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Landscape of the mitochondrial Hsp90
metabolome in tumours
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Reprogramming of tumour cell metabolism contributes to disease progression and resistance

to therapy, but how this process is regulated on the molecular level is unclear. Here we report

that heat shock protein 90-directed protein folding in mitochondria controls central metabolic

networks in tumour cells, including the electron transport chain, citric acid cycle, fatty acid

oxidation, amino acid synthesis and cellular redox status. Specifically, mitochondrial heat

shock protein 90, but not cytosolic heat shock protein 90, binds and stabilizes the electron

transport chain Complex II subunit succinate dehydrogenase-B, maintaining cellular

respiration under low-nutrient conditions, and contributing to hypoxia-inducible factor-1a-

mediated tumorigenesis in patients carrying succinate dehydrogenase-B mutations. Thus,

heat shock protein 90-directed proteostasis in mitochondria regulates tumour cell metabo-

lism, and may provide a tractable target for cancer therapy.
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R
eprogramming of tumour cell metabolism1 is increasingly
recognized as a multifaceted disease driver, enhancing
biomass expansion2, and promoting various mechanisms of

oncogenic signalling3. Although these processes have been mostly
studied in the context of aerobic glycolysis, the so-called Warburg
effect3, there is evidence that mitochondria continue to have an
important role in tumour metabolism4,5, and organelle-driven
oxidative phosphorylation has been associated with tumorigenic
potential6, drug resistance7,8 and enhanced tumour cell survival9.
Harnessing these pathways may open new prospects for cancer
therapy10, but the regulators of mitochondrial homeostasis in
tumours have remained largely elusive, and their potential
suitability as drug candidates is unknown.

With a complex, multi-compartment topology, dependence on
import of nuclear-encoded proteins and production of protein-
modifying reactive oxygen species (ROS), mitochondria must
tightly control their protein folding environment11. This is
indispensable to maintain metabolic output2, ensure organelle
integrity12 and prevent the consequences of an unfolded protein
response, which may result in cell death13. Buffering
mitochondrial proteotoxic stress, especially in the protein-dense
and energy-producing organelle matrix14, relies on adaptive
responses mediated by molecular chaperones and AAA
proteases15, and dysregulation of these mechanisms has been
linked to human diseases, including neurodegeneration and
cancer14.

In this context, a pool of ATPase-directed molecular
chaperones, including heat shock protein 90 (Hsp90)16 and its
related homologue, TNF receptor-associate protein-1 (TRAP-1)17

localize to the mitochondria, almost exclusively in tumour cells18.
The molecular requirements for the selective accumulation of
these chaperones in tumour mitochondria have not been
completely elucidated. However, there is evidence that both
Hsp90 and TRAP-1 form overlapping complexes with
mitochondrial proteins, including cyclophilin D (CypD), a
component of the permeability transition pore and control their
folding19. Accordingly, inhibition of Hsp90 and TRAP-1
chaperone activity selectively in mitochondria triggered acute
organelle dysfunction20, defective hexokinase II (HK-II)-
dependent2 ATP production21, and anticancer activity in
preclinical tumour models, in vivo19.

In this study, we examined the role of Hsp90-directed
mitochondrial protein folding on cellular homeostasis. Using
combined proteomics and metabolomics approaches, we found
that mitochondrial Hsp90 and TRAP-1 are global regulators of
tumour metabolic reprogramming, including oxidative phos-
phorylation, and are required for disease maintenance.

Results
Identification of a mitochondrial Hsp90 proteome. We began
this study by setting up a preliminary proteomics screen to
identify regulators of mitochondrial protein homeostasis, or
proteostasis, in tumours. For these experiments, we used non-
cytotoxic concentrations of Gamitrinib (GA mitochondrial
matrix inhibitor), a mitochondrial-targeted, small molecule
ATPase antagonist that inhibits the chaperone activity of both
Hsp90 and TRAP-1 in tumours20.

Treatment of glioblastoma LN229 cells with non-cytotoxic
concentrations of Gamitrinib21 caused the accumulation of
aggregated and misfolded proteins, characterized by resistance
to detergent solubilization (Supplementary Fig. S1). Preliminary
mass spectrometry analysis of selected bands showing higher
intensities with Gamitrinib treatment identified 96 mitochondrial
proteins (Supplementary Data 1). Forty-four of these proteins
based on spectral counts were elevated by more than threefold

after Gamitrinib treatment, indicating a requirement of Hsp90 for
their folding. Although gel-based comparison (Supplementary
Fig. S1) provides high detection sensitivity for specific bands,
individual bands are not single proteins, and slight differences in
band excision between control and Gamitrinib treatment can
produce artificial differences. To minimize this concern, this
experiment focused primarily on band differences at the 2%
CHAPS condition, where protein complexity was the lowest, but
not necessarily where the largest fold change occurred. To
independently validate these initial results, we next performed
unbiased proteomics studