentrate
on the main point of this paper we have to ignore them altogether.
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As the operator b does not exist in the Hilbert space one has to construct approximations in terms of combinations of
shift operators which behave like b in a suitable sense. A procedure that is (as discussed in Section III A) intrinsically
ambiguous. We would like to understand the influence of deviating from the standard regularization (III.7) to the
quantum dynamics. In order to do this we will concentrate on the pure gravity case first. Indeed, the ambiguity
(III.4) only affects the gravitational part of the Hamiltonian and thus this simple case will completely characterize
the dynamical influence of the choice of different regularization functions f(λb) in the quantum dynamics in the large
volume asymptotic regime where matter dilutes until becoming negligible. Thus we will deal with the special case
where, before quantization, the classical Hamiltonian is regularized as

H =
b2

2m
→ f(λb)2

2mλ2
. (IV.3)

Note that this case is non trivial because it admits a non-zero cosmological constant that is given by the value of the
energy in the unimodular framework (recall (III.8)). In the quantum theory, we are interested in the eigenstates of
the Hamiltonian (the analog of the time independent Schroedinger equation). Let us first analyze the spectrum of
the Hamiltonian in the traditional polymerization, namely we would like to solve the equation

(
sin(λb)2

2mλ2
− E

)
|ΨE〉 = 0 (IV.4)

which in the v-basis becomes (due to (IV.1)) the difference equation

ΨE(v − 2λ) + ΨE(v + 2λ) + (8mλ2E − 2)ΨE(v) = 0, (IV.5)

where the order of the difference equation is directly related to the polymerization choice. This seems to raise a
potential difficulty: if instead of the traditional choice we take an arbitrary f(λb) the order of the difference equation
will grow arbitrarily. Would this not lead to an uncontrollable proliferation of spurious solutions? We will see soon
that this is not the case. For the moment we continue the analysis of the present scenario. As the Hamiltonian is
a combination of shift operators (IV.1) of the kind for which one knows the eigenstates, one can simply express the
energy eigenstates in terms of |b0; Γε2λ〉 (the eigenstates of the shift operators) and calculate the relationship between
b0 and the energy eigenvalues. We could call this the polymerized dispersion relations. For the standard choice energy
eigenstates and dispersion relations are

|ΨE(b0)〉 = |b0; Γε2λ〉 , E(b0) =
sin(λb0)2

2mλ2
. (IV.6)

A. The ε-sectors

The previous energy eigenstates (eigenstates of the cosmological constant) are infinitely degenerate due to the ε
degeneracy of the shift operators (IV.1). This over abundance of solutions of the Schroedinger equation is controlled,
in standard accounts, by fixing a volume lattice once and for all and choising one ε-sector. This choice is dynamically
consistent because the Hamiltonian preserves the given lattice; however, in the presence of matter the choice represents
an additional dynamical ambiguity as the dynamical features will depend on ε. This is particularly clear when we
look at the inverse volume corrections of Section III B. Each different choice of ε gives a lattice that probes the volume
regularization at different discrete points. As the inverse volume regularization enters the coupling of gravity with
matter (see for instance equation III.2) the details of the dynamics will depend on this choice. Because the Hamiltonian
preserves ε-sectors they are some times called super selection sectors. However, as there are other (Dirac) observables
that do not preserve the lattice, these sectors are not superselected in any usual sense.

More precisely, in the case of pure gravity observables commuting with the Hamiltonian and mapping between
different values of ε (graph changing observables) are simply the shift operators introduced in IV.1. In the case of a
non trivial matter coupling other Dirac observables exist, they are technically hard to characterize explicitly in their
full generality because of the usual difficulty associated to the construction of such conserved quantities. However,
notice that if the matter coupling is such that matter dilutes as v → ∞ (as expected for regular matter degrees
of freedom) then shift operators remain Dirac asymptotic observables where the universe becomes large and the
Hamiltonian tends to the pure geometry Hamiltonian in the usual sense of scattering theory. The shift observables
(IV.1) define in this manner a complete set of commuting observables fully characterizing the positive energy (positive
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cosmologial constant6) states. These asymptotic observables are like those regularly employed in standard situations
involving scattering theory. Their existence shows that ε-sectors are not superselected.

There is hence no clear reason to restrict to a single lattice and superpositions of different lattices can be considered.
Some of the implications of this possibility have beed investigated in [43, 44] where it is shown that these additional
degrees of freedom, which are microscopic or Planckian, can be key in understanding the fate of information in
situations where evolution across would-be-singularities is relevant like in cosmology and (most importantly) in the
context of black hole formation and evaporation. In order to simplify the following discussion, we will restrict, from
here on, our analysis to the case of states supported a single lattice.

B. Degeneracy of the energy (cosmological constant) eigenstates in the pure gravity case

In the Schroedinger representation the dispersion relations would have been the familiar non relativistic particle
relation E(b0) = b20/(2m) which is doubly degenerate corresponding to the momentum eigenstates with b = ±b0.
Translating this to unimodular cosmology, these two eigenstates would correspond to a state of a De Sitter with
cosmological constant Λ = 8πGE(b0)/V0 that is either contracting or expanding in the FLRW slicing. With the
standard polymerization (III.7) we observe at first that a new degeneracy has appeared as there are four different
shift-operator-eigenstates that produce the same energy, namely those labelled by the four roots of the equation on
the right of (IV.6) depicted on the left of Figure 2. We will study the role of these additional solutions below once
we have described this type of degeneracy for an arbitrary regularization.

For an arbitrary polymerization (III.4) the situation is quite similar. Eigenstates are again given by

|ΨE(b0)〉 = |b0; Γε2λ〉 with E(b0) =
f(λb0)2

2mλ2
. (IV.7)

However, the degeneracy of the energy eigenvalues is now dependent on the choice of the function f(λb). An example
with 6 different eigenstates is depicted on the right panel of Figure 4. One can distinguish in this example two different
situations, one where the energy is E1 and the 8 solutions correspond to eigenstates of the form (IV.7). In the other
case, for the energy E2, the number of solutions of the eigenvalue equation seen as a difference equation remains 8;
however, only the four values of b0 explicitly seen in the figure correspond to ‘plane-wave’ eigenstates of the form
(IV.2). It is easy to show7 that the other 4 solutions of the difference equation are diverging in either the v → ±∞
limit and thus are not part of the Hilbert space (this is the analog of non-normalizable solutions of for example the
time independent Schroedinger equation for the Harmonic oscillator). But the most interesting thing concerning
these additional solutions happens when matter couplings that break v-translational invariance of the Hamiltonian
are included.

6 Negative Λ solutions exist in the presence of matter and they correspond bound states (in the analog non-relativistic particle system).
These solutions do not reach the |v| → ∞ asymptotic region and admit no scattering theory interpretation (as in usual cases).

7 See for instance section 2.3 of [48].
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Figure 2: The polymerization f(x)2 = −2(cos(x)−1) matches the degeneracy of eigenstates of the Schroedinger representation.
On the right panel we show the different scattering channels in a matter coupling with a massless scalar that produces (for a
given pφ eigenstate) an effective potential regularized by inverse volume corrections (shown in black). The universe bounces
into a superposition of transmitted and reflected modes with the same asymptotic (large v) Hubble rates. If we factor by the
symmetry v → −v then we only have a bounce and the superposition disappears. The results of an analytically solvable model
are shown in (IV.10).
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Figure 3: In the traditional polymerization f2(x) = (sin(x))2 (dispersion relations on the left) new solutions appear. On the
right panel we show the different scattering channels in a matter coupling with a massless scalar that produces (for a given
pφ eigenstate) an effective potential regularized by inverse volume corrections (shown in black). The universe bounces and
tunnels in new channels with different asymptotic Hubble rates for a given cosmological constant. If the v → −v symmetry
is imposed (as customarily in the specialized literature) the degeneracy remains and the universe only bounces yet into the
quantum superposition of two semiclassical solutions. The results of an analytically solvable model are shown in (IV.10).

C. Dynamical consequences when matter couplings are included

Here we show how the inclusion of matter couplings has the generic effect of producing ‘diffusion’ into the various
energy eigensectors which would not be present in the Schroedinger quantization. The additional energy eigenvalues
of the pure gravity model introduced by the choice of polymerization play an important dynamical role. We will see
that a universe starting in the large volume limit in one asymptotically De Sitter state—with a given cosmological
constant (energy) and a given Hubble rate b0—will ‘scatter’ through the big bang into a superposition of the various
eigenstates of the same asymptotic energy. In this way, the quantum dynamics of the bounce is way more complicated
than hinted by the effective equation approach that will be constructed in the later part of the paper. This is a simple
instance of the physical expectation embodied in the statement that anything that can happen happens in quantum
mechanics. It shows in a crystal clear way that, in a background independent approach, the most likely result is
that an initially semiclassical state (with a clear spacetime interpretation) will evolve into a superposition that might
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Figure 4: In a generic polymerization, here f(x)2 = 2/13(2 − (cos[2x] + cos[3x])). On the right panel we show the different
scattering channels in a matter coupling with a massless scalar that produces (for a given pφ eigenstate) an effective potential
regularized by inverse volume corrections (shown in black). New channels for the bounce appear and a given universe evolves
through the singularity into a quantum supperposition of universes with the same cosmological constant (or expectation value
of the cosmological constant for wave packets) but different Hubble rates. The results of an analytically solvable model are
shown in (IV.10).

not always admit a single spacetime representation. Forgetting this simple fact about quantum mechanics is one of
the most current errors in setting up important questions such as the ones concerning the fate of information in black
hole evaporation. Here again we see how, the present models of quantum cosmology, represent a rich and valuable
testground for conceptual ideas in spite of their limited quantitative predictive power as far as observable effects are
concerned.

One of the simplest models of matter coupling is that of a massless scalar field (i.e. U(φ) = 0 in equation (II.10)).
In that case the momentum of the scalar field is conserved and the gravitational dynamics is equivalent to that of a
point particle (with kinetic energy ∝ b2) moving in a ‘external attractive potential’ that goes like ∝ 1/v2 (see equation
(II.17)). The divergence in the potential is regularizaed in loop quantum cosmology using the Thiemann construction
that modifies the inverse volume dependence near the big bang at v = 0. Such modification is illustrated in the
Figures 2, 3, 4. Such model is already complicated enough to make analytic statements involved.

However, the qualitative behaviour that one want to illustrate does not depend on the details of the potential and
only on the fact that the coupling with matter breaks the conservation of the variable b. This is simply due to the fact
that matter couplings break translational invariance in the v-axes producing a non trivial dynamics of the Hubble
rate (a quite obvious fact from the standard classical perspective based on the Friedmann equations where only in
pure DeSitter spacetime the Hubble rate remains constant in the FLRW slicing). Thus, the phenomenon we want
to emphasize can be illustrated in a much simpler model where analytic calculations are trivial. An example of such
model is the one where the regularized 1/v2 potential produced by the corresponding contribution to the Hamiltonian
(III.2) of the massless scalar field is replaced by the sum of two Kronecker deltas at v = 0 and v = λ mimicking in
some way the two picks in the regularized potential seen in the previous figures. Notice however, that this example
is not meant to approximate in any precise sense the massless scalar field case. We are only using it because we can
solve it explicitly and because it produces the phenomenology that will be common (at the qualitative level) to any
matter coupling. The only essential feature here is its breaking of translational invariance in the v-axes.

