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Abstract

The AdS/CFT correspondence may connect the landscape of string vacua and the

‘atomic landscape’ of condensed matter physics. We study the stability of a landscape

of IR fixed points of N = 2 large N gauge theories in 2+1 dimensions, dual to Sasaki-

Einstein compactifications of M theory, towards a superconducting state. By exhibiting

instabilities of charged black holes in these compactifications, we show that many of

these theories have charged operators that condense when the theory is placed at a finite

chemical potential. We compute a statistical distribution of critical superconducting

temperatures for a subset of these theories. With a chemical potential of one milliVolt,

we find critical temperatures ranging between 0.24 and 165 degrees Kelvin.
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1 A tale of two landscapes

This paper will explore the relation between quantum critical phenomena in condensed

matter systems and the landscape of string vacua. The connection between these will be

the AdS/CFT correspondence [1].

String theory has infinitely many compactifications to four dimensions. Of those, googols

may lead to low energy physics compatible with observations [2, 3, 4, 5, 6, 7]. The exis-

tence of this landscape of string theory vacua has lead to a revival of anthropic reasoning

in cosmology and particle physics, together with associated philosophical conundrums and

worries about the scientific status and predictability of string theory. Against this back-

ground, it would be appealing if the string landscape could be related to a different set of

physical systems than particle physics and cosmology.

Whereas particle physics and cosmology give us direct experimental access to only one

vacuum and its associated low energy effective field theory, in condensed matter physics

there is a virtually unlimited supply of ‘vacua’ and corresponding field theories. Typical

examples are crystal lattices. These are metastable ground states of a single underlying

microscopic theory, the Standard Model, translation invariant at large distance scales and

with low energy excitations described by effective field theories. Material science is in

essence the exploration of this vast landscape. In addition, an increasing range of lattice

Hamiltonians can be engineered and controlled in tabletop experiments, for instance using

optical lattices [8].

While the systems arising in the ‘atomic landscape’ are generally sensitive to their

underlying discreteness, as a function of couplings they can undergo second order phase

transitions at zero temperature, called quantum phase transitions. At the quantum critical

point the long distance physics is sometimes described by a continuum ‘relativistic’ con-

formal field theory (CFT), e.g. [9, 10]. We will focus on such relativistic quantum critical

theories as they are the cases in which AdS/CFT is best understood. Note however that the

AdS/CFT correspondence can be adapted to non-conformal relativistic theories (see e.g.

[11] for a review) and also to theories with a non-relativistic scale invariance [12, 13, 14].

We will furthermore focus in this paper on 2+1 dimensional systems.

The AdS/CFT correspondence [1, 15, 16] implies the existence of a 2 + 1 dimensional

conformal field theory for every 3 + 1 dimensional theory of quantum gravity in an asymp-

totically Anti-de Sitter spacetime. The string landscape provides an immense number of

such theories. Therefore, the string landscape also provides a wealth of new quantum crit-

ical, that is, scale invariant, theories. Whether any of these theories can be used to model
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the physics associated to quantum phase transitions in experimentally realisable discrete

systems is an important question for future work. In this paper we initiate a study of their

properties.

Given a vacuum of a theory, two immediate questions are firstly to characterise low

energy excitations about the vacuum and secondly to enquire about the stability of the vac-

uum configuration. These two issues can be directly related. For instance, in conventional

superconductivity an instability of the vacuum with unbroken gauge symmetry arises due

to interactions between low energy phonons and (dressed) electrons.

For generic lattice structures there is by now a very well developed set of techniques for

identifying the low lying degrees of freedom and their dynamics. Some examples are shown

in table 1. However, at quantum critical points the system is not describable in terms of

conventional quasiparticle degrees of freedom. The critical point describes the dynamics of

highly nonlocal entangled states of matter, in which different competing orders are finely

balanced [10]. There is no preferred energy scale and generically no weak coupling. The

lesson of the AdS/CFT correspondence is that, at least in a ‘large N ’ limit, there can be

a dual semiclassical description of quantum critical physics1. Examples of dual low energy

excitations are also shown in table 1.

Atomic Landscape String Landscape

Microscopic theory Standard Model M theory

Fundamental excitations Leptons, quarks, photons, etc. ??

Typical vacuum Atomic lattice Compactification

Low energy excitations Dressed electrons, phonons, Gravitons, gauge bosons,

spinons, triplons, etc. moduli, intersectons, etc.

Low energy theory Various QFTs Various supergravities

Table 1: Comparison of two landscapes.

Table 1 suggests a complementary relationship between the string and atomic land-

scapes. The string landscape may supply tractable models of quantum critical points in the

atomic landscape. Furthermore, studying the string landscape in its totality may lead to

the identification of universal or typical properties and also novel exotic behaviors. One is

also lead to wonder whether the atomic landscape might have implications for string theory.

We will speculate on this latter connection at the end of the paper.

1It is important to emphasise that unlike in the large N limit of, for instance, the O(N) model, the

AdS/CFT theories are always strongly coupled in the gravity regime.
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The dynamical property of CFTs with string vacuum duals that we shall investigate

in this paper is the potential instability towards a superconducting phase. We show that

a large class of string compactifications do indeed have such instabilities. Inter alia these

backgrounds provide explicit string theory realisations of holographic s wave superconduc-

tors [17, 18, 19], including cases in which the dual field theories are known.2 In particular,

the theories are those arising on M2 branes placed at the tip of a Calabi-Yau cone. These

are the IR fixed points of N = 2 supersymmetric gauge theories in 2+1 dimensions. Among

these, we find a superconducting instability in the maximally supersymmetry N = 8 CFT

in 2+1 dimensions at a finite chemical potential.

We will begin by reviewing the framework of holographic superconductivity. We then

go on to discuss a subset of the landscape given by N = 2 Freund-Rubin Sasaki-Einstein

compactifications of M theory. These theories can be consistently truncated to Einstein-

Maxwell theory on a four dimensional space with negative cosmological constant. We show

that there exist minimally coupled charged pseudoscalar modes that decouple from all other

fluctuation modes at the linearized level, in arbitrary backgrounds solving the Einstein-

Maxwell equations. They correspond to modes of the M theory 3-form obtained by reducing

certain harmonic 4-forms on the Calabi-Yau cone over the Sasaki-Einstein manifold. We

show that these modes lead to instabilities towards a superconducting phase of the dual

CFT at low temperatures for a large number of Sasaki-Einstein compactifications, and we

obtain a distribution of critical temperatures on this landscape.

2 Holographic superconductors

2.1 General framework

Holographic superconductors are a class of quantum critical theories which have an instabil-

ity to a superconducting phase at low temperatures when held at a finite chemical potential

µ [17, 18, 19]. One can equivalently work with a fixed charge density ρ. Scale invariance

and dimensional analysis imply that the critical temperature Tc ∝ µ. Our objective is to

show that a large number of simple string vacua are holographic superconductors and to

determine Tc/µ for these theories.

The minimal bulk action for a holographic superconductor must describe the dynamics

of the metric, a Maxwell field and at least one charged field that can condense and sponta-

2Making approximations to the nonabelian DBI action, holographic p wave superconductors [20, 21, 22]

can be obtained in string theory using coincident D branes [22, 23, 24].
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neously break the U(1) symmetry. We focus in this work on the case in which the charged

field is a scalar in AdS4. In general the full nonlinear action is complicated, as a consistent

embedding into string theory will typically involve many coupled fields. Physically this

implies that there will be many condensates at low temperature. In this work we avoid this

problem by only considering the scalar equations of motion to linearised order, at which

many fields decouple. This is sufficient to determine the critical temperature.

