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Abstract

We analysed whole genome sequences of 560 breast cancers to advance understanding of the 

driver mutations conferring clonal advantage and the mutational processes generating somatic 

mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding 

regions exhibited high mutation frequencies but most have distinctive structural features probably 

causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis 

was extended to genome rearrangements and revealed 12 base substitution and six rearrangement 

signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, 

appear associated with defective homologous recombination based DNA repair: one with deficient 

BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is 

unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic 

regions highlights the repertoire of cancer genes and mutational processes operative, and 

progresses towards a comprehensive account of the somatic genetic basis of breast cancer.

Introduction

The mutational theory of cancer proposes that changes in DNA sequence, termed “driver” 

mutations, confer proliferative advantage upon a cell, leading to outgrowth of a neoplastic 

clone1. Some driver mutations are inherited in the germline, but most arise in somatic cells 
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during the lifetime of the cancer patient, together with many “passenger” mutations not 

implicated in cancer development1. Multiple mutational processes, including endogenous 

and exogenous mutagen exposures, aberrant DNA editing, replication errors and defective 

DNA maintenance, are responsible for generating these mutations1–3.

Over the past five decades, several waves of technology have advanced the characterisation 

of mutations in cancer genomes. Karyotype analysis revealed rearranged chromosomes and 

copy number alterations. Subsequently, loss of heterozygosity analysis, hybridisation of 

cancer-derived DNA to microarrays and other approaches provided higher resolution 

insights into copy number changes4–8. Recently, DNA sequencing has enabled systematic 

characterisation of the full repertoire of mutation types including base substitutions, small 

insertions/deletions, rearrangements and copy number changes9–13, yielding substantial 

insights into the mutated cancer genes and mutational processes operative in human cancer.

As for many cancer classes, most currently available breast cancer genome sequences target 

protein-coding exons8,11–15. Consequently, there has been limited consideration of 

mutations in untranslated, intronic and intergenic regions, leaving central questions 

pertaining to the molecular pathogenesis of the disease unresolved. First, the role of 

activating driver rearrangements16–18 forming chimeric (fusion) genes/proteins or 

relocating genes adjacent to new regulatory regions as observed in haematological and other 

malignancies19. Second, the role of driver substitutions and indels in non-coding regions of 

the genome20,21. Common inherited variants conferring susceptibility to human disease are 

generally in non-coding regulatory regions and the possibility that similar mechanisms 

operate somatically in cancer was highlighted by the discovery of somatic driver 

substitutions in the TERT gene promoter22,23. Third, which mutational processes generate 

the somatic mutations found in breast cancer2,24. Addressing this question has been 

constrained because exome sequences do not inform on genome rearrangements and capture 

relatively few base substitution mutations, thus limiting statistical power to extract the 

mutational signatures imprinted on the genome by these processes24,25.

Here we analyse whole genome sequences of 560 cases in order to address these and other 

questions and to pave the way to a comprehensive understanding of the origins and 

consequences of somatic mutations in breast cancer.

Results

Cancer genes and driver mutations

The whole genomes of 560 breast cancers and non-neoplastic tissue from each individual 

(556 female and four male) were sequenced (Fig.S1, Supplementary Table 1). 3,479,652 

somatic base substitutions, 371,993 small indels and 77,695 rearrangements were detected, 

with substantial variation in the number of each between individual samples (Fig.1A, 

Supplementary Table 3). Transcriptome sequence, microRNA expression, array based copy 

number and DNA methylation data were obtained from subsets of cases.

To identify new cancer genes, we combined somatic substitutions and indels in protein-

coding exons with data from other series12–15,26, constituting a total of 1,332 breast 
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cancers, and searched for mutation clustering in each gene beyond that expected by chance. 

Five cancer genes were found for which evidence was previously absent or equivocal 

(MED23, FOXP1, MLLT4, XBP1, ZFP36L1), or for which the mutations indicate the gene 

acts in breast cancer in a recessive rather than in a dominant fashion, as previously reported 

in other cancer types (Supplementary Methods section 7.4 for detailed descriptions). From 

published reports on all cancer types (http://cancer.sanger.ac.uk/census), we then compiled a 

list of 727 human cancer genes (Supplementary Table 12). Based on driver mutations found 

previously, we defined conservative rules for somatic driver base substitutions and indel 

mutations in each gene and sought mutations conforming to these rules in the 560 breast 

cancers. 916 likely driver mutations of these classes were identified (Fig.1B, Supplementary 

Table 14, Extended Data Figure 1).

To explore the role of genomic rearrangements as driver mutations16,18,19,27, we sought 

predicted in-frame fusion genes that might create activated, dominant cancer genes. 1,278 

unique and 39 infrequently recurrent in-frame gene fusions were identified (Supplementary 

Table 15). Many of the latter, however, were in regions of high rearrangement density, 

including amplicons28 and fragile sites, and their recurrence is likely attributable to 

chance27. Furthermore, transcriptome sequences from 260 cancers did not show expression 

of these fusions and generally confirmed the rarity of recurrent in-frame fusion genes. By 

contrast, recurrent rearrangements interrupting the gene footprints of CDKN2A, RB1, 

MAP3K1, PTEN, MAP2K4, ARID1B, FBXW7, MLLT4 and TP53 were found beyond the 

numbers expected from local background rearrangement rates, indicating that they 

contribute to the driver mutation burden of recessive cancer genes. Several other recurrently 

rearranged genomic regions were observed, including dominantly-acting cancer genes ETV6 

and ESR1 without consistent elevation in expression levels, L1-retrotransposition sites29 

and fragile sites. The significance of these recurrently rearranged regions remain unclear 

(Extended Data Figure 2).