Concretely, we concentrate on the difference equation

Ψe(v − 2λ) + Ψe(v + 2λ) + (e− 2)Ψe(v)− αδ
( v
λ
, 1
)

Ψe(v)− αδ
( v
λ
, 0
)

Ψe(v) = 0, (IV.8)

where e ≡ 8mλ2E and the delta functions are Kronecker deltas on the lattice v = λn with n ∈ Z, and α is a coupling
constant. This is a simple scattering problem which is resolved via the ansatz

Ψb1(v) =

{
e−ib1(e)v +R1(e) eib1v +R2(e) eib2v (v ≥ 0)

T1(e) e−ib1(e)v + T2(e) e−ib2(e)v (v ≤ 0),
, (IV.9)

where b1(e) > b2(e) > 0 are the two positive solutions of the dispersion relation—plotted in Figure 3—for the given
value of e. The previous discrete Schroedinger equation boils down to 4 independent linear equations from which one
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determines that reflexion and transmission amplitudes. They are given by

R1(e) =
α
(
iα
√
−(e− 1)e+ α(1− e)− (1− e)

(
e− i

√
−(e− 1)e

))

(e− 1) (α2 + e)
R2(e) =

iα2
√
e√

1− e (α2 + e)

T1(e) =
e

α2 + e
− iα

√
e√

1− e (α2 + e)
T2(e) =

α
(

1 + i
√
e√

1−e

)
e

α2 + e
. (IV.10)

There are two interesting limits of the previous result that will be relevant for the discussion in Section VI B: the
reflection amplitudes vanish in the limit α → 0 where the bounce is completely suppressed, while the transmission
amplitudes vanish in the hard-scattering limit α→∞. Here we have used a simplistic model where explicit calculations
can be done. As mentioned before, the qualitative features present in this model remain in the realistic case (this is
confirmed by numerical simulations that we have omitted form the paper for simplicity).

V. THE MODIFIED COSMOLOGICAL EFFECTIVE EQUATIONS

Let us start from the unimodular Hamiltonian constraint where (III.2) is equated to some energy value that plays
the role of the cosmological constant, namely

C ≡ H− V0
Λ

8πG
=

V0

2πGγ2

(
3f(λb)2

4λ2
−

p2
φ

16πGv2
− 2πGγ2 U(φ)− 1

4
Λ

)
≈ 0, (V.1)

Let us study the evolution of the volume variable

v =
V0a

3

4πGγ
(V.2)

d 〈v〉
ds

= −i 〈[v,H]〉 ≈ ∂ 〈H〉
∂b

=
3V0

4πGγ2λ
f ′(λb)f(λb) (V.3)

where we have used the results of Appendix A in the derivation of the effective equations, and prime denotes derivatives
with respect to λb, and s denotes unimodular time given in terms of co-moving (cosmic) time τ by

ds = −|a|3dτ

= −4πGγ

V0
|v|dτ. (V.4)

Indeed, the previous equation gives us an expression for ȧ/a, namely

ȧ

a
= − 1

γλ
f ′(λb)f(λb) (V.5)

From now on we denote 〈v〉 simply v. Using the standard definition of the Hubble rate H ≡ ȧ/a we can write

H2 =
1

γ2λ2
f ′(λb)2f(λb)2. (V.6)

The constraint (V.1) can be rewritten as

C =
3V0

8πGγ2λ2

(
f(λb)2 − ρ+ ρΛ

ρ

)
≈ 0 (V.7)

where ρΛ ≡ Λ/(8πG)

ρ̄ =
3

8πGγ2λ2
, (V.8)
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and

ρ =
p2
φ

32π2G2γ2v2
+ U(φ) +

Λ

8πG

=
φ̇2

2
+ U(φ) +

Λ

8πG
(V.9)

is the standard energy density. This implies

f(λb) =
√

(ρ/ρ̄). (V.10)

It is also convenient to introduce the pressure

P =
p2
φ

32π2G2γ2v2
− U(φ)− Λ

8πG

=
φ̇2

2
− U(φ)− Λ

8πG
. (V.11)

We arrive thus to the modified Friedman equation

H2 =
8πGρ

3

[
f ′
(
f−1

(√
ρ/ρ̄
))]2

. (V.12)

We can now look at the evolution equation of the energy density (V.9)

d 〈ρ〉
ds

= −i 〈[ρ,H]〉

= −i 3V0

8πGγ2λ2
〈[ρ, f(λb)2]〉 =

3

8πGγ2λ2

d 〈f(λb)2〉
ds

(V.13)

where we have used that the Hamiltonian is H = 3V0f(λb)2/(8πGγ2λ2)− V0ρ. Now using Remark 4 we get

d 〈ρ〉
ds

= − 3

16πGγ2λ2

〈p2
φ〉

(4πGγ2)v3
4λf ′(λb)f(λb)

=
3

16πGγ2λ2

4 〈p2
φ〉

(4πGγ2)v3
λ2γH. (V.14)

An important corollary of the previous algebra (or simply from Remark 4) is that

ḃ = −4πGγ(ρ+ P )
|v|
v
, (V.15)

which follows directly from Remark 4, the definition of ρ and P , and the sign comes from the relationship (V.4)
between comoving time τ and unimodular time s. Now using (V.4) we get the continuity equation

ρ̇+ 3H(ρ+ P ) = 0 (V.16)

where the quantities in the equation are to be taken as expectation values. It is now a simple exercise to show that
from (V.16) and (V.12) the following modified Raychaudhuri equation follows

Ḣ = −4πG (ρ+ P )

[
f ′
(
f−1

(√
ρ/ρ̄
))2

+ f ′′
(
f−1

(√
ρ/ρ̄
))

f
(
f−1

(√
ρ/ρ̄
))]

. (V.17)

This concludes the derivation of the effective cosmological equations for arbitrary regularizations of the Hamiltonian
encoded in the arbitrary function f(λb). We see that in regions where the latter behaves linearly as in (III.6), one
recovers the standard classical Eintein’s equations in the cosmological context. However, and this is the key point of
this paper, deviations from Einstein’s equations can be introduced by ‘tuning’ the function f(λb). Such modifications,
as we will see, do have important physical consequences and thus make the large number of Fourier coefficients in
f(λb) relevant ambiguity parameters compromising the use of these models for physical predictions.
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VI. THE LANDSCAPE OF POLYMERIZED MODELS OF QUANTUM COSMOLOGY

In this section we analyse the generic implications of the effective dynamical equations. We will assume their
validity through the region corresponding to the would-be-singularity of classical cosmology where the scale factor a
approaches zero. Even when for certain suitable initial semiclassical states for contracting universes this approximation
might hold true in some cases (for instance for suitable bouncing solutions) we know from our analysis of Section IV
that the state of the universe branches off into other solutions that go right through the a = 0 regime. In these other
branches the effective dynamical equations break down unless one considers a rather artificial regularization of the
inverse volume corrections. This is why such solutions can only be understood in full generality using the quantum
theory. Due to this behaviour we call these solutions tunneling solutions.