The bulk action for a minimally coupled scalar field to quadratic order in the scalar is

L =
M2

2
R+

3M2

L2
− 1

4g2
FµνF

µν − |∇φ− iqAφ|2 −m2 |φ|2 . (1)

There are four dimensionless quantities in this action: the AdS radius in Planck units

(ML)2, the mass squared of the scalar field (mL)2, the Maxwell coupling g and the charge of

the scalar field q. We will show in the following section that this action can be consistently

obtained from M theory Freund-Rubin compactifications. The internal geometry of the

compactification will fix the values of these coefficients. The dimensionless quantities have

the following field theory interpretations:

• The central charge of the CFT is

c = 192(ML)2 , where s =
cπ3

54
T 2 . (2)

Here s is the entropy density. Recall that for a 2+1 CFT, the central charge can be

defined in two ways [25]. Either as a parametrisation of the energy momentum tensor

two point function, or as a parametrisation of the entropy density, as we have used

in (2). It was noted in [26] that these two notions agree for theories with classical

gravity duals.3

• The electrical conductivity at zero momentum is frequency independent [27]

σ ≡ σxx =
1

g2
. (3)

This is the conductivity appearing in Ohm’s law j = σE. Recall that conductivity is

dimensionless in 2+1 dimensions, and so σ may also be thought of as a central charge.

• The scaling dimension of the charged operator O dual to the bulk field φ is [15, 16]

∆(∆ − 3) = (mL)2 . (4)

Both roots to this equation are admissible [28] so long as they satisfy the unitarity

bound ∆ ≥ 1
2 .

3In equation (2) we are using the normalisation of [26] for the central charge. In this normalisation, the

central charge of a massless free boson is c = 81ζ(3)/π4
≈ 0.9996.
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• The charge q is the charge of the dual operator O. We will consider cases in which

the gauge group is U(1) (rather than R) and work in units in which the charges take

integer values.

The quantum critical theory at finite temperature and chemical potential is dual to the

bulk theory in an AdS-Reissner-Nordstom black hole background. This has metric

ds2 = −fdt2 +
dr2

f
+
r2

L2
(dx2 + dy2) , (5)

and scalar potential

A0 = µ
(

1 − r+
r

)

. (6)

The function f is given by

f =
r2

L2
−
(

r2+
L2

+
µ2

2g2M2

)

r+
r

+
µ2

2g2M2

r2+
r2
, (7)

where the horizon radius r+ is related to the temperature through

T =
1

8πr+

(

6r2+
L2

− µ2

g2M2

)

. (8)

Here T and µ are the temperature and chemical potential of the field theory, respectively.

The charge density of the field theory is

ρ =
µr+
g2L2

= µσT





2π

3
+

√

(

2π

3

)2

+
32σ

c

µ2

T 2



 . (9)

To see whether the theory develops superconductivity we need to check the stability of this

background against fluctuations of the scalar field.

2.2 Criterion for instability of minimally coupled scalars

The equations of motion for the charged scalar field following from (1) are

− (∇µ − iqAµ) (∇µ − iqAµ)φ+m2φ = 0 . (10)

Looking for an unstable mode of the form φ = φ(r)e−iωt one obtains

− φ′′ −
(

2

r
+
f ′

f

)

φ′ − [rω + qµ(r − r+)]2

r2f2
φ+

m2

f
φ = 0 . (11)

The AdS-Reissner-Nordstrom black hole will be unstable if there is a normalisable solution

to this equation, with ingoing boundary conditions at the horizon, such that ω has a nonzero

positive imaginary part.
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We will shortly solve (11) numerically. A few prior comments are in order. It is useful

to introduce the ratio4

γ2 ≡ c

96σ
= 2g2(ML)2 . (12)

A ratio of central charges, γ might be thought of as quantifying the efficiency of charge

transport in the theory. The BPS bound5 for charged scalars can then be written as

∆ ≥ γq . (13)

The normalisation can be obtained, for instance, from the extremality condition of black

holes with spherical horizons that are much smaller than the AdS radius in the theory (1).

Recall that q is quantised to be integer. We further observe, allowing ourselves to rescale the

radial coordinate, that the equation (11) depends only on the following three dimensionless

quantities: ∆, γq and γT/µ. Fixing the first two of these, the mass and charge, we solve (11)

to obtain the critical temperature Tc below which there is an instability. In more detail, the

numerical algorithm proceeds as follows. We fix γT/µ, γq and ∆, and start by constructing

the solution in the very near horizon region obtained by Taylor series expansion to third

order in the coordinate distance from the horizon. We then numerically solve the linear

differential equation (11) out to a sufficiently large value of r. The equation is solved with

ω = 0 as we are looking for the onset of an instability. Finally, we match this to the general

large r asymptotic solution, obtained by power series expansion to seventh order. (Working

to such high order is necessary to get accurate results across the full parameter range.) This

procedure thus yields two coefficients as a function of T , multiplying the solutions with r−∆

and r∆−3 leading asymptotics. Solving for the largest value of T for which the coefficient

multiplying the r∆−3 branch vanishes gives us Tc at the given values of ∆ and γq. This is

then repeated for a fine grid of values of ∆ and γq. The result is shown in figure 1.

The zero temperature result of this plot can be understood analytically. If we look for

a threshold unstable mode, with ω = 0, at zero temperature, then near the horizon we find

the behaviour

φ ∼ (r − r+)(−3±
√

3
√

3−q2γ2+2∆(∆−3))/6 . (14)

On general grounds one expects an instability to arise when the field oscillates infinitely

4Essentially this ratio was also considered in [29].
5This bound can be derived from the superconformal algebra when the U(1) under consideration is the

R-symmetry in this algebra, as will in fact be the case for the Sasaki-Einstein compactifications we will

consider. Unlike in asymptotically flat space, the BPS bound lies strictly below the black hole extremality

bound [30], except in the limit q → 0. Extremal black holes do not preserve any supersymmetry.
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Figure 1: The critical temperature Tc for a minimally coupled scalar as a function of the

charge γq and dimension ∆ of the dual operator. Contours are labeled by values of γTc/µ.

The BPS line ∆ = γq is shown in red; the shaded triangle to the left of it is the window of

unstable values compatible with the BPS bound. The top boundary q2γ2 = 3 + 2∆(∆− 3)

is a line of quantum critical points separating superconducting and normal phases at T = 0.

The bottom boundary is the unitarity bound ∆ = 1/2, where Tc diverges. The black dots

indicate special cases which we will see arise in the context of N = 2 M2 brane theories.

many times before reaching the horizon [31]. From (14) we see that this requires

q2γ2 ≥ 3 + 2∆(∆ − 3) . (15)

Therefore we expect an instability when the charge of the scalar field is sufficiently large as

given by (15). If the charge is lower than the critical value there will never be an instability,

as raising the temperature acts to stabilise the theory. The black line in figure 1, obtained

numerically, is precisely the curve (15) separating stable backgrounds from backgrounds

that become unstable below some temperature. This is a line of quantum critical points. It

would be interesting to study in detail the dynamics close to these points.

The instability criterion (15) reduces to the inequality noted in [19] for the case of neutral
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scalar fields (q = 0). There the result was obtained by comparing the mass squared of the

field to the Breitenlohner-Freedman bound in the AdS2 near horizon region. The full result

(15) may be obtained by requiring the near horizon effective mass squared, including the

coupling to the Maxwell field [32], to be below the AdS2 Breitenlohner-Freedman bound.

The remaining noteworthy feature of figure 1, is that the critical temperature diverges as

∆ → 1
2 . This divergence is exhibited clearly in figure 2, which shows the critical temperature

as a function of operator dimension along the BPS line ∆ = γq. It is presumably related

to the fact that ∆ = 1
2 modes form singleton representations of the AdS4 isometry group.

These modes can be gauged to the boundary of AdS, which one thinks of as the UV of

the field theory, and hence are not sensitive to the temperature, which only affects the IR

physics. Thus the superconducting instability can never be stabilised by the temperature

in this case. The field theory statement of this fact is that these modes are decoupled from

all others and therefore do not acquire a thermal mass.

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

D=Γq

ΓT
c

Μ

Figure 2: Critical temperature γTc/µ as a function of ∆ for operators on the BPS line

∆ = γq.