Incorporation of recurrent copy number changes, including homozygous deletions and 

amplifications, generated a final tally of 1,628 likely driver mutations in 93 cancer genes 

(Fig.1B). At least one driver was identifiable in 95% of cancers. The 10 most frequently 

mutated genes were TP53, PIK3CA, MYC, CCND1, PTEN, ERBB2, chr8:ZNF703/FGFR1 

locus, GATA3, RB1 and MAP3K1 (Fig.1B, Extended Data Figure 1) and accounted for 62% 

of drivers.

Recurrent somatic mutations in non-coding genomic regions

To investigate non-coding somatic driver substitutions and indels, we searched for non-

coding genomic regions with more mutations than expected by chance (Fig.2A, 

Supplementary Table 16, Extended Data Figure 3). The promoter of PLEKHS1 (pleckstrin 

homology domain containing, family S member 1) exhibited recurrent mutations at two 

genomic positions30 (Fig.2A), the underlined bases in the sequence CAGCAAGC 

TGAACA GCTTGCTG (as previously reported30). The two mutated bases are flanked on 

either side by 9bp of palindromic sequence forming inverted repeats31. Most cancers with 

these mutations showed many base substitutions of mutational signatures 2 and 13 that have 

been attributed to activity of APOBEC DNA-editing proteins that target the TCN sequence 
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motif. One of the mutated bases is a cytosine in a TCA sequence context (shown above as 

the reverse complement, TGA) at which predominantly C>T substitutions were found. The 

other is a cytosine in ACA context which showed both C>T and C>G mutations.

The TGAACA core sequence was mutated at the same two positions at multiple locations 

elsewhere in the genome (Supplementary Table 16C) where the TGAACA core was also 

flanked by palindromes (inverted repeat), albeit of different sequences and lengths 

(Supplementary Table 16C). These mutations were also usually found in cancers with many 

signature 2 and 13 mutations (Fig.2A). TGAACA core sequences with longer flanking 

palindromes generally exhibited a higher mutation rate, and TGAACA sequences flanked by 

9bp palindromes exhibited a ~265-fold higher mutation rate than sequences without them 

(Fig.2B, Supplementary Table 16D). However, additional factors must influence the 

mutation rate because it varied markedly between TGAACA core sequences with different 

palindromes of the same length (Fig.2C). Some TGAACA-inverted repeat sites were in 

regulatory regions but others were intronic or intergenic without functional annotation 

(examples in Supplementary Table 16C) or exonic. The propensity for mutation recurrence 

at specific positions in a distinctive sequence motif in cancers with numerous mutations of 

particular signatures renders it plausible that these are hypermutable hotspots32–34, perhaps 

through formation of DNA hairpin structures35, which are single stranded at their tips 

enabling attack by APOBEC enzymes, rather than driver mutations.

Two recurrently mutated sites were also observed in the promoter of TBC1D12 (TBC1 

domain family, member 12) (q-value 4.5e-2) (Fig.2A). The mutations were characteristic of 

signatures 2 and 13 and enriched in cancers with many signature 2 and 13 mutations (Fig.

2A). The mutations were within the TBC1D12 Kozak consensus sequence 

(CCCCAGATGGTGGG)) shifting it away from the consensus36. The association with 

particular mutational signatures suggests that these may also be in a region of 

hypermutability rather than drivers.

The WDR74 (WD repeat domain 74) promoter showed base substitutions and indels (q-

value 4.6e-3) forming a cluster of overlapping mutations (Fig.2A)20. Coding sequence driver 

mutations in WDR74 have not been reported. No differences were observed in WDR74 

transcript levels between cancers with WDR74 promoter mutations compared to those 

without. Nevertheless, the pattern of this non-coding mutation cluster, with overlapping and 

different mutation types, is more compatible with the possibility of the mutations being 

drivers.

Two long non-coding RNAs, MALAT1 (q-value 8.7e-11, as previously reported12) and 

NEAT1 (q-value 2.1e-2) were enriched with mutations. Transcript levels were not 

significantly different between mutated and non-mutated samples. Whether these mutations 

are drivers, or result from local hypermutability, is unclear.

Mutational signatures

Mutational processes generating somatic mutations imprint particular patterns of mutations 

on cancer genomes, termed signatures2,24,37. Applying a mathematical approach25 to 

extract mutational signatures previously revealed five base substitution signatures in breast 
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cancer; signatures 1, 2, 3, 8 and 132,24. Using this method in the 560 cases revealed 12 

signatures, including those previously observed and a further seven, of which five have 

formerly been detected in other cancer types (signatures 5, 6, 17, 18 and 20) and two are 

new (signatures 26 and 30) (Fig.3A-B, Fig.4A, Supplementary Table 21A-C, Supplementary 

Methods 15 for further details). Two indel signatures were also found2,24.

Signatures of rearrangement mutational processes have not previously been formally 

investigated. To enable this we adopted a rearrangement classification incorporating 32 

subclasses. In many cancer genomes, large numbers of rearrangements are regionally 

clustered, for example in zones of gene amplification. Therefore, we first classified 

rearrangements into those inside and outside clusters, further subclassified them into 

deletions, inversions and tandem duplications, and then according to the size of the 

rearranged segment. The final category in both groups was interchromosomal translocations.

Application of the mathematical framework used for base substitution signatures2,24,25 

extracted six rearrangement signatures (Fig.4B, Supplementary Table 21). Unsupervised 

hierarchical clustering on the basis of the proportion of rearrangements attributed to each 

signature in each breast cancer yielded seven major subgroups exhibiting distinct 

associations with other genomic, histological or gene expression features (Fig.5, Extended 

Data Figure 4-6).

Rearrangement Signature 1 (9% of all rearrangements) and Rearrangement Signature 3 

(18% rearrangements) were characterised predominantly by tandem duplications (Fig.4B). 

Tandem duplications associated with Rearrangement Signature 1 were mostly >100kb (Fig.

4B), and those with Rearrangement Signature 3 <10kb (Fig.4B, Extended Data Figure 7). 