A. Bouncing branches

We will first study the bouncing solutions of the effective equations that are usually described in the LQC literature,
analysing the generic effect of the choice of the polymerization function f(λb). We recall equation (V.5)

ȧ

a
= − 1

κγ
f ′(λb)f(λb) , (VI.1)

where, f ′(λb) denotes the derivative with respect to λb. We also need the modified Raychaudhuri equation (V.17)
which can be written in the form

3
ä

a
= −4πG

(
(ρ+ 3P )f ′2 + 3(ρ+ P )f ′′f

)
+ Λf ′2 . (VI.2)

From (V.15) and assuming the validity of the null energy condition (NEC), ρ+P ≥ 0, we can determine the direction
of change of b depending on the sign of the volume of the universe. This greatly simplifies the analysis of the landscape
dynamics. NEC are violated due to quantum gravity effects when inverse volume corrections in the matter coupling
are taken into account. However, this is not relevant for the bouncing branches for states such that the effective
equations are valid as the bounce prevents v from reaching the regions where NEC are violated (see below Section
VI C).

Critical points in the function f(λb) correspond to two possibilities: bounces (minimum volume configurations where
the universe stops contracting and starts expanding) and turning points (maximum volume configurations where the
volume of the universe stops increasing and starts decreasing). Such situations are identified by the condition ȧ = 0,
which, from (VI.1), arises when f = 0 and f ′ = 0. We will study first the case f ′ = 0. In order to understand if we
are at the presence of a bounce or a turning point, we have to study the sign of the second derivative of the volume
(a bounce occurs for v̈ > 0, a turning point for v̈ < 0). Evaluating (VI.2) at points where f ′ = 0 we get

ä

a

∣∣∣∣
f ′=0

= −4πG(ρ+ P )f ′′f . (VI.3)

Assuming that the NEC is valid, local maxima of the function f represent a bounce when f > 0 as well as for local
minima of f when f < 0. Conversely, we have turning points at local minima of f for f > 0, and at local maxima
of f for f < 0. What about those points where f = 0? If the cosmological constant is positive, then the from of the
Hamiltonian imposes that

f2(λb) ≥
√
ρΛ

ρc
, (VI.4)

so that these points are inside a ‘classically forbidden’ region but they can be reached by setting Λ = 0. In this case
they become a special case of points where f(λb)2ρc = ρΛ. In general there are De Sitter asymptotic configurations
(Minkowski being a limiting case) where the contribution of other forms of matter to ρ and P vanish. All this is

illustrated in Figure 5. Assuming that the universe is in the v > 0 branch, then equation (V.15) implies that ḃ ≤ 0

as long as the NEC hold with ḃ = 0 at the De Sitter configurations where ρ+ P = 0. These configurations are fixed
points of the flow of b (recall that b is simply related to the Hubble rate according to the classical analysis from where
we started).

With all this information we can interpret the situation described in Figure 5 qualitatively by observing that it
represents two distinct possible histories for the universe. The first starts on the classically allowed region on the
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Figure 5: Illustration of the dynamical features brought by the use of a generic f(λb) when assuming that Λ ≥ 0. If we require
ρ ≥ 0, we have a bound on f given by f2 ≥ ρΛ/ρ̄. Close to λb0 with f2(λb0) = ρΛ/ρ̄ the function must be well approximated
by f(λb) ≈ ±λ(b− b0) in order to recover general relativity at low regular matter densities. We denote bounce points with B,
turning points with t.p., and fixed points where the universe becomes asymptotically De Sitter with d.s.

right in an (asymptotically) De Sitter state defined by the furthest intersection of f(λb) with
√
ρΛ/ρc to the right.

The universe contracts and goes out of the purely De Sitter state entering a phase where other forms of matter start
playing a dynamical role. At the first minimum the universe bounces for the first time and starts expanding. The
expansion continues until the universe gets to the first maximum (from right to left) where it starts contracting again
until the second minimum is reached and a last bounce leads to an expanding universe that expands forever towards
a final asymptotic De Sitter state. A second sequence of events can be described in a similar fashion for the evolution
along the classically allowed region on the left of Figure 5.

Note that the initial and final asymptotic De Sitter phases are described by different Hubble rates are the former
is modulated by the value of the f ′2 at the asymptotic points according to (V.12). One could introduce an effective
cosmological constant at such De Sitter fixed points

Λds−fp ≡ Λf ′2. (VI.5)

Notice that these fixed point correspond to low energy regions where the density of matter (other than the cosmological
constant) goes to zero. More generally, one can expand the modified Friedman (V.12) around an arbitrary density ρ0

and write

ȧ2

a2
=

8πGeff

3
ρ+

Λeff

3
+ O

(
(ρ− ρ0)2

ρ2
c

)
(VI.6)

A simple calculation gives

Geff = G(f ′2 + f ′′f), (VI.7)

and

Λeff = (f ′2 + f ′′f)Λ− 8πGρ0ff
′′ (VI.8)

For ρ0 = Λ/(8πG) we recover the De Sitter fixed point value (VI.5). Notice, that as we approach a bouncing point
Geff becomes negative turning gravity repulsive. The same functional dependence of Geff is responsible for the effect
interpreted as a change of signature in [49].