If we wish to find string theory realisations of holographic superconductivity, we need to

find compactifications of string theory that have charged scalars with masses and charges

that fall inside the shaded region to the left of the BPS line in figure 1.

2.3 The weak gravity bound

A priori it is not obvious that there exist compactifications with charged scalars that lie

in the left hand region of figure 1. An argument in favour of the generic presence of an

instability comes from the conjectured ‘weak gravity’ bound [33]. Perhaps the sharpest of
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the statements in that paper was the requirement that extremal black holes should be able

to decay in consistent theories of quantum gravity. In asymptotically Minkowski spacetime,

a simple kinematic argument shows that this requirement implies that there must exist a

charged particle in the theory that has mass and charge related by m ≤
√

2gqM , where

m, g, q and M have the same meanings as they did in the previous subsections. The interest

of this statement is that if gq ≪ 1, then the charged particle is much lighter than would be

predicted from standard effective field theory logic.

In asymptotically Anti-de Sitter spacetimes it is less straightforward to make kinematic

arguments for a weak gravity bound, as particles may not scatter out to infinity. However,

the criterion (15) for a classical instability was obtained from only the near horizon geometry

of the extremal black hole. If the preferred decay mode of the black hole is through a

minimally coupled scalar, as we have been assuming, then (15) is a natural candidate for

the correct weak gravity bound. Namely, in any consistent asymptotically AdS theory of

quantum gravity there should exist a charged particle with charge q and energy ∆ such

that (15) is satisfied and extremal black holes can decay. We can note that (15) does not

reduce to the Minkowski space bound when ∆ ≫ 1. We are only considering large AdS

black holes, smaller black holes can require a more stringent condition in order to decay.

A caveat to the above statement is the possibility of decaying through charged modes

that are not minimally coupled scalars. Given a field with a specified spin and coupling

to the Maxwell field, it is easy to rerun the above argument involving the near horizon

Breitenlohner-Freedman bound and obtain an instability criterion analogous to (15). The

weak gravity bound would only require the existence of one unstable mode, of any spin and

coupling.

The instability we are describing is essentially Schwinger pair production. Although this

is initially a quantum mechanical effect, once there is sufficient condensate accumulated it is

described as a classical instability in terms of macroscopic fields. Whatever the microscopic

mechanism for emission of charge from the black hole, it seems likely that the classical field

instability considered here is the correct description once the number of quanta involved

becomes large. Furthermore, numerical investigations in [19] suggested (but not conclu-

sively) that at the endpoint of the extremal black hole instability, if the charge of the scalar

field is nonzero, all of the charge is carried by the scalar field condensate. Therefore this

instability leads to the complete decay of the extremal black hole, as required by the weak

gravity conjecture.

An interesting exception to the statements in the previous paragraph might arise if the
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preferred decay mode of the black hole were to charged fermionic particles. In the absence

of a pairing mechanism these will not develop macroscopic occupation numbers, but rather

build up a fermi surface. This could lead to novel black holes with charged fermionic hair.

Whether or not one believes in the weak gravity bound, we shall now show that there

indeed exist a large set of vacua in which extremal AdS-Reissner-Nordstrom black holes are

unstable. Note that extremal AdS-Reissner-Nordstrom black holes are not supersymmetric

and do not saturate the BPS bound.

3 Charged scalars from Sasaki-Einstein vacua

3.1 N = 2 Freund-Rubin compactifications of M theory

The M theory bosonic action is (in the conventions of [34])

S =
1

2κ2

∫

d11x
√−gR− 1

κ2

∫ [

G ∧ ⋆G+
2

3
C ∧G ∧G

]

, (16)

with G = dC. We are interested in Freund-Rubin vacua with a background electromagnetic

field in four dimensions. See for instance [35, 27]. The metric ansatz is

ds211 = L2ds2M4
+ 4L2

[

(a[dψ +A] + σ)2 + ds2M6

]

, (17)

supported by the flux

G =
3L3

2
volM4

− 4L3aω ∧ ⋆4F , (18)

where 1
2dσ = ω is the Kähler form on M6, which is taken to be a six real dimensional

Kähler-Einstein manifold satisfying RicM6
= 8 gM6

, and F = dA. In (17) the coefficient a

is such that ψ has range 2π, and we have chosen the four dimensional gauge connection A

to be normalised so that excitations have integer charges.

One can check that (17) and (18) solve the eleven dimensional equations of motion if

and only if the four dimensional metric g(4) and gauge field A solve the four dimensional

Einstein-Maxwell-AdS equations of motion. These come from the effective four dimensional

Lagrangian density

L(4) =
1

2κ2
4

[

R(4) +
6

L2
− 4L2a2FµνF

µν

]

, (19)

where
1

2κ2
4

=
(2L)7Vol(M7)

2κ2
. (20)
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In this expression M7 refers to the Sasaki-Einstein manifold6

ds2M7
= (adψ + σ)2 + ds2M6

, (21)

with unit radius, that is, ds2M7
is such that the cone

ds2M8
= dr2 + r2ds2M7

, (22)

is Ricci flat, i.e. a Calabi-Yau fourfold. The construction of Sasaki-Einstein manifolds

as U(1) fibrations over Kähler-Einstein manifolds is reviewed with differing emphases in

[36, 37, 38, 39]. The simplest example is M7 = S7, the round 7-sphere, for which M8 = C
4,

M6 = CP
3, ds2M6

the Fubini-Study metric, and a = 1. The U(1) symmetry is the R-

symmetry of the dual N = 2 field theory.

In checking that this ansatz indeed provides a consistent truncation to four dimensional

Einstein-Maxwell with a negative cosmological constant, it is important to be precise about

orientations. We are taking the Sasaki-Einstein metric to be orientated such that its volume

form is

volM7
= +

a

6
dψ ∧ ω ∧ ω ∧ ω . (23)

This implies, for instance, that

⋆7 (ω ∧ ω) = +2(adψ + σ) ∧ ω , (24)

which is an equation one uses in confirming consistency.

Comparing the effective action (19) to our general expression in section 2 above we find

that for these theories the ‘ratio of central charges’

γ =

√

c

96σ
=

1

2a
. (25)

The coefficient γ is therefore determined by a single component of the Sasaki-Einstein met-

ric, giving the (constant) radius of the canonical U(1) fibration. This radius is determined

topologically. Concretely:

γ =
2k

gcd c1(M6)
, (26)

where k is a positive integer and gcd c1(M6) is the greatest integer by which the first Chern

class c1(M6) can be divided such that it remains an integral (orbifold) cohomology class

[39]. The freedom to choose k corresponds to the freedom to quotient the circle by Zk. For

6We will only consider quasi regular Sasaki-Einstein manifolds, i.e. those for which the orbits of the

Killing vector close. Hence the fibration is U(1) rather than R, and charges are quantised.
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example for M7 = S7/Zk, since gcd c1(CP
3) = 4, we get γ = k/2. There is a constraint

on the values of k that are compatible with supersymmetry. The Killing spinor has a ψ

dependence of the form ei2aψ [36]. In order for the spinor to be well defined we must

therefore have 4a ∈ Z. This constrains k not to be too large, given gcd c1(M6).

By comparison with section 2 we can also obtain the central charge

c =
192L2

κ2
4

=
32π√

6Vol(M7)1/2
N3/2 . (27)

In this expression we introduced the M2 brane charge N ∝
∫

[∗G+C∧G], which is a positive

integer7. The dual 2+1 dimensional CFT, to be discussed below, will have an ultraviolet

description as a gauge theory with an SU(N) gauge group. Like the fiber radius a, the

normalized volume Vol(M7) can be computed topologically [39]. Bishop’s theorem implies

that Vol(M7) ≤ Vol(S7) = π4/3. Therefore the central charge (27) is always larger than

the central charge of the maximally supersymmetric theory, cN=8 ≈ 7.2N3/2.