More than 95% of Rearrangement Signature 3 tandem duplications were concentrated in 

15% of cancers (Cluster D, Fig.5), many with several hundred rearrangements of this type. 

Almost all cancers (91%) with BRCA1 mutations or promoter hypermethylation were in this 

group, which was enriched for basal-like, triple negative cancers and copy number 

classification of a high Homologous Recombination Deficiency (HRD) index38–40. Thus, 

inactivation of BRCA1, but not BRCA2, may be responsible for the Rearrangement 

Signature 3 small tandem duplication mutator phenotype.

More than 35% of Rearrangement Signature 1 tandem duplications were found in just 8.5% 

of the breast cancers and some cases had hundreds of these (Cluster F, Fig.5). The cause of 

this large tandem duplication mutator phenotype (Fig.4B) is unknown. Cancers exhibiting it 

are frequently TP53-mutated, relatively late diagnosis, triple-negative breast cancers, 

showing enrichment for base substitution signature 3 and a high Homologous 

Recombination Deficiency (HRD) index (Fig.5) but do not have BRCA1/2 mutations or 

BRCA1 promoter hypermethylation.

Rearrangement Signature 1 and 3 tandem duplications (Extended Data Figure 7) were 

generally evenly distributed over the genome. However, there were nine locations at which 

recurrence of tandem duplications was found across the breast cancers and which often 

showed multiple, nested tandem duplications in individual cases (Extended Data Figure 8). 
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These may be mutational hotspots specific for these tandem duplication mutational 

processes although we cannot exclude the possibility that they represent driver events.

Rearrangement Signature 5 (accounting for 14% rearrangements) was characterised by 

deletions <100kb. It was strongly associated with the presence of BRCA1 mutations or 

promoter hypermethylation (Cluster D, Fig.5), BRCA2 mutations (Cluster G, Fig.5) and 

with Rearrangement Signature 1 large tandem duplications (Cluster F, Fig.5).

Rearrangement Signature 2 (accounting for 22% rearrangements) was characterised by non-

clustered deletions (>100kb), inversions and interchromosomal translocations, was present 

in most cancers but was particularly enriched in ER positive cancers with quiet copy number 

profiles (Cluster E, GISTIC Cluster 3, Fig.5). Rearrangement Signature 4 (accounting for 

18% of rearrangements) was characterised by clustered interchromosomal translocations 

while Rearrangement Signature 6 (19% of rearrangements) by clustered inversions and 

deletions (Clusters A, B, C, Fig.5).

Short segments (1-5bp) of overlapping microhomology characteristic of alternative methods 

of end joining repair were found at most rearrangements2,14. Rearrangement Signatures 2, 4 

and 6 were characterised by a peak at 1bp of microhomology while Rearrangement 

Signatures 1, 3 and 5, associated with homologous recombination DNA repair deficiency, 

exhibited a peak at 2bp (Extended Data Figure 9). Thus, different end-joining mechanisms 

may operate with different rearrangement processes. A proportion of breast cancers showed 

Rearrangement Signature 5 deletions with longer (>10bp) microhomologies involving 

sequences from short-interspersed nuclear elements (SINEs), most commonly AluS (63%) 

and AluY (15%) family repeats (Extended Data Figure 9). Long segments (more than 10bp) 

of non-templated sequence were particularly enriched amongst clustered rearrangements.

Localised hypermutation: kataegis

Focal base substitution hypermutation, termed kataegis, is generally characterised by 

substitutions with characteristic features of signatures 2 and 132,24. Kataegis was observed 

in 49% breast cancers, with 4% exhibiting 10 or more foci (Supplementary Table 21C). 

Kataegis colocalises with clustered rearrangements characteristic of rearrangement 

signatures 4 and 6 (Fig.4B). Cancers with tandem duplications or deletions of rearrangement 

signatures 1, 3 and 5 did not usually demonstrate kataegis. However, there must be 

additional determinants of kataegis since only 2% of rearrangements are associated with it. 

A rare (14/1,557 foci, 0.9%), alternative form of kataegis colocalising with rearrangements 

but with a base substitution pattern characterised by T>G and T>C mutations predominantly 

at NTT and NTA sequences was also observed (Extended Data Figure 10). This pattern of 

base substitutions most closely matches Signature 9 (Extended Data Figure 10) (http://

cancer.sanger.ac.uk/cosmic/signatures), previously observed in B lymphocyte neoplasms and 

attributed to polymerase eta activity 41.

Mutational signatures exhibit distinct DNA replication strand biases

The distributions of mutations attributable to each of the 20 mutation signatures (12 base 

substitution, two indel and six rearrangement) were explored42 with respect to DNA 

replication strand. We found an asymmetric distribution of mutations between leading and 
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lagging replication strands for many, but not all signatures42 (Fig.4A). Notably, Signatures 2 

and 13, due to APOBEC deamination, showed marked lagging replication strand bias (Fig.

4A) suggesting that lagging strand replication provides single-stranded DNA for APOBEC 

deamination. Of the three signatures associated with mismatch repair deficiency (Signatures 

6, 20, 26), only Signature 26 exhibited replicative strand bias, highlighting how different 

signatures arising from defects of the same pathway can exhibit distinct relationships with 

replication.

Mutational signatures associated with BRCA1 and BRCA2 mutations

Of the 560 breast cancers, 90 had germline (60) or somatic (14) inactivating mutations in 

BRCA1 (35) or BRCA2 (39) or showed methylation of the BRCA1 promoter (16). Loss of 

the wild-type chromosome 17 or 13 was observed in 80/90 cases. The latter exhibited many 

base substitution mutations of signature 3, accompanied by deletions of >3bp with 

microhomology at rearrangement breakpoints, and signature 8 together with CC>AA double 

nucleotide substitutions. Cases in which the wild type chromosome 17 or 13 was retained 

did not show these signatures. Thus signature 3 and, to a lesser extent, signature 8 are 

associated with absence of BRCA1 and BRCA2 functions.

Cancers with inactivating BRCA1 or BRCA2 mutations usually carry many genomic 

rearrangements. Cancers with BRCA1, but not BRCA2, mutations exhibit large numbers of 

Rearrangement Signature 3 small tandem duplications. Cancers with BRCA1 or BRCA2 

mutations show substantial numbers of Rearrangement Signature 5 deletions. No other 

Rearrangement Signatures were associated with BRCA1 or BRCA2 null cases (Clusters D 

and G, Fig.5). Some breast cancers without identifiable BRCA1/2 mutations or BRCA1 

promoter methylation showed these features and segregated with BRCA1/2 null cancers in 

hierarchical clustering analysis (Fig.5). In such cases, the BRCA1/2 mutations may have 

been missed or other mutated or promoter methylated genes may be exerting similar effects 

(Please see http://cancer.sanger.ac.uk/cosmic/sample/genomes for examples of whole 

genome profiles of typical BRCA1 null (e.g. PD6413a, PD7215a) and BRCA2 null tumours 

(e.g. PD4952a, PD4955a)).

A further subset of cancers (Cluster F, Fig.5) show similarities in mutational pattern to 

BRCA1/2 null cancers, with many Rearrangement Signature 5 deletions and enrichment for 

base substitution signatures 3 and 8. However, these do not segregate together with 

BRCA1/2 null cases in hierarchical clustering analysis, have Rearrangement Signature 1 

large tandem duplications and do not show BRCA1/2 mutations. Somatic and germline 

mutations in genes associated with the DNA double-strand break repair pathway including 

ATM, ATR, PALB2, RAD51C, RAD50, TP53, CHEK2 and BRIP1, were sought in these 

cancers. We did not observe any clear-cut relationships between mutations in these genes 

and these mutational patterns.

Cancers with BRCA1/2 mutations are particularly responsive to cisplatin and PARP 

inhibitors43–45. Combinations of base substitution, indel and rearrangement mutational 

signatures may be better biomarkers of defective homologous recombination based DNA 

double strand break repair and responsiveness to these drugs46 than BRCA1/2 mutations or 

promoter methylation alone and thus may constitute the basis of future diagnostics.
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Conclusions

A comprehensive perspective on the somatic genetics of breast cancer is drawing closer 

(please see website for individual patient genome profiles: http://cancer.sanger.ac.uk/cosmic/

sample/genomes, Methods Section 10 for orientation). At least 12 base substitution 

mutational signatures and six rearrangement signatures contribute to the somatic mutations 

found. 93 mutated cancer genes (31 dominant, 60 recessive, 2 uncertain) are implicated in 

genesis of the disease. However, dominantly-acting activated fusion genes and non-coding 

driver mutations appear rare. Additional infrequently mutated cancer genes probably exist. 

However, the genes harbouring the substantial majority of driver mutations are now known.

Nevertheless, important questions remain to be addressed. Recurrent mutational events 

including whole chromosome copy number changes and unexplained regions with recurrent 

rearrangements could harbour additional cancer genes. Identifying non-coding drivers is 

challenging and requires further investigation. Although almost all breast cancers have at 

least one identifiable driver mutation, the number with only a single identified driver is 

perhaps surprising. The roles of viruses or other microbes have not been exhaustively 

examined. Thus, further exploration and analysis of whole genome sequences from breast 

cancer patients will be required to complete our understanding of the somatic mutational 

basis of the disease.

Methods

1 Sample selection

DNA was extracted from 560 breast cancers and normal tissue (peripheral blood 

lymphocytes, adjacent normal breast tissue or skin) and total RNA extracted from 268 of the 

same individuals. Samples were subjected to pathology review and only samples assessed as 

being composed of > 70% tumor cells, were accepted for inclusion in the study 

(Supplementary Table 1).

2 Massively-parallel sequencing and alignment

Short insert 500bp genomic libraries and 350bp poly-A selected transcriptomic libraries 

were constructed, flowcells prepared and sequencing clusters generated according to 

Illumina library protocols47. 108 base/100 base (genomic), or 75 base (transcriptomic) 

paired-end sequencing were performed on Illumina GAIIx, Hiseq 2000 or Hiseq 2500 

genome analyzers in accordance with the Illumina Genome Analyzer operating manual. The 

average sequence coverage was 40.4 fold for tumour samples and 30.2 fold for normal 

samples (Supplementary Table 2).

Short insert paired-end reads were aligned to the reference human genome (GRCh37) using 

Burrows-Wheeler Aligner, BWA (v0.5.9)48. RNA-seq data was aligned to the human 

reference genome (GRCh37) using TopHat (v1.3.3) (http://ccb.jhu.edu/software/tophat/

index.shtml).

Nik-Zainal et al. Page 8

Nature. Author manuscript; available in PMC 2016 November 02.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts

http://cancer.sanger.ac.uk/cosmic/sample/genomes
http://cancer.sanger.ac.uk/cosmic/sample/genomes
http://ccb.jhu.edu/software/tophat/index.shtml
http://ccb.jhu.edu/software/tophat/index.shtml


3 Processing of genomic data

CaVEMan (Cancer Variants Through Expectation Maximization: http://cancerit.github.io/

CaVEMan/) was used for calling somatic substitutions.

Indels in the tumor and normal genomes were called using a modified Pindel version 2.0. 

(http://cancerit.github.io/cgpPindel/) on the NCBI37 genome build 49.

Structural variants were discovered using a bespoke algorithm, BRASS (BReakpoint 

AnalySiS) (https://github.com/cancerit/BRASS) through discordantly mapping paired-end 

reads. Next, discordantly mapping read pairs that were likely to span breakpoints, as well as 

a selection of nearby properly-paired reads, were grouped for each region of interest. Using 

the Velvet de novo assembler50, reads were locally assembled within each of these regions 

to produce a contiguous consensus sequence of each region. Rearrangements, represented by 

reads from the rearranged derivative as well as the corresponding non-rearranged allele were 

instantly recognisable from a particular pattern of five vertices in the de Bruijn graph (a 

mathematical method used in de novo assembly of (short) read sequences) of component of 

Velvet. Exact coordinates and features of junction sequence (e.g. microhomology or non-

templated sequence) were derived from this, following aligning to the reference genome, as 

though they were split reads.

Supplementary Table 3 for summary of somatic variants. Annotation was according to 

ENSEMBL version 58.

Single nucleotide polymorphism (SNP) array hybridization using the Affymetrix SNP6.0 

platform was performed according to Affymetrix protocols. Allele-specific copy number 

analysis of tumors was performed using ASCAT (v2.1.1), to generate integral allele-specific 

copy number profiles for the tumor cells51 (Supplementary Table 4 and 5). ASCAT was also 

applied to NGS data directly with highly comparable results.

12.5% of the breast cancers were sampled for validation of substitutions, indels and/or 

rearrangements in order to make an assessment of the positive predictive value of mutation-

calling (Supplementary Table 6).

Further details of these processing steps as well as processing of transcriptomic and miRNA 

data (Supplementary Table 7 and 8) can be found in Supplementary Methods.

4 Identification of novel breast cancer genes

To identify recurrently mutated driver genes, a dN/dS method that considers the mutation 

spectrum, the sequence of each gene, the impact of coding substitutions (synonymous, 

missense, nonsense, splice site) and the variation of the mutation rate across genes52,53 was 

used for substitutions (Supplementary Table 9). Owing to the lack of a neutral reference for 

the indel rate in coding sequences, a different approach was required (Supplementary Table 

10, Supplementary Methods for details). To detect genes under significant selective pressure 

by either point mutations or indels, for each gene the P-values from the dN/dS analysis of 

substitutions and from the recurrence analysis of indels were combined using Fisher’s 

method. Multiple testing correction (Benjamini-Hochberg FDR) was performed separately 
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for the 600+ putative driver genes and for all other genes, stratifying the FDR correction to 

increase sensitivity (as described in Sun et al. 200654). To achieve a low false discovery rate 

a conservative q-value cutoff of <0.01 was used for significance (Supplementary Table 11).

This analysis was applied to the new whole genome sequences of 560 breast cancers as well 

as a further 772 breast cancers that have been sequenced previously by other institutions.

Please see Supplementary Methods for detailed explanations of these methods.

5 Recurrence in the non-coding regions

5.1 Partitioning the genome into functional regulatory elements/gene 

features—To identify non-coding regions with significant recurrence, we used a method 

similar to the one described for searching for novel indel drivers (Supplementary Methods 

for detailed description).

The genome was partitioned according to different sets of regulatory elements/gene features, 

with a separate analysis performed for each set of elements, including exons (n=20,245 

genes), core promoters (n=20,245 genes, where a core promoter is the interval [−250,+250] 

bp from any transcription start site (TSS) of a coding transcript of the gene, excluding any 

overlap with coding regions), 5’ UTR (n=9,576 genes), 3’ UTR (n=19,502 genes), intronic 

regions flanking exons (n=20,212 genes, represents any intronic sequence within 75bp from 

an exon, excluding any base overlapping with any of the above elements. This attempts to 

capture recurrence in essential splice site or proximal splicing-regulatory elements), any 

other sequence within genes (n=18,591 genes, for every protein-coding gene, this contains 

any region within the start and end of transcripts not included in any of the above 

categories), ncRNAs (n=10,684, full length lincRNAs, miRNAs or rRNAs), enhancers 

(n=194,054) 55, ultra-conserved regions (n=187,057, a collection of regions under negative 

selection based on 1,000 genomes data 20.

Every element set listed above was analysed separately to allow for different mutation rates 

across element types and to stratify the FDR correction 54. Within each set of elements, we 

used a negative binomial regression approach to learn the underlying variation of the 

mutation rate across elements. The offset reflects the expected number of mutations in each 

element assuming uniform mutation rates across them (i.e. Esubs,element = 

Σ j∈{1,2,…,192}Extende (t*rj*Sj), and, Eindels,element = μindel * Sindel,element ). As covariate here 

we used the local density of mutations in neighbouring non-coding regions, corrected for 

sequence composition and trinucleotide mutation rates, that is, the t parameter of the dN/dS 

equations described in section 7.1 of Supplementary Methods. Normalised local rates were 

pre-calculated for 100kb non-overlapping bins of the genome and used in all analyses. Other 

covariates (expression, replication time or HiC) were not used here as they were not found to 

substantially improve the model once the local mutation rate was used as a covariate. A 

separate regression analysis was performed for substitutions and indels, to account for the 

different level of uncertainty in the distribution of substitution and indel rates across 

elements.

modelsubs = glm.nb(formula = nsubs ~ offset(log(Esubs)) + μlocal,subs )
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modelindels = glm.nb(formula = nindels ~ offset(log(Eindels)) + μlocal,indels )

The observed counts for each element (nsubs,element and nindels,element) are compared to the 

background distributions using a negative binomial test, with the estimated overdispersion 

parameters (θsubs and θindels) estimated by the negative binomial regression, yielding P-

values for substitution and indel recurrence for each element. These P-values were combined 

using Fisher’s method and corrected for multiple testing using FDR (Supplementary Table 

16A).

5.2 Partitioning the genome into discrete bins—We performed a genome-wide 

screening of recurrence in 1kb non-overlapping bins. We employed the method described in 

earlier section, using as covariate the local mutation rate calculated from 5Mb up and 

downstream from the bin of interest and excluding any low-coverage region from the 

estimate (Supplementary Table 16B, Extended Data Figure 3A for example). Significant hits 

were subjected to manual curation to remove false positives caused by sequencing or 

mapping artefacts.