Finally, in the case of Λ < 0 there is a non trivial lower bound for ρ given by ρmin = −ρΛ corresponding to points
where f = 0. In the point particle analogy these are to turning points of a bound state where the kinetic energy
vanishes, here f(λb) = 0. For the universe these are turning points where the universe achieves minimal regular
matter density before recollapsing in to a denser regime. The other qualitative features at critical points remain the
same as in the previous discussion.
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B. Tunnelling branches (in the case of a massless scalar field)

In Section IV we have shown that the quantum theory predicts that, in addition to the traditional bounce evoked in
the previous discussion and advocated in the LQC literature at large, the universe can also tunnel across the singularity
into an expanding phase. The bounce is something that is clearly captured by the effective equations. Can tunnelling
also become apparent from these equations? It is possible to see this if one considers for a moment inverse volume
corrections in the matter coupling described in Section III B. This perspective will turn out not to be important by
the end of the discussion in this section; however, it gives a concrete classical classical picture of the process we have
in mind. We will see that for this classical picture to hold one has to push to the extreme non-Planckain region the
inverse volume corrections in the inverse volume regularization. However, the dynamical channel remains open in the
fundamental quantum theory where semiclassical descriptions are only a good interpretational tool away from the big
bang.

For simplicity we concentrate on the case of a massless scalar field matter model. Assuming that we are in
an eigenstate of the momentum πφ (conserved in this case) we have already observed that its contribution to the
Hamiltonian III.2 can be seen as an effective potential in the analogy with a non relativistic particle parametrization
of Section II. However, this contribution is now everywhere finite as the 1/v2 classical behaviour is regularized by the
Thiemann trick. This means that there must exist solutions of the effective equations where the the universe evolves
right through v = 0 (or scale factor a = 0) into the v < 0 without experiencing the bounce produced by the kinetic
term when the variable b reaches the suitable critical points of f(λb) described above. For this to happen the universe
must scatter thought the big bang singularity ‘softly’ in the sense that the variable b must not grow up to one of the
critical points of f(λb). This happens when the universe—interpreted as the point particle—rolls down the potential

V (v) ≡ −p2
φ

[
1

v2

]

reg

(VI.9)

in a way such that its ‘kinetic energy’ does not grow beyond the bound

p2
φ

4πGγ2
max

[
1

v2

]

reg

≤ 3

γ2λ2
f2(λbc)− Λ =

3

γ2λ2
(f2(λbc)− f2(λb∞)). (VI.10)

We observe that, as the regularized potential is bounded, for |pφ| sufficiently low the universe experiences (according
to the effective equations) a soft-transition from v > 0 to v < 0 in finite unimodular time ∆s instead of a bounce. The
scale factor crosses a = 0; however, there is no singularity as one can easily check from the effective equations (VI.1)
and (VI.2) and the fact that both P and ρ vanish there. Indeed, the universe goes through a De Sitter phase where
Λ dominates. Even when a = 0 is reached in finite unimodular time s, the would-be-singularity a = 0 is reached at
infinite comoving time τ . If valid, the effective equations predict an infinite number of e-folds of inflation at around
the soft-transmission from v > 0 to v < 0. Even when here there is only one such transitions, the scenario resembles in
spirit the eon-transition of conformal cyclic cosmology proposed by Penrose [50]. However, these conclusions are not
really correct for inverse volume regularizations that modify the matter coupling from the expected classical behaviour
at around the Planck scale only.

Concretely, if we take the standard inverse volume correction based on [1/
√
v]1 (recall equation III.14) for which

max

[
1

v2

]

reg

=
4

λ2~
(VI.11)

p2
φ ≤ 3π`2p

(
f2(λbc)− f2(λb∞)

)
. (VI.12)

However, we see that in order to trust the previous conclusions the effective equations would have to be valid in the
description of the universe from v = λ to v = −λ. If λ is taken to be of the order of the Planck scale then it is
clear that the details of the dynamics evoked above (De Sitter inflation for an unlimited number of e-folds) does not
survive in the fundamental description where the variable v jumps on discrete values of the order of λ. However, the
conclusion that the transmission channel exists in addition to the well known bouncing channel remains. A precise
analysis of such transitions would require using a fully quantum treatment which is of course possible.

In this respect it is interesting to revisit the results of Section IV under the light of the present discussion. Notice
that, qualitatively speaking, the parameter α regulating the strength of the toy-model potential in (IV.10) is the
analog of p2

φ here. We observe that, even when always non vanishing, the transmission amplitudes go to zero in the
limit α → ∞ and only the bouncing channels remain available. Consideration of the quantum theory uncovers a
feature that we have evoked previously. Indeed, the criterion for soft bounce (VI.10) looses its quantitative relevance
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and we realize that even if one considers un-bounded regularizations such as the one proposed in [46, 47] there will be
a component of wave function in the transmission sector in addition to the bouncing sector for suitable initial states
that probe the potential on sufficiently soft points of the potential. More precisely, consider the regularization where

[
1

v2

]

reg

=
1

v2
∀ v 6= 0, while

[
1

02

]

reg

= 0. (VI.13)

Consider a semiclassical state defined on a lattice of v = nλ with n ∈ Z, i.e. a superposition of volume eigen-states
that will evolve on this lattice in such a way that the potential will be probed only on such lattice points. The criterion
(VI.10) can be written in this case as

p2
φ ≤ p2

C ≡ 12π`2p
(
f2(λbc)− f2(λb∞)

)
. (VI.14)

Now this cannot be a sharp bound because its construction relies on the effective dynamics. However, it remains
an order of magnitude criterion in the sense that as p2

φ becomes smaller and p2
φ � p2

C the transmission probability
is expected to dominate while the bouncing probability will become smaller and vice versa. Indeed a more direct
dimensional analysis argument is perhaps clearer. Assuming the change in the function f(λb) in the region of interest
is order unity (which is about right for a continuous function unless one would dramatically tune f(λb)) then the
criterion of softness is very simple and boils down to the condition that8

p2
φ . `

2
p. (VI.16)

C. Violation of the NEC due to inverse volume corrections

The NEC requires that Tabk
akb ≥ 0 for any future directed null vector. In our cosmological setting any matter

coupling can be considered as a perfect fluid as demanded by isotropy, and thus the NEC reduces to the statement that
ρ + P ≥ 0. For a scalar field model of the type considered here (and independently of the self-interaction potential)
this condition is classically given by