3.2 Examples of Sasaki-Einstein manifolds: Brieskorn-Pham links

A rich landscape of examples of Sasaki-Einstein manifolds is provided by links of Calabi-

Yau hypersurface singularities. These are constructed as follows. Consider a weighted

homogeneous polynomial F (z) in C
5. That is, satisfying

F (λw1z1, . . . , λ
w5z5) = λdF (z1, . . . , z5) , (28)

where wi and d are positive integers. An example is

F (z) = z2
1 + z5

2 + z6
3 + z7

4 + z8
5 = 0 , (29)

which has w = (420, 168, 140, 120, 105) and d = 840. The scaling action implies that the zero

set F (z) = 0 is a four complex dimensional cone in C
5. By definition, if the hypersurface

supports a conical Ricci flat Kähler metric as in (22), the base (link) of the cone is Sasaki-

Einstein. The U(1) acting as ψ → ψ+∆ψ on (21) acts as zi → eiwi∆ψzi on the coordinates

zi. Thus the integrally quantised charge of the coordinate zi is precisely wi. This will

shortly enable us to obtain the integrally quantized charge q of various 3-form modes from

the weights {wi}.
7Specifically, N = 3(2L)6Vol(M7)/(2π3κ4)1/3. This normalisation can be obtained from the Dirac quan-

tisation condition for M2 and M5 branes in M theory.
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For these Sasaki-Einstein spaces the quantities a and Vol(M7) introduced above, and

therefore γ and c, are known explicitly [40, 39]:

a =

∑

iwi − d

4
, (30)

Vol(M7) =
π4a4d

3
∏

iwi
. (31)

Not every cone constructed in this manner supports a Ricci flat Kähler metric, and

correspondingly not every link supports a Sasaki-Einstein metric. A necessary condition

for existence is [41] miniwi ≥ a > 0, with a given by (30). The CFT interpretation of this

bound is quite pretty [41]: it is the unitarity bound ∆ ≥ 1
2 for chiral primaries corresponding

to holomorphic functions on the cone. An example that violates this condition is the Ak

singularity F (z) = zk+1
1 + z2

2 + z2
3 + z2

4 + z2
5 = 0 for k > 2. A second necessary condition is

the bound following from Bishop’s theorem [41] Vol(M7) ≤ Vol(S7) = π4/3, with Vol(M7)

given by (31).

A sufficient condition can be formulated [42] for the special case of Brieskorn-Pham

cones, defined by Fermat type polynomials

F (z) = zm1

1 + · · · + zm5

5 = 0 . (32)

These are weighted homogeneous polynomials as in (28) above with

d = lcm(mi|i = 1..5) , wi =
d

mi
. (33)

According to [42], if the coefficients satisfy the following two conditions, then the link is

Sasaki-Einstein:

1 <
∑

i

1

mi
< 1 +

4

3
min
i,j

{

1

mi
,

1

bibj

}

. (34)

In this expression

bj = gcd(mj , cj) , cj = lcm(mi|i 6= j) . (35)

Furthermore, two such Sasaki-Einstein manifolds, corresponding to different exponents {mi}
and {m′

i}, are isomorphic if and only if the two sets of exponents are permutations of each

other. These conditions are sufficient but not necessary for existence. A general necessary

and sufficient condition is not known.

The example given in (29) satisfies the conditions (34). It yields a Sasaki-Einstein

manifold with a = 28.25 and Vol(M7) ≈ 0.1396, so γ ≈ 0.0177 and c ≈ 110N3/2. The

results reviewed in [44] imply that this manifold is homotopy equivalent (and therefore, by

the generalized Poincaré conjecture, homeomorphic) but not diffeomorphic to the standard
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sphere S7. That is, it can be continuously deformed into the round S7 and there is a

continuous but no smooth one to one map to the round S7. Some further remarkable

results about Sasaki-Einstein spaces constructed in this way may be found in [43, 44, 42].

3.3 Minimally coupled pseudoscalars from 3-form modes

Given the eleven dimensional background (17) and (18) of the previous subsection, we wish

to know whether the AdS-Reissner-Nordstrom black hole (5) is unstable against charged

excitations of the background. To answer this question systematically one should consider

the general linearised perturbation of the eleven dimensional metric and 3-form about the

background. While the spectrum of perturbations about neutral Freund-Rubin compact-

ifications is a well-developed subject [34], the analysis is substantially complicated by the

presence of a background four dimensional Maxwell field. Generically the various modes

that appear diagonally in the spectrum about the neutral vacuum are not minimally cou-

pled to the background Maxwell field and furthermore get mixed amongst each other. For

example, one may get couplings such as |φ|2F 2, φFµν∂µvν or φ ǫµνρσFµνbρσ, where vµ is

some charged vector mode and bµν a charged 2-form mode. Moreover, such non-minimal

couplings tend to qualitatively alter the stability analysis of section 2.2.

Rather then perform the full stability analysis we shall focus on particular 3-form modes

which, remarkably, turn out to be only minimally coupled to the Maxwell field and decou-

ple from all other perturbations at the linearised level, in any background satisfying the

Einstein-Maxwell equations. We will then show that these modes are sufficient to estab-

lish instabilities in a large number of Sasaki-Einstein vacua at finite chemical potential. It

should be borne in mind however that there may be more unstable modes than the ones we

find. Therefore our results for critical temperatures should be taken as lower bounds only.

In order to describe these modes, it is useful to start with the eight dimensional Calabi-

Yau cone (22). Consider a closed self-dual or anti-self-dual 4-form Ŷ4 on the cone. That

is

dŶ4 = 0 , ⋆8Ŷ4 = sŶ4 , s = ±1 . (36)

These conditions imply that Ŷ4 is harmonic. Assume furthermore that the 4-form is homo-

geneous with degree n on the cone. That is

Lr∂r Ŷ4 = nŶ4 . (37)

Here L denotes the Lie derivative. Then we can decompose the form as

Ŷ4 = rn
(

dr

r
∧ Y3 + Y4

)

, (38)
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with Y3 and Y4 being forms on the Sasaki-Einstein manifold M7, and (36) implies

⋆7 dY3 = snY3 , d ⋆7 Y3 = 0 . (39)

Now consider the 3-form fluctuation

δC = φY3 + c.c. , (40)

where φ only depends on the four dimensional spacetime coordinates. The field φ will be

a pseudoscalar because the 3-form field changes sign under space or time reflections [34].

From (39) one shows that in a neutral background with Aµ = 0 [34]:

∇µ∇µφ = m2φ , m2 =
n(n+ 6s)

4L2
. (41)

Moreover this mode does not source any other KK modes at linear order [34].

The question now is what happens when Aµ is nonzero. We claim the following:

If Ŷ4 is a primitive and closed (4,0) or (3,1)-form on the Calabi-Yau fourfold, and

{gµν , Aµ} solve the 4d Einstein-Maxwell equations, then the covariantization of the mode

(40) linearly decouples from all other Kaluza-Klein modes and satisfies the covariantized

equation of motion (41), with s = +1 for (4, 0)-forms and s = −1 for (3, 1)-forms.

Before sketching the proof, let us clarify the claim. Recall that a primitive middle

dimensional form on a Kähler manifold is one that satisfies

ω̂ ∧ Ŷ4 = 0 or equivalently ω̂ · Ŷ4 = 0 , (42)

where ω̂ is the Kähler form on the Calabi-Yau cone. Covariantization means replacing, in

the coordinates of (21), dψ → dψ + A in (40), and ∇µ → ∇µ − iqAµ in (41), where we

assumed the mode to have a definite charge q under the canonical U(1) symmetry of the

cone:

L∂ψ Ŷ4 = iqŶ4 . (43)

This charge will be directly inherited by Y3 and Y4. Thus, explicitly, we take

δC = φY A
3 + c.c. , (44)

where Y A
3 is obtained from Y3 by replacing dψ by dψ +A. In components

δCmnp = φY3mnp , δCµmn = φAµY3mnψ , (45)

where m,n, p are indices on M7 and µ on M4.
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We will discuss the existence of modes Ŷ4 satisfying all of the above conditions in the

next subsection. For the moment we assume existence. To prove our claim, first note that

the Kähler form on the cone may be decomposed as (see e.g. [39])

ω̂ = r2
(

dr

r
∧ η + ω

)

, (46)

where dη = 2ω, and ω is as before the Kähler form of M6. In terms of the metric we wrote

in (21) above, η = adψ + σ. The primitivity condition (42) is easily seen to imply

ω · Y3 = 0 , ω ∧ Y3 + sη ∧ ⋆7Y3 = 0 . (47)

Here we also used (36). By plugging the mode (44) into the eleven dimensional equations

of motion and using (47), we obtain8 the following three results:

• Decoupling from metric fluctuations: The 3-form mode (44) does not source any

linearised metric fluctuations provided that

F ∧ F (ωn
qY3mqψ + ωm

qY3nqψ) = 0 . (48)

• Decoupling from other 3-from modes: The 3-form mode (44) does not source

any other linearised 3-form fluctuations provided that

(s+ 1)ω ∧ Y3 = 0 . (49)

• Equation of motion for the pseudoscalar: If decoupling occurs, then the four

dimensional pseudoscalar field satisfies

(∇µ − iqAµ) (∇µ − iqAµ)φ = m2φ , m2 =
n(n+ 6s)

4L2
. (50)

Solving this equation is sufficient to solve the full 11d linearised supergravity equa-

tions.

We now proceed to characterise forms for which (48) and (49) hold. In our electrically

charged AdS-Reissner-Nordstrom background, F ∧ F vanishes. Therefore the decoupling

of metric fluctuations will be automatic. However, one might certainly wish to consider

dyonic black holes also (for instance to study phenomena such as the Hall or Nernst effects

[46, 47, 49]) for which this term does not vanish. Therefore in order to solve (48) we will

require that ωn
qY3mqψ +ωm

qY3nqψ = 0. There are (at least) four interesting cases in which

8We will not reproduce the straightforward but tedious computations here. We verified our results using

the abstract tensor calculus package xAct [45].
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this is true. These are if Ŷ4 is a (4, 0), (0, 4), (3, 1) or (1, 3) form on the eight dimensional

Calabi-Yau cone. Let us consider these cases one at a time.

If Ŷ4 is a (4, 0) form, then Y3mqψ is zero. This follows from the fact that dr ∧ η is a

(1, 1) form on the Calabi-Yau cone, see for instance (46). If Y3 had a dψ component (i.e. an

η component), then Ŷ4 in (38) would necessarily have an antiholomorphic component and

could not be (4, 0). Hence Y3mqψ is zero.

If Ŷ4 is a (3, 1) form, then Y3mqψdx
m ∧ dxq is a (2, 0) form. This again follows from the

decomposition of Ŷ4 in (38) and the fact that dr∧η is a (1, 1) form. Given that both m and

q are holomorphic indices it follows that ωn
qY3mqψ + ωm

qY3nqψ = i(Y3mnψ + Y3nmψ) = 0.

The first of these equalities follows from the fact that ωm
q is proportional to the complex

structure while the second equality follows from antisymmetry of Y3.

These arguments clearly go through identically when Ŷ4 is (0, 4) or (1, 3). They do not

work however when Ŷ4 is a (2, 2) form. We can recall at this point that (4, 0) forms are

always primitive (from (42)) and self-dual whereas primitive (3, 1) forms are anti-self-dual,

in the canonical orientation with which we are working.

In order for (49) to vanish and other 3-form modes to decouple, we need that either

s = −1 or that ω ∧ Y3 = 0. The first of these will hold if and only if Ŷ4 is anti-self-dual

whereas the second holds if Ŷ4 is a (4, 0) form. This last statement follows from noting that

the structure of the eight dimensional Kähler form (46) implies that dr
r +iη is a holomorphic

1-form on the Calabi-Yau cone. Therefore in order for Ŷ4 to be (4, 0) the decomposition

(38) must take the form Ŷ4 = rn(drr ± iη) ∧ Y3, with Y3 a (3, 0) on the six dimensional

Kähler-Einstein base of the Sasaki-Einstein manifold. However, if Y3 is a (3, 0) form, then

ω ∧ Y3 is zero.

This proves our claim. Summarising: The mode (44) decouples from all other pertur-

bations if the closed 4-form Ŷ4 is a (4, 0) or primitive (3, 1)-form on the Calabi-Yau cone.

It is described by a minimally coupled pseudoscalar in four dimensions with charge q and

mass squared

L2m2
(4,0) =

(n

2
+ 3
) n

2
, (51)

L2m2
(3,1) =

n

2

(n

2
− 3
)

. (52)

The same expressions hold for (0, 4) and (1, 3) forms, respectively. Using the relation

(Lm)2 = ∆(∆−3), we can read off the possible conformal dimensions of the dual operators.

17



3.4 Existence

We will now establish the existence of modes in the classes described above, and confirm

that in many examples they lead to instabilities and superconductivity at low temperatures.

All Calabi-Yau cones admit a canonical holomorphic (4, 0) form. This form is thus closed

and self-dual. If we introduce holomorphic vielbeins θa, a runs from 1 to 4, such that the

metric is written ds2M8
= θaθ̄a, then the form is given by

Ŷ4 = Ω̂4 ≡ θ1 ∧ θ2 ∧ θ3 ∧ θ4 . (53)

It is immediate that this form has scaling dimension n = 4 under the homothetic vector

r∂r, as the metric has scaling dimension 2 and hence the θa have scaling dimension 1.

Furthermore, we can easily obtain the charge q = 4a by noting that for this mode

L∂ψ Ŷ4 = ∂ψ · dŶ4 + d(∂ψ · Ŷ4) = d(∂ψ · Ŷ4) = ai d(r4Y3) = 4ai Ŷ4 . (54)

In the third and fourth equalities we used the fact noted previously that holomorphic 4-

forms must take the form Ŷ4 = rn
(

dr
r + iη

)

∧ Y3. In the last equality we also used the first

expression in (47). It is clear that this argument will apply to any closed (4,0)-form with

scaling dimension n, giving charge q = na. Such forms are readily obtained by multiplying

Ω̂4 by a homogeneous holomorphic function of degree n− 4.

It follows from (25) that all of the Sasaki-Einstein vacua have a decoupled pseudoscalar

mode with charge γq = 2 and, from (51), mass squared m2L2 = 10. This corresponds to

an operator of dimension ∆ = 5. Comparing with figure 1 or equation (15) we see that this

mode never leads to an instability.

The recent results of [50] imply that this mode is part of a long vector9 OSp(2|4)

supermultiplet (the E0 = 4, y = 0 case in table 1 of [51]) which consistently decouples

from all other Kaluza-Klein modes even at the nonlinear level. There are no other charged

scalars in this multiplet.

Before moving on to consider a general class of (3, 1)-forms, we can consider the special

case of M7 = S7 for which the Calabi-Yau cone is simply M8 = C
4. A (3, 1)-form on C

4 is

given by, for instance,

Ŷ4 = dz̄1 ∧ dz2 ∧ dz3 ∧ dz4 . (55)

This is a closed, primitive, anti-self-dual (3, 1)-form with n = 4 and γq = 1, recalling that

a = 1 for the seven sphere. From (51) the four dimensional mass will be m2L2 = −2,

9And hence not part of a short hypermultiplet as was claimed in [51].
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corresponding to ∆ = 2 or ∆ = 1. This is precisely the value of the mass studied in detail

in [18, 19]. The two different dimensions of the dual operator correspond to theories that

are related via a renormalisation group flow generated by a double trace deformation [52] .

From figure 1 or equation (15) we see that this mode does condense at low temperatures.

Therefore, the IR conformal fixed point of N = 8 SU(N) Yang-Mills theory at large N

spontaneously breaks U(1)R and becomes a superconductor at low temperatures and nonzero

chemical potential. Taking ∆ = 2, we numerically find that the critical temperature is

Tc ≈ 0.007µ. For ∆ = 1, we get Tc ≈ 0.35µ. We recall this is a lower bound.10

We now turn to our main source of examples, namely (3, 1)-forms associated to complex

structure moduli of the Calabi-Yau fourfold cone. Consider a metric deformation δgab, with

a and b both holomorphic indices, preserving Ricci flatness. Then this is a Lichnerowicz

zero mode and

Ŷ4 ≡ δgāē Ω̂ē
4bcd dz̄

ā ∧ dzb ∧ dzc ∧ dzd , (56)

is a harmonic (3,1) form [55]. In this equation a bar denotes an antiholomorphic index. It is

easy to see that this form is furthermore primitive. We thus get an example of an anti-self-

dual closed (3,1)-form, as considered above. Calabi-Yau metric deformations which preserve

the cone structure (21)-(22), and are therefore moduli of the Sasaki-Einstein manifold, have

the same scaling dimension as the metric and are neutral under the U(1) isometry (otherwise

they would not preserve the isometry and the metric would no longer be Sasaki-Einstein).

Thus the associated Ŷ4 has the same scaling dimension n = 4 as Ω̂4, and the same charge

γq = 2. The mass formula (51) now implies ∆+ = 2, saturating the BPS bound.11 Such

modes always condense at low temperature, with (see figure 2 above)

Tc ≈ 0.0416
µ

γ
. (57)

Therefore: The IR fixed point of N = 2 SU(N) Yang-Mills theories at large N with Sasaki-

Einstein duals with at least one metric modulus become superconducting at temperatures

below (57). As previously, this is a lower bound on Tc, there may be other unstable modes

with higher critical temperatures.

10There is another known instability for the case of M7 = S7, the Gubser-Mitra instability [53, 54]. That

instability corresponds to the charge becoming redistributed among the more than one U(1) symmetry

in the theory, and does not induce superconductivity, as all the operators involved are neutral. In our

units TG-M = µ/π ≈ 0.32µ. Thus in the ∆ = 1 case the superconducting instability kicks in before the

Gubser-Mitra instability.
11This mode is thus the lowest component of an OSp(2,4) hypermultiplet. Its scalar superpartner is the

metric modulus fluctuation, which has γq = 0 and ∆+ = 3, as expected for a marginal deformation.
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Not all Sasaki-Einstein metrics have deformation moduli. For example the round sphere

has none. However, many of the Brieskorn-Pham links introduced in section 3.2 have

plenty of moduli, obtained as polynomial deformations of the same weight d as the original

polynomial (28). The number of such moduli equals the number of monomials of weight d

minus the number of coordinate transformations respecting the weights [56], that is

Nmod = Nmon(d) −
∑

i

Nmon(wi) , (58)

where Nmon(w) stands for the number of monomials of weight w. For the example (29),

Nmod = 1: There is precisely one deformation which cannot be reabsorbed in a weight

preserving coordinate transformation, namely δF (z) = ǫz3
3z

4
5 . We shall look more system-

atically at the existence of moduli in the following section.

One could also consider deformations δF = ǫF ′ of the defining equation (28) with weight

d′ 6= d. Such deformations do not preserve the cone structure, and so they are not moduli of

the Sasaki-Einstein space. However if the fluctuation preserves the Ricci flatness of the cone

metric to linear order, then (56) still gives a harmonic (3,1) form, and the corresponding

pseudoscalar mode still satisfies all the required properties to be minimally coupled. To

determine the charge of such a metric fluctuation it is useful to formally associate a charge

qǫ = wǫ = d − d′ to ǫ. This way the polynomials F and δF would have the same charge

d. The charge of the metric mode δgab = ∂ǫgab|ǫ=0 is thus seen to be −qǫ = d′ − d. The

associated form mode (56) thus has charge q and radial scaling dimension n given by

n

2
= γq = 2 + γ(d′ − d) . (59)

As an example, consider the deformation δF = ǫz1z
2
2 of (29). This has d′ = 756, and so,

using γ = 2
113 , we get n

2 = γq = 58
113 ≈ 0.5132. If this truly corresponded to a Calabi-Yau

preserving deformation, it would give rise to a minimally coupled BPS pseudoscalar with

this value of ∆ = γq. This leads to Tc = 1.47318µγ , substantially higher than the cone-

preserving modes (57). Determining in general when such modes are indeed Calabi-Yau

preserving appears to be an interesting open mathematical problem [57]. We shall not

address this problem here, but note that it could lead to higher values of Tc than the ones

we will discuss.

3.5 Comment on the dual field theories and operators

The gravity backgrounds that we have been describing are dual to N = 2 superconfor-

mal field theories. The supersymmetry and conformality follow directly from the global
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(super)symmetries of the gravitational solutions. In special cases there may be an enhance-

ment of supersymmetry. For instance, when M7 = S7 the theory has N = 8 supersymmetry

and if M7 is tri-Sasakian then the theory will have N = 3 supersymmetry.

More specifically, the dual field theory is that describing the worldvolume dynamics of N

M2 branes placed at the tip of a Calabi-Yau fourfold cone over the Sasaki-Einstein manifold

M7 [58]. Until recently, this relationship was not useful for obtaining an explicit description

of the field theory degrees of freedom. On general grounds one might expect the M2 brane

theories to arise as IR fixed points of multiple D2 brane gauge theories in a background

obtained by dimensionally reducing the M theory geometry along the U(1) isometry of the

Sasaki-Einstein metric [59]. This reduction will break all the manifest supersymmetry of

the background for generic (N = 2) Sasaki-Einstein manifolds. This occurs because the

Killing spinor is charged under the U(1) isometry, as we recalled below (26).

A different brane construction for the case M7 = S7/Zk was presented in [60] (ABJM),

following the renewed interest in multiple M2 brane theories initiated by [61, 62, 63]. The

construction involves 2 NS5 branes, N D3 branes and k D5 branes. Upon T dualising and

lifting to M theory one obtains N multiple M2 branes probing a geometry that has local

C
4/Zk singularities. The brane construction allowed [60] to identify the field theory as a

specific superconformal U(N) × U(N) Chern-Simons theory at levels k and −k.
The ABJM brane construction was generalised to a family of N = 3 field theories in [64].

These are dual to backgrounds in which M7 is a tri-Sasakian manifold. The field theory

dual for general N = 2 theories is not yet available, it appears that the most tractable

subset of N = 2 theories are those in which the Calabi-Yau cone M8 is toric (the Brieskorn-

Pham cones we considered above are generally not toric). Combining the extensive intuition

gained from toric N = 1 superconformal field theories in 3+1 dimensions and the ABJM

construction, it has been proposed that the worldvolume theory of M2 branes probing toric

Calabi-Yau cones is given by a quiver Chern-Simons theory [65, 66, 67, 68, 69, 70]. These

have large gauge symmetries with associated gauge fields Ai and complex scalar fields φa

that are charged under the gauge symmetries. The supermultiplets are then completed with

additional scalar and spinor fields. The action takes the form

S =
∑

i

ki
4π

∫

d3xTr

(

Ai ∧ dAi +
2

3
Ai ∧Ai ∧Ai + superpartners

)

+
∑

a

∫

d3x

(

|Dφa|2 −
∣

∣

∣

∣

∂W

∂φa

∣

∣

∣

∣

2

+ superpartners

)

. (60)

We are being somewhat schematic. The superpotential W is a holomorphic function of the
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φa. A thorough discussion of N = 2 Chern-Simons theories may be found in [71]. The

point we would like to emphasise is that concrete field theory duals have been proposed for

certain Sasaki-Einstein manifolds. One can therefore hope to identify the precise operator

O which condenses at the superconducting instability.