6 Mutational signatures analysis

Mutational signatures analysis was performed following a three-step process: (i) hierarchical 

de novo extraction based on somatic substitutions and their immediate sequence context, (ii) 

updating the set of consensus signatures using the mutational signatures extracted from 

breast cancer genomes, and (iii) evaluating the contributions of each of the updated 

consensus signatures in each of the breast cancer samples. These three steps are discussed in 

more details in the next sections.

6.1 Hierarchical de novo extraction of mutational signatures—The mutational 

catalogues of the 560 breast cancer whole genome sequences were analysed for mutational 

signatures using a hierarchical version of the Wellcome Trust Sanger Institute mutational 

signatures framework 25. Briefly, we converted all mutation data into a matrix, M, that is 

made up of 96 features comprising mutations counts for each mutation type (C>A, C>G, 

C>T, T>A, T>C, and T>G; all substitutions are referred to by the pyrimidine of the mutated 

Watson–Crick base pair) using each possible 5’ (C, A, G, and T) and 3’ (C, A, G, and T) 

context for all samples. After conversion, the previously developed algorithm was applied in 

a hierarchical manner to the matrix M that contains K mutation types and G samples. The 

algorithm deciphers the minimal set of mutational signatures that optimally explains the 

proportion of each mutation type and then estimates the contribution of each signature 

across the samples. More specifically, the algorithm makes use of a well-known blind source 

separation technique, termed nonnegative matrix factorization (NMF). NMF identifies the 

matrix of mutational signature, P, and the matrix of the exposures of these signatures, E, by 

minimizing a Frobenius norm while maintaining non-negativity:
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The method for deciphering mutational signatures, including evaluation with simulated data 

and list of limitations, can be found in ref 25. The framework was applied in a hierarchical 

manner to increase its ability to find mutational signatures present in few samples as well as 

mutational signatures exhibiting a low mutational burden. More specifically, after 

application to the original matrix M containing 560 samples, we evaluated the accuracy of 

explaining the mutational patterns of each of the 560 breast cancers with the extracted 

mutational signatures. All samples that were well explained by the extracted mutational 

signatures were removed and the framework was applied to the remaining sub-matrix of M. 

This procedure was repeated until the extraction process did not reveal any new mutational 

signatures. Overall, the approach extracted 12 unique mutational signatures operative across 

the 560 breast cancers (Figure 3, Supplementary Table 21).

6.2 Updating the set of consensus mutational signatures—The 12 hierarchically 

extracted breast cancer signatures were compared to the census of consensus mutational 

signatures 25. 11 of the 12 signatures closely resembled previously identified mutational 

patterns. The patterns of these 11 signatures, weighted by the numbers of mutations 

contributed by each signature in the breast cancer data, were used to update the set of 

consensus mutational signatures as previously done in ref 25. 1 of the 12 extracted 

signatures is novel and at present, unique for breast cancer. This novel signature is consensus 

signature 30 (http://cancer.sanger.ac.uk/cosmic/signatures).

6.3 Evaluating the contributions of consensus mutational signatures in 560 

breast cancers—The complete compendium of consensus mutational signatures that was 

found in breast cancer includes: signatures 1, 2, 3, 5, 6, 8, 13, 17, 18, 20, 26, and 30. We 

evaluated the presence of all these signatures in the 560 breast cancer genomes by re-

introducing them into each sample. More specifically, the updated set of consensus 

mutational signatures was used to minimize the constrained linear function for each sample:

Here,  represents a vector with 96 components (corresponding to a consensus 

mutational signature with its six somatic substitutions and their immediate sequencing 

context) and Exposurei is a nonnegative scalar reflecting the number of mutations 

contributed by this signature. N is equal to 12 and it reflects the number of all possible 

signatures that can be found in a single breast cancer sample. Mutational signatures that did 

not contribute large numbers (or proportions) of mutations or that did not significantly 

improve the correlation between the original mutational pattern of the sample and the one 

generated by the mutational signatures were excluded from the sample. This procedure 

reduced over-fitting the data and allowed only the essential mutational signatures to be 

present in each sample (Supplementary Table 21B).
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7 Kataegis

Kataegis or foci of localized hypermutation has been previously defined 25 as 6 or more 

consecutive mutations with an average intermutation distance of less than or equal to 1,000 

bp. Kataegis were sought in 560 whole-genome sequenced breast cancers from high-quality 

base substitution data using the method described previously 25. This method likely misses 

some foci of kataegis sacrificing sensitivity of detection for a higher positive predictive value 

of kataegic foci (Supplementary Table 21C).

8 Rearrangement signatures

8.1 Clustered vs non-clustered rearrangements—We sought to separate 

rearrangements that occurred as focal catastrophic events or focal driver amplicons from 

genome-wide rearrangement mutagenesis using a piecewise constant fitting (PCF) method. 

For each sample, both breakpoints of each rearrangement were considered individually and 

all breakpoints were ordered by chromosomal position. The inter-rearrangement distance, 

defined as the number of base pairs from one rearrangement breakpoint to the one 

immediately preceding it in the reference genome, was calculated. Putative regions of 

clustered rearrangements were identified as having an average inter-rearrangement distance 

that was at least 10 times greater than the whole genome average for the individual sample. 

PCF parameters used were γ = 25 and kmin = 10. The respective partner breakpoint of all 

breakpoints involved in a clustered region are likely to have arisen at the same mechanistic 

instant and so were considered as being involved in the cluster even if located at a distant 

chromosomal site. Extended Data Table 4A summarises the rearrangements within clusters 

(“clustered”) and not within clusters (“non-clustered”).

8.2 Classification – types and size—In both classes of rearrangements, clustered and 

non-clustered, rearrangements were subclassified into deletions, inversions and tandem 

duplications, and then further subclassified according to size of the rearranged segment 

(1-10kb, 10kb-100kb, 100kb-1Mb, 1Mb-10Mb, more than 10Mb). The final category in both 

groups was interchromosomal translocations.