ρ+ P =
p2
φ

16π2G2γ2v2
, (VI.17)

which satisfies the NEC trivially. In the quantum theory the NEC can be violated by the inverse volume corrections
introduced by a regularization, for instance of the class (III.14). As an example we plot the regularization

[
1

v2

]

reg

=

(
2

[
1√
v

]

20

−
[

1√
v

]

2

)([
1√
v

]

2

)3

(VI.18)

in Figure 6, where one observes that the NEC are violated near the big bang. Such possibility (which is again
directly related to the ambiguities of the polymer quantization) has a strong dynamical effect. In the special case of
a massless scalar field the previous effect implies also a violation of the weak and the strong energy conditions in the
matter sector. When translated into the non relativistic particle analogy of Section II, one observes that the effective
potential in the Hamiltonian (III.2) is no longer negative definite. This implies that for sufficiently low cosmological
constant—and under suitable conditions where the function f(λb) will play a role—the universe might bounce through
yet another different channel due to the repulsive potential produced by the negative energy brought about by the

8 It is interesting to notice that if we assume that the Universe is described by an massless scalar field before the onset of inflation one
can estimate pφ as follows. Using equation (V.9) we have

ρ ∼
p2
φ

V 2
0 a

6
. (VI.15)

If we assume that the density of the onset of inflation is ∼ 10−5m4
p—as is the case, for instance, in power law inflationary model [51]—

and we take the physical volume of the fiducial set at the onset of inflation to be ∼ 102m−3
p we obtain that p2

φ ∼ 10−1m−2
p ∼ 10−1`2p.

Note that that a fiducial cell with physical volume of 102 Planck volumes will inflate to a size much larger than the observable universe
today. For a discussion of the role of V0 in quantum fluctuations see [52], this of course adds and additional dimension to the ambiguity
discussion.
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regularization before reaching one of the critical points of f ′ = 0. Once again this is possible if the initial conditions
for the matter fields are sufficiently soft so that the probability of this new channel is activated before the standard
kinetic bounce described in Section VI A takes place. A simple analysis that evaluates the amount of ‘kinetic’ energy
acquired by the universe (in the non-relativistic particle analogy) as it evolves toward the would-be-singuarity shows
that the condition is

∣∣∣∣
pφ
`p

∣∣∣∣ .
∣∣∣vc
λ

∣∣∣ , (VI.19)

where vc is the value of v that maximizes the regularization v−2|reg before the NEC are violated (explicitly seen around
v = 20 in Figure 6 in this particular example). As vc can be made large by tuning the inverse volume regularization,
the present criterion of softness is weaker than the one for tunnelling (VI.16).
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Figure 6: Regularization of the function 1/v2: the classical function corresponds to the dotted line. The regularization shown
here violates the positivity in a range around v = 0 and coincides in the IR with the classical function as the plot on the right
illustrates. This leads from equation (VI.17) to violations of the NEC that when considered in the Hamiltonian produce a
different type of bounce for suitable initial conditions. The plot represents the regularization given in (VI.18).

D. Illustrating examples

1. Inflation induced by ambiguity parameters

In order to illustrate how the ambiguities of loop quantum cosmology can actually affect the physics in a non trivial
manner in this section we show that the modifications introduced by the function f(λb) can for instance drive inflation
for a large number of e-folds in a way that is weakly dependent of the matter content and dynamics and basically
due to the dynamical modifications brought by the ‘holonomy corrections’ in f(λb). We will illustrate this with two
simple models: first with a model of a universe filled with thermal radiation, second in the case of a model of inflation
with a scalar field with potential U(φ) = λφ4/2. The first example shows that one can get many e-folds of inflation
without an inflaton, the second contains an scalar field but the inflation will be driven by effects brought by f(λb), as
a consequence, the phenomenology observable in the CMB fluctuations can be tuned, as we will show, by judiciously
choosing the later function. Thus, let us consider a function f(λb) such that

f ′(λb)2 =

{
1 b < bc
3H2

0

8πG
1

ρ[λb] b > bc.
(VI.20)

where from (V.1) we have

ρ[λb] = ρ̄f(λb)2, (VI.21)

and continuity requires

ρ[λbc] =
8πG

3H2
0

≡ ρc, (VI.22)
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with ρc a critical density depending on the choice of H0. A solution of the differential equation (VI.23) is given by

f(λb) =

{
λb b < bc√

2γλ2H0(b− bc) + λ2b2c b > bc.
(VI.23)

This choice of f(λb) produces the standard Frieman equation for ρ ≤ ρc while it produces a Friedman equation with
constant Hubble rate H0 (De Sitter inflation) for ρ ≥ ρc regardless of the equations of state of matter! The only thing
that the matter equations of state will control (via (V.16)) is for how long the universe will remain in the inflationary
phase. We will construct two explicit examples in what follows.

2. A pure radiation inflationary model

The first model consists of a universe filled with radiation ρ = 3P . In this case one has from (V.16) that

ρ = ρin
a4

in

a4
. (VI.24)

Assuming that the initial value of ρin = m4
p (Planck density) and setting ρc = 10−68ρin in (VI.22) to the electro-weak

transition density9 we see that inflation can be sustained as long as

a4
in

a4
≥ 10−68, (VI.25)

in other works for a number of e-folds of about

Nrad = 17 log(10) ≈ 39. (VI.26)

Using a massless scalar field (which is an often used example) with equation of state P = ρ one has

ρ = ρin
a6

in

a6
, (VI.27)

and the same ρc we get Nφ = log[10]68/6 ≈ 26 which is still a considerable number.