The first mode we discussed in section 3.4 was obtained from the canonical holomorphic

(4, 0)-form on the Calabi-Yau cone. Although this mode did not lead to an instability,

it is instructive to consider its dual field theory operator. The mode must be dual to a

canonical operator which is present in all N = 2 theories. The most natural candidate

is the superpotential itself: O = W .12 As well as being holomorphic and canonical, this

mode had charge γq = 2 which is also the R-charge of the superpotential. However, the

mode has dimension ∆ = 5, whereas the superpotential has classical dimension ∆ = 2, as a

consequence of being chiral. This identification would therefore imply that the dimension

of the superpotential is renormalised in these 2+1 theories. This is consistent with the fact,

mentioned in section 3.4, that this mode is part of a long multiplet [50], so its dimension is

not protected.

The second set of modes we discussed were (3, 1)-forms corresponding to complex moduli

deformations of the Calabi-Yau cone. These must be canonically dual to deformations of

the field theory that preserve supersymmetry and conformality. The most natural candidate

dual operators are deformations of the superpotential, O = δW . In this case our bulk mode

was BPS, with charge and dimension ∆ = γq = 2, equal to those of bare superpotentials.

These are relevant charged operators. This identification would indicate that whereas the

overall superpotential is renormalised, deformations of the superpotential (if they exist) are

not.

We also noted in section 3.4 that the (3, 1)-form modes lie in a hypermultiplet which

contained a scalar superpartner with γq = 0 and ∆ = 3. This mode will be dual to a

marginal deformation of the Lagrangian. If our previous identification with deformations

of the superpotential is correct, these operators will be of the form O =
∫

d2θ δW + c.c. =

∂φa∂φbδWψaψb + · · · , with ψa fermionic superpartners of the φa.

It is certainly of interest to flesh out these identifications further for cases in which the

superpotential and its deformations are known explicitly. We will leave this for future work.

12An analogous identification is implicitly made in the AdS5/CFT4 case with N = 1 supersymmetry in

3+1 dimensions in, for instance, [39].
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3.6 Comment on skew-whiffing

Given a (neutral) Freund-Rubin compactification from eleven to four dimensions, a different

solution may be constructed by skew-whiffing [34]. One way to describe the skew-whiffed

solution is to change the sign of the 3-form background with everything else held fixed. In

terms of the ansatz (17) and (18), with A = 0, this corresponds to letting L→ −L. In terms

of brane constructions, this means that instead of N M2 branes at the tip of a Calabi-Yau

cone, one takesN anti-M2 branes. This operation is not as innocuous as it might seem. With

the exception of the case M7 = S7, only one of the two solutions can be supersymmetric [34].

At the strict classical level, skew-whiffed solutions obtained from supersymmetric Freund-

Rubin compactifications give examples of stable non-supersymmetric vacua [34]. Stability

beyond the classical level is not known.

In the skew-whiffed backgrounds (L→ −L) it turns out that the construction of section

3.1 above does not give a consistent reduction to Einstein-Maxwell theory in general. This

is because a relative sign changes between the kinetic and Chern-Simons term in the 3-

form equations of motion. However, for a purely electric (or purely magnetic) background,

such as the AdS-Reissner-Nordstrom black holes of interest to us, the Chern-Simons term

vanishes and one does obtain a solution.

Perturbing the skew-whiffed charged background by our mode (44) one finds that both

the decoupling conditions (48) and (49) and the equation of motion for the pseudoscalar

(50) are changed by s → −s. It follows from our previous arguments that only the modes

obtained from closed (4, 0) and (0, 4) forms on the Calabi-Yau cone decouple in this case.

Their mass squared is now given by

m2
(4,0) = m2

(0,4) =
n(n− 6)

4L2
. (61)

We recalled above that all Calabi-Yau cones admit a closed (4, 0) form with n = 4 and

charge γq = 2. Therefore, all of the skew-whiffed backgrounds have a minimally coupled

pseudoscalar with m2 = −2, corresponding to ∆ = 2 or ∆ = 1. We noted above (see figure

1) that these values of the charge and ∆ lead to a superconducting instability at low tem-

peratures. Therefore all theories dual to skew-whiffed Sasaki-Einstein compactifications of

M theory are superconducting at low temperatures when placed at a finite chemical potential.
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4 A distribution of critical temperatures

In this section we consider Sasaki-Einstein manifolds obtained as Brieskorn-Pham links, as

discussed in section 3.2, and which have unstable 3-form modes of the type considered in

section 3.4. For these theories, all the quantities in the four dimensional action (1) can be

explicitly computed. This allows us to obtain a distribution of critical temperatures.

More specifically, we will focus on the 3-form modes associated to metric moduli. Their

critical temperature Tc is given by (57).13 Notice that Tc/µ is proportional to γ−1, with

constant of proportionality independent of the theory. Therefore, in order to obtain a

distribution of critical temperatures Tc at fixed µ, it is sufficient to obtain a distribution

of values of γ−1 = 2a ∈ 1
2Z

+. We shall now note various features of this distribution

for Brieskorn-Pham cones, putting aside momentarily the question of whether or not the

manifolds have metric moduli.

The lowest value of a is clearly a = 1/4. From (57), this corresponds to Tc ≈ 0.0208µ.

To gain some intuition for this result, it is useful to express this relation in physical units.

The only quantity that we need to reintroduce is the Boltzmann constant kB = 8.617 ×
10−5eV K−1, which we have thus far set to unity. Furthermore we recall that one Volt is

V = eV e−1 and that we have set the fundamental charge e = 1.14 The lowest critical

temperature we find is therefore

Tc
[K]

∣

∣

∣

∣

min.

≈ 0.241
µ

[mV]
. (62)

Thus, for instance, if we put the membrane CFT at a chemical potential of one milliVolt,

the critical temperature would be 0.24 degrees Kelvin. If (62) is taken literally, then by

increasing the chemical potential we can make Tc arbitrarily high. Of course, in actual the-

ories arising at quantum critical points in a real-life crystal, other factors such as impurities

and interactions with background ions would influence the onset of superconductivity.

Less obviously, there is also an upper bound on a and hence an upper bound on the

critical temperatures within this class of Sasaki-Einstein duals:

Lemma 1: For the Brieskorn-Pham links constructed in [42] and reviewed in section 3.2,

the metric coefficient a has an upper bound. Thus the critical temperature at fixed chemical

potential (57) is bounded above in these models.

13Although we will only consider the distribution of the critical temperatures for this particular mode, we

should keep in mind that there may be other modes that become unstable at higher temperatures.
14If these theories were to be realised in a lab, the identification e = 1 would only be correct if the unit of

charge in the (emergent) CFT coincided with the (standard model) electron charge.
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This proof of this result is in Appendix A. The largest value of a that we found by scanning

numerically (over mi < 100) is a = 2039/4. However, this manifold does not have moduli.

The largest value of a we found for a manifold with moduli is a = 683/4. The defining

polynomial (32) for this case is F = z2
1 + z3

2 + z7
3 + z37

4 + z99
5 . There is a single modulus

δF = z2
2z

33
5 . This value of a leads to Tc ≈ 14.2µ. Introducing physical units as above leads

to
Tc
[K]

∣

∣

∣

∣

max.

≈ 165
µ

[mV]
. (63)

Thus Tc is 165 Kelvin if the system is at a chemical potential of one milliVolt. This is

likely not the maximum Tc attainable, rather it is the largest value we found by scanning

numerically.

A second interesting result is that while there are infinitely many Brieskorn-Pham links

that lead to Sasaki-Einstein manifolds, only a handful of values of a occur infinitely many

times.

Lemma 2: There are precisely 19 values of a which occur infinitely many times in the

Brieskorn-Pham links. These are

a =
n

4
, (64)

where n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 30, 42}.

The proof of this result is again in Appendix A. This series suggests the resolution of a

puzzle raised in [48].