8.3 Rearrangement signatures by NNMF—The classification produces a matrix of 

32 distinct categories of structural variants across 544 breast cancer genomes. This matrix 

was decomposed using the previously developed approach for deciphering mutational 

signatures by searching for the optimal number of mutational signatures that best explains 

the data without over-fitting the data 25 (Supplementary Table 21D-E).

8.4 Consensus clustering of rearrangement signatures—To identify subgroups 

of samples sharing similar combinations of six identified rearrangement signatures derived 

from whole genome sequencing analysis we performed consensus clustering using the 

ConsensusClusterPlus R package 56. Input data for each sample (n=544, a subset of the full 

sample cohort) was the proportion of rearrangements assigned to each of the six signatures. 

Thus, each sample has 6 data values, with a total sum of 1. Proportions for each signature 

were mean-centred across samples prior to clustering. The following settings were used in 

the consensus clustering:

Nik-Zainal et al. Page 13

Nature. Author manuscript; available in PMC 2016 November 02.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



- Number of repetitions: 1000

- pItem = 0.9 (resampling frequency samples)

- pFeature = 0.9 (resampling frequency)

- Pearson distance metric

- Ward linkage method

9 Distribution of mutational signatures relative to genomic architecture

Following extraction of mutational signatures and quantification of the exposures (or 

contributions) of each signature to each sample, a probability for each mutation belonging to 

each mutation signature (for a given class of mutation e.g. substitutions) was assigned42.

The distribution of mutations as signatures were assessed across multiple genomic features 

including replication time, strands, transcriptional strands and nucleosome occupancy. 

Please see Morganella et al for technical details, per signature results.

10 Individual patient whole genome profiles

Breast cancer whole genome profiles were adapted from the R Circos package57. Features 

depicted in circos plots from outermost rings heading inwards: Karyotypic ideogram 

outermost. Base substitutions next, plotted as rainfall plots (log10 intermutation distance on 

radial axis, dot colours: blue=C>A, black=C>G, red=C>T, grey=T>A, green=T>C, 

pink=T>G). Ring with short green lines = insertions, ring with short red lines = deletions. 

Major copy number allele (green = gain) ring, minor copy number allele ring (pink=loss), 

Central lines represent rearrangements (green= tandem duplications, pink=deletions, 

blue=inversions and gray=interchromosomal events. Top right hand panel displays the 

number of mutations contributing to each mutation signature extracted using NNMF in 

individual cancers. Middle right hand panel represents indels. Bottom right corner shows 

histogram of rearrangements present in this cancer. Bottom left corner shows all curated 

driver mutations, top and middle left panels show clinical and pathology data respectively.
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Extended Data

Extended Data Figure 1. Landscape of driver mutations
(A) Summary of subtypes of cohort of 560 breast cancers

(B) Driver mutations by mutation type

(C) Distribution of rearrangements throughout the genome. Black line represents 

background rearrangement density (calculation based on rearrangement breakpoints in 

intergenic regions only). Red lines represent frequency of rearrangement within breast 

cancer genes.
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Extended Data Figure 2. Rearrangements in oncogenes
(A) Variation in rearrangement and copy number events affecting ESR1. Clear amplification 

in topmost panel, transection of ESR1 in middle panel and focused tandem duplication 

events in lower panel.

(B) Predicted outcomes of some rearrangements affecting ETV6. Red crosses indicate exons 

deleted as a result of rearrangements within the ETV6 genes, black dotted lines indicate 

rearrangement break points resulting in fusions between ETV6 and ERC, WNK1, ATP2B1 

or LRP6
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Extended Data Figure 3. Recurrent non-coding events in breast cancers
(A) Manhattan plot demonstrating sites with most significant p-values as identified by 

binning analysis. Purple highlighted sites were also detected by the method seeking 

recurrence when partitioned by genomic features.

(B) Locus at chr11:65Mb which was identified by independent analyses as being more 

mutated than expected by chance. In the lowermost panel, a rearrangement hotspot analysis 

identified this region as a tandem duplication hotspot, with nested tandem duplications noted 

at this site. Partitioning the genome into different regulatory elements, an analysis of 
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substitutions and indels identified lncRNAs MALAT1 and NEAT1 (topmost panels) with 

significant p-values.

Extended Data Figure 4. Copy number analyses
(A) Frequency of copy number aberrations across the cohort. Chromosome position along x-

axis, frequency of copy number gains (red) and losses (green) y-axis.

(B) Identification of focal recurrent copy number gains by the GISTIC method 

(Supplementary Methods)
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(C) Identification of focal recurrent copy number losses by the GISTIC method

(D) Heatmap of GISTIC regions following unsupervised hierarchical clustering. 5 cluster 

groups are noted and relationships with expression subtype (basal=red, luminal B=light blue, 

luminal A=dark blue), immunohistopathology status (ER, PR, HER2 status – 

black=positive), abrogation of BRCA1 (red) and BRCA2 (blue) (whether germline, somatic 

or through promoter hypermethylation), driver mutations (black=positive), HRD index (top 

25% or lowest 25% - black=positive).
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Extended Data Figure 5. miRNA analyses
Hierarchical clustering of the most variant miRNAs using complete linkage and Euclidean 

distance. miRNA clusters were assigned using the Partitioning Algorithm using Recursive 

Thresholding (PART) method. Five main patient clusters were revealed. The horizontal 

annotation bars show (from top to bottom): PART cluster group, PAM50 mRNA expression 

subtype, GISTIC cluster, rearrangement cluster, lymphocyte infiltration score and 

histological grade. The heatmap shows clustered and centered miRNA expression data (log2 

transformed). Details on colour coding of the annotation bars are presented below the 

heatmap.
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Extended Data Figure 6. Rearrangement cluster groups and associated features
(A) Overall survival by rearrangement cluster group

(B) Age of diagnosis

(C) Tumor grade

(D) Menopausal status

(E) ER status

(F) Immune response metagene panel

(G) Lymphocytic infiltration score
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Extended Data Figure 7. Contrasting tandem duplication phenotypes
Contrasting tandem duplication phenotypes of two breast cancers using chromosome X. 