E. Inflation with a scalar field

It is also possible to design a model without an inflaton just using the matter content of the standard model
of particle physics where inflation is driven by polymer corrections. The model is consistent with the observed
fluctuations in the CMB if the usual paradigm where quantum fluctuations of the Higgs (with potential U(φ) = α

2 φ
4)

are responsible for the generation of inhomogeneities is used. More precisely, starting from the Klein Gordon equation
for the Higgs zero mode

φ̈+ 3Hφ̇+ 2αφ3 = 0, (VI.28)

and using the standard terminal velocity approximation ( φ̈

Hφ̇
� 1), the solution of (VI.28) is given by

φ(t) =
φ0√

1 + 4
3α

φ2
0

H2
0
H0t

or φ(N ) =
φ0√

1 + 4
3α

φ2
0

H2
0
N

, (VI.29)

where we introduced the number of e-folds N = log(a) ≈ H0t. Now using that ρ = φ̇2

2 + α
2 φ

4 and equation (VI.29)
we obtain

ρ(N ) =
α

2

φ4
0[

1 + 4
3α

φ2
0

H2
0
N
]2


2α

3

φ2
0

H2
0[

1 + 4
3α

φ2
0

H2
0
N
] + 1


 , (VI.30)

9 The electro-weak transition energy scale is Eew ≈ 100 GeV which corresponds to Eew ≈ 10−17mp.
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where φ0 is the initial value of the scalar field. Let us assume that we want

N = 50 (VI.31)

then previous expression must satisfy the condition (VI.22). Introducing the variables y ≡ mp/φ0 and x ≡ φ0/H0 we
can write it as

3y2

8π
=
α

2

x2

[
1 + 200α

3 x2
]2

(
2α

3

x2

[
1 + 200α

3 x2
] + 1

)
, (VI.32)

which imposes some algebraic restrictions on the initial value φ0 and the Hubble rateH0. We can solve this numerically.
For instance we find a solution φ0 ≈ 10mp and H0 ≈ mp if we choose α = 10−3 (for such small coupling we could
solve the previous constraint analytically neglecting the subleading corrections in α but this is not really important
here as we only want to exhibit an example). At the end of inflation φend ≈ 9.7mp and the reheating phase could start
as in usual approaches such as those of chaotic inflation. This example is perhaps more suitable for our point as here
the densities remain Planckian all the way during the inflationary phase so that our deviations from general relativity
can be more safely attributed to ‘quantum gravity’ effects. In contrast with the previous example where densities
went down to almost standard particle physics densities during the anomalous expansion era. One could investigate
the mechanism of structure formation. The point of our example is to show the intrinsic discretional nature of these
models which precludes the possibility to actually use them for such predictions.

VII. CONCLUSIONS

We have investigated regularization ambiguities associated with the so-called polymerization process imposed upon
us when quantizing cosmological models using the loop quantum cosmology framework. We showed that quantitative
predictability is compromised by the strong dependence on free parameters. However, some qualitative features are
robust and independent of the polymerization choice. Among these one finds the well defined quantum evolution across
of the big bang which can also be recover at the level of effective dynamical equations valid for suitable semiclassical
states. Thanks to the fact that our quantum dynamics could be explicitly solved, we were able to exhibit the existence
of new channels (tunneling) for the transition across the big bang that are not apparent at the level of the effective
dynamical equations. This was possible due to the use of unimodular quantum cosmology; however, it is easy to
understand that these features hold true in the standard formulation.

The richness of these models should be relevant for the discussion of conceptual and qualitative issues in quantum
gravity. For instance in the discussion of questions of unitarity in the context of the black hole information puzzle
(where some initial studies have been performed [43, 44]), or in the context of gravitational collapse where the new
tuneling modes discussed here could be simplified toy models relevant to investigate the black to white hole transition
paradigm of [53–57].
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Appendix A: Some properties of Gaussian states in LQC

The work of Willis and Taveras [31, 58] shows that one can approximate the quantum dynamics of loop quantum
cosmology by effective classical equations when using suitable semiclassical states defined in terms of gaussian states.
However, their analysis does not include the type of generalized regularizations studied in this paper. In this section we
show that the effective dynamics approximation continues to make sense for arbitrary regularizations of the quantum
Hamiltonian as defined in (III.2).

Let us specialize to a natural choice of semiclassical states (customarily used in the literature studying the issues
involved here [31, 58]). For that we chose a state |Ψ〉 ∈Hlqc ⊗Hφ as a Gaussian state given by

|Ψ〉 =
∑

vn∈Γλ

∫

R
dp Ψv0,b0(vn)Φp0,φ0

(p) |vn, p〉 (A.1)
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where one is using the basis eigenstates of v and p respectively, with the (physical) inner product

〈vm, p′|vn, p〉 = δn,mδ(p, p
′), (A.2)

and where the wave function

Ψv0,b0(v) =

√
λσb√
π
e−

σ2b
2 (v−v0)2eib0(v−v0), (A.3)

is peaked at the geometry phase space point (v0, b0), and the wave function

Φp0,φ0(p) =

√
σφ√
π
e−

σ2φ
2 (p−p0)2eiφ0(p−p0), (A.4)

representing a semiclassical state peaked at the point (φ0, p0) of the scalar field phase space. In the previous expressions
Γλ denotes a regular lattice with lattice spacing λ that identifies of the the so-called super selected sectors of the
quantum geometry Hilbert space (for a discussion of the nature of such choice see [43, 44] and references there in).

1. On the equivalence between calculations using the discrete or the continuum inner products

The following Lemma gives the means to translating expressions involving discrete sums in the loop quantum
cosmology inner product to the more familiar continuous integrals of the Schrodinger representation.

Remark 1. For any operator O(b, p) =
∑
k ok(p)eibλk, and gaussian semiclassical states as in (A.1), one has that

〈O(b, p)〉 ≡ 〈Ψ|O(b, p)|Ψ〉. (A.5)

Proof: By linearity it is enough to prove the previous statement for the operator eikbλ for arbitrary k. One has

〈Ψ|eikbλ|Ψ〉 =
λσb√
π

∑

n,m

e−
σ2b
2 (λn−v0)2e−ib0(λn−v0)e−

σ2b
2 (λm−v0)2eib0(λm−v0) 〈n|m− k〉

=
λσbe

i2b0λk

√
π

∑

m

e−
σ2b
2 (λm−λk−v0)2e−

σ2b
2 (λm−v0)2

=
λσbe

ib0λk

√
π

e−
1
4σ

2
bλ

2k2
∑

m

e−σ
2
b(λm−v0−λ k2 )

2

=
σbe

ib0λk

√
π

e−
1
4σ

2
bλ

2k2ϑ3

[
−π

2

(
k + 2

v0

λ

)
; e
− π2

λ2σ2
b

]

= eib0λke−
1
4σ

2
bλ

2k2
(

1 + O

(
e
− π2

λ2σ2
b

))
, (A.6)

where

ϑ3[u; q] ≡ 1 + 2

∞∑

n=1

qn
2

cos[2nu] (A.7)

in the first line we used the definition of the state (A.1) and (IV.1) and then we just rearranged the sums completing
squares to arrive at the final result.