It is straightforward to scan numerically through different values of the exponents {mi}
in the defining polynomials for the Brieskorn-Pham cones, and to check whether they satisfy

the condition (34) for being Sasaki-Einstein. We then need to check whether the Sasaki-

Einstein space has metric moduli. Each time we find a solution with metric moduli, we

can compute a and hence Tc, via (57). In Figure 3 we show the solutions obtained for a

scan over all mi < 100. This scan led to 7278 distinct Sasaki-Einstein manifolds, 6190 of

which had metric moduli. As noted below (26) above, we can also consider quotients of

these manifolds by Zk, with k a divisor of 4a. After considering quotients of the manifolds

with moduli, we obtain 11,821 solutions. The critical temperatures of these manifolds are

shown in Figure 3. Of the 7278 manifolds found, only around 350 belong to the infinite

families of theorem 2. Removing them does not change the distribution noticeably. It seems

therefore that figure 3 accurately captures the distribution of critical temperatures in the

finitely many theories which do not belong to infinite families.

In figure 3 we see that the critical temperatures cluster around the lowest value Tc/µ ≈
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Figure 3: A logarithmic distribution of critical temperatures over the chemical potential,

in units of degrees Kelvin per milliVolt. The distribution is obtained from a scan over

Brieskorn-Pham cones admitting Sasaki-Einstein metrics with moduli, along with allowed

Zk quotients. The solutions have been binned into ranges of width 2 K/mV.

0.241 K/mV. The clustering appears to roughly follow a power law.

We close this discussion by noting that the instability we found for the maximally

supersymmetric (N = 8) theory in section 3.4, which is not due to a modulus mode and

not included in figure 3, gives the following critical temperatures in physics units:

Tc
[K]

∣

∣

∣

∣

N=8

≈ 0.081
µ

[mV]
or 4.1

µ

[mV]
, (65)

corresponding to ∆ = 2 and ∆ = 1 for the operator that condenses, respectively. We noted

in footnote 10 above that in the ∆ = 1 case, this instability occurs at a higher temperature

than the Gubser-Mitra instability of the N = 8 theory at a finite chemical potential.

5 Discussion

In this paper we have given the first explicit string theory realisations of the onset of an s

wave superconducting phase in strongly coupled field theories at finite chemical potential

as considered in [17, 18, 19]. The main technical result that made this possible was the
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identification of charged modes in Sasaki-Einstein compactifications which decoupled from

other modes at a linearised level, even in the presence of a background Maxwell field.

Our results sit at the intersection of three directions of current string theory research: the

string landscape, AdS/CFT duality for M2 brane theories and applications of AdS/CFT to

condensed matter physics. This leads to future research questions with differing flavours.

In order to obtain a more complete picture of the superconducting physics of these N ≥ 2

theories there are two important questions we have not addressed. Still at the linearised

level, one should perform a complete stability analysis with all of the coupled scalar, vector

and tensor modes. This way one can identify the most unstable mode, obtain the precise

critical temperature and determine whether or not all Sasaki-Einstein compactifications

become superconducting. If the most unstable mode is a charged vector or tensor, one

might obtain p wave (cf. [20, 21, 22]) or d wave superconductors, respectively. Beyond the

linearised level, one would ultimately like to find the endpoint of the instability well below

Tc. These will be hairy black hole solutions of M theory. Given the full solution there will

be many properties to investigate, starting with the possible existence of a mass gap.

The recent progress in constructing field theory duals to AdS4 backgrounds opens var-

ious interesting future directions. One would like to identify precisely the operators which

condense and ultimately gain some dynamical understanding of what is driving the in-

stability. Also, if the field theory admits a weak coupling limit, one can ask whether the

superconducting phase continues to weak coupling. In fact, it is rather natural that a weakly

coupled theory with massless charged bosonic degrees of freedom become superconducting

when placed at a finite chemical potential. This is because the chemical potential acts as a

negative mass squared. It would also be interesting, therefore, if there are theories that are

superconducting at weak coupling but not strong coupling.

In terms of field theory duals, one is not restricted to AdS4/CFT3. It seems likely that

Sasaki-Einstein compactifications to AdS5 will have similar instabilities. If so, this will

lead to superconducting phases in very well studied field theories with AdS5 duals. It was

checked in [72] that the basic mechanism of holographic superconductivity generalises to

AdS5.

Regarding the string landscape; we have considered here only the simplest (Freund-

Rubin) flux compactifications of string/M theory. As we noted in section 2.3, the logic

behind the weak gravity bound, if correct, suggests that theories dual to generic AdS4

flux compactifications should have a superconducting phase when considered at a finite

chemical potential. A natural question is to scan the wider string theory landscape in
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search of superconductors. As in this work, the main technical difficulty will be to identify

a sector for which the stability analysis becomes tractable.

In the introduction we highlighted a parallel between the string landscape and the atomic

landscape of condensed matter physics. It would be fascinating if this connection could be

made literal by actually engineering a (large N) supersymmetric gauge theory in a lab.

Emergent gauge fields are known to occur in certain lattice systems, see e.g. [73]. One

conceptually interesting consequence of such a connection would be that a standard model

lattice vacuum would provide a non-perturbative definition of string theory (with specific

AdS asymptotic boundary conditions), thus inverting the traditional roles of string theory

and the standard model.
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A Proofs for the distribution of conductivities

Lemma 1: For the Brieskorn-Pham links,

a =
lcm(mi|i = 1..5)

4

(

∑ 1

mi
− 1

)

, (66)

has an upper bound.

Proof: For a to be unbounded, clearly at least one of the mi, call it m5, must become

arbitrarily large.

Suppose that
∑4

i=1 1/mi < 1. It can be shown [44] that given that the mi are positive

integers, this requires
∑4

i=1 1/mi ≤ 1805/1806. The first inequality in (34) now requires

that 1/1806 < 1/m5, and hence m5 < 1806 is bounded.

Suppose instead that
∑4

i=1 1/mi = 1 +X, with X ≥ 0. The second inequality in (34)

implies that X < 1/(3m5). We show a couple of paragraphs down that for i 6= 5 we must
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have mi ≤ 42. It follows that if X > 0, then X cannot be made arbitrarily small, and hence

m5 < 1/(3X) gives a bound for m5.

The remaining case to consider is X = 0, that is,
∑4

i=1 1/mi = 1. Here m5 is not

bounded. However, the formula (66) for a in this case implies that 4a ≤ m1m2m3m4.

Because mi ≤ 42, for i 6= 5, then this is bounded.

To complete the proof we need to show that mi ≤ 42, for i 6= 5, when
∑4

i=1 1/mi ≥ 1.

Firstly, note that
∑3

i=1 1/mi < 1 because otherwise the second inequality in (34) im-

plies 1/m4 + 1/m5 < 4/(3m5) < 2/m5 which contradicts the fact that m5 ≥ m4. From

this inequality it can be shown [44] that
∑3

i=1 1/mi ≤ 41/42. Combining this fact with
∑4

i=1 1/mi ≥ 1 implies that m4 ≤ 42. Swapping the labels around, this argument gives

m1,m2,m3,m4 ≤ 42, as required.

Lemma 2: There are precisely 19 values of a which occur infinitely many times in the

Brieskorn-Pham links. These are

a =
n

4
, (67)

where n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 30, 42}.

Proof: We noted in the proof of our previous lemma that the largest exponent m5 can

only become unbounded if:
∑4

i=1 1/mi = 1. However, there are only 14 different sets of

(m1,m2,m3,m4) for which this is possible. Namely: (2, 3, 7, 42), (2, 3, 8, 24), (2, 3, 9, 18),

(2, 3, 10, 15), (2, 3, 12, 12), (2, 4, 5, 20), (2, 4, 6, 12), (2, 4, 8, 8), (2, 5, 5, 10), (2, 6, 6, 6), (3, 3, 4, 12),

(3, 3, 6, 6), (3, 4, 4, 6), (4, 4, 4, 4). For sufficiently large integer k, any of these sets together

with m5 = k solves the conditions (34). It is then simple to use the formula (66) to obtain

the 19 values of n that appear in the statement of this theorem.
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