Copy number (y-axis) depicted as black dots. Lines represent rearrangements breakpoints 

(green=tandem duplications, pink=deletions, blue=inversions, black=translocations with 

partner breakpoint provided). Top panel, PD4841a, is overwhelmed by large tandem 

duplications (>100kb, RS1) while PD4833a has many short tandem duplications (< 10kb, 

RS3) appearing as “single” lines in its plot.
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Extended Data Figure 8. Hotspots of tandem duplications
A tandem duplication hotspot occurring in 6 different patients
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Extended Data Figure 9. Rearrangement breakpoint junctions
(A) Breakpoint features of rearrangements in 560 breast cancers by Rearrangement 

Signature.

(B) Breakpoint features in BRCA and non-BRCA cancers
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Extended Data Figure 10. Signatures of focal hypermutation
(A) Kataegis and alternative kataegis occurring at the same locus (ERBB2 amplicon in 

PD13164a). Copy number (y-axis) depicted as black dots. Lines represent rearrangements 

breakpoints (green=tandem duplications, pink=deletions, blue=inversions). Topmost panel 

showing a ~10Mb region including the ERBB2 locus. Second panel from top zooms in 10-

fold to a ~1Mb window highlighting co-occurrence of rearrangement breakpoints, with copy 

number changes and three different kataegis loci. Third panel from top demonstrates 
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kataegis loci in more detail. Log10 intermutation distance on y axis. Black arrow 

highlighting kataegis. Blue arrows highlighting alternative kataegis.

(B) Sequence context of kataegis and alternative kataegis identified in this dataset.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cohort and catalogue of somatic mutations in 560 breast cancers.
(A) Catalogue of base substitutions, insertions/deletions, rearrangements and driver 

mutations in 560 breast cancers (sorted by total substitution burden). Indel axis limited to 

5,000(*).

(B) Complete list of curated driver genes sorted by frequency (descending). Fraction of ER 

positive (left, total 366) and ER negative (right, total 194) samples carrying a mutation in the 

relevant driver gene presented in grey. Log10 p-value of enrichment of each driver gene 

towards the ER positive or ER negative cohort is provided in black. Highlighted in green are 
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genes for which there is new or further evidence supporting these as novel breast cancer 

genes.
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Figure 2. Non-coding analyses of breast cancer genomes
(A) Distributions of substitution (purple dots) and indel (blue dots) mutations within the 

footprint of five regulatory regions identified as being more significantly mutated than 

expected is provided on the left. The proportion of base substitution mutation signatures 

associated with corresponding samples carrying mutations in each of these non-coding 

regions, is displayed on the right.

(B) Mutability of TGAACA/TGTTCA motifs within inverted repeats of varying flanking 

palindromic sequence length compared to motifs not within an inverted repeat.
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(C) Variation in mutability between loci of TGAACA/TGTTCA inverted repeats with 9bp 

palindromes.
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Figure 3. Extraction and contributions of base substitution signatures in 560 breast cancers
(A) Twelve mutation signatures extracted using Non-Negative Matrix Factorization. Each 

signature is ordered by mutation class (C>A/G>T, C>G/G>C, C>T/G>A, T>A/A>T, T>C/

A>G, T>G/A>C), taking immediate flanking sequence into account. For each class, 

mutations are ordered by 5’ base (A,C,G,T) first before 3’ base (A,C,G,T).

(B) The spectrum of base substitution signatures within 560 breast cancers. Mutation 

signatures are ordered (and coloured) according to broad biological groups: Signatures 1 and 

5 are correlated with age of diagnosis, Signatures 2 and 13 are putatively APOBEC-related, 
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Signatures 6, 20 and 26 are associated with MMR deficiency, Signatures 3 and 8 are 

associated with HR deficiency, Signatures 18, 17 and 30 have unknown etiology. For ease of 

reading, this arrangement is adopted for the rest of the manuscript. Samples are ordered 

according to hierarchical clustering performed on mutation signatures. Top panel shows 

absolute numbers of mutations of each signature in each sample. Lower panel shows 

proportion of each signature in each sample.

(C) Distribution of mutation counts for each signature in relevant breast cancer samples. 

Percentage of samples carrying each signature provided above each signature.
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Figure 4. Additional characteristics of base substitution signatures and novel rearrangement 
signatures in 560 breast cancers
(A) Contrasting transcriptional strand asymmetry and replication strand asymmetry between 

twelve base substitution signatures.

(B) Six rearrangement signatures extracted using Non-Negative Matrix Factorization. 

Probability of rearrangement element on y-axis. Rearrangement size on x-axis. Del= 

deletion, tds = tandem duplication, inv = inversion, trans = translocation.
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Figure 5. Integrative analysis of rearrangement signatures
Heatmap of rearrangement signatures (RS) following unsupervised hierarchical clustering 

based on proportions of RS in each cancer. 7 cluster groups (A-G) noted and relationships 

with expression (AIMS) subtype (basal=red, luminal B=light blue, luminal A=dark blue), 

immunohistopathology status (ER, PR, HER2 status – black=positive), abrogation of 

BRCA1 (purple) and BRCA2 (orange) (whether germline, somatic or through promoter 

hypermethylation), presence of 3 or more foci of kataegis (black=positive), HRD index (top 

25% or lowest 25% - black=positive), GISTIC cluster group (black=positive) and driver 
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mutations in cancer genes. miRNA cluster groups : 0=red, 1=purple, 2=blue, 3=light blue, 

4=green, 5=orange. Contribution of base substitution signatures in these 7 cluster groups is 

provided in the lowermost panel.
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