Corolary 1. For any operator O(λb, p) =
∑
k ok(p)eikbλ, and gaussian semiclassical states as in (A.1), one has that

d 〈Ψ|O(λb, p)Ψ〉
d(λb0)

= 〈dO(λb, p)

d(λb)
〉 . (A.8)

The proof of the previous statement follows directly from (A.6) �.
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Corolary 2. For any operator f(λb) =
∑
k fke

ikbλ, and gaussian semiclassical states as in (A.1), one has that

〈f(b)2〉 − 〈f(b)〉2 = 2f ′(λb0)2 λ2σ2
b + O(λ4σ4

b ). (A.9)

Proof: From Remark 1 we have that

〈f(λb)〉 = f(λb0) +
1

4
f ′′(λb0) λ2σ2

b + O(λ4σ4
b ). (A.10)

The present statement follows from the previous equation when applied to O(b) = f2(b) and O(b) = f(b) respectively
and replacing the result in the expression of the fluctuation �.

Corolary 3. The previous two results imply that

d 〈f(λb)2〉
db0

= 2
d 〈f(λb)〉
db0

〈f(λb)〉+ O(λ2σ2). (A.11)

2. The generating function and the expectation value of operators depending on the volume

Remark 2. For any operator O(b, p) =
∑
k ok(p)eibλk, and gaussian semiclassical states as in (A.1), one has the

generating function on the left

〈Ψ|ej(v−v0)O(b, p)|Ψ〉
〈Ψ|Ψ〉 =

∑

k

ok(p)eib0ke
− 1

4σ
2
bλ

2k2+ j2

4σ2
b

−jλ k2
+

(
1 + O

(
e
− π2

λ2σ2
b

))
, (A.12)

and the generating function on the right

〈Ψ|O(b, p)ej(v−v0)|Ψ〉
〈Ψ|Ψ〉 =

∑

k

ok(p)eib0ke
− 1

4σ
2
bλ

2k2+ j2

4σ2
b

+jλ k2
+

(
1 + O

(
e
− π2

λ2σ2
b

))
. (A.13)

Proof: Consider

〈Ψ|eikbλej(v−v0)|Ψ〉 =
λσb√
π

∑

n,m

e−
σ2b
2 (λn−v0)2e−ib0(λn−v0)e−

σ2b
2 (λm−v0)2eib0(λm−v0)ej(λm−v0) 〈n|m− k〉

= eib0ke
− 1

4σ
2
bλ

2k2+ j2

4σ2
b

+jλ k2

(
1 + O

(
e
− π2

λ2σ2
b

))
, (A.14)

where in the second line we completed the square and performed the gaussian integration. Equation (A.13) follows
from the last line. A similar manipulation gives (A.12) �.

3. Some statements about the truncation of the Fourier expansion

Given a bounded square integrable function f(λb) of period 2π we can write it as

f(λb) =
∑

n∈Z
ane

inλb , (A.15)

with the coefficients an given by

an =
1

2π

∫ 2π

0

f(λb)e−inλbd(λb) . (A.16)
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which can be bounded

|an| ≤ fmax . (A.17)

where fmax ≡ max |f(λb)|. Let us define the truncated function as

fN (λb) =

+N∑

n=−N
ane

inλb . (A.18)

Remark 3. When evaluated on gaussian states (A.1) one has that

|〈f(λb)〉 − 〈fN (λb)〉| ≤ 2fmax e
−σ2

bλ
2N2

(1 + O(e−σ
2
bλ

2

)) . (A.19)

Therefore, the expectation value of the full series and the truncation agree extremely quickly as N grows. We can say
the the difference between the two will be negligible as long as

λ2σ2
bN

2 > 1 . (A.20)

Proof. It follows from Proposition 1 that

|〈f(λb)〉 − 〈fN (λb)〉| =

∣∣∣∣∣∣
∑

|n|>N

ane
inλb0e−σ

2
bλ

2n2

∣∣∣∣∣∣

≤ 2

+∞∑

n=N+1

|an| e−σ
2
bλ

2n2

= 2 e−σ
2
bλ

2N2
+∞∑

n=N+1

|an| e−σ
2
bλ

2(n2−N2)

≤ 2 e−σ
2
bλ

2N2
+∞∑

n=N+1

|an| e−σ
2
bλ

2(n−N)2

= 2 e−σ
2
bλ

2N2
+∞∑

m=1

|am+N | e−σ
2
bλ

2m2

≤ 2fmax e
−σ2

bλ
2N2

(1 + O(e−σ
2
bλ

2

)) �. (A.21)

Corolary 4. For a given function f(λb), and Gaussian states (A.1) we have that

〈fN (λb)〉 ≈ f(λb0) (A.22)

as long as

1

N2
< λ2σ2

b <

∣∣∣∣
4f(λb0)

f ′′(λb0)

∣∣∣∣ (A.23)

which can be achieved for sufficiently large N . We therefore arrive at the conclusion that for any arbitrary function
f(λb) we can find N and σp such that the Gaussian expectation value would agree with the desired accuracy with the
function of our choice satisfying the minimal requirement (III.3).

Remark 4. For arbitrary operators O(βb) following time evolution rule holds

d 〈O(βb)〉
ds

≡ −i 〈[O(βb),H]〉

=
V0

4πGγ

〈p2
φ〉

πGγv3
0

d 〈O(βb)〉
db0

+ O

(
β2

v4
0

)
(A.24)

where one needs to assume that v0 � σb and v0 � N .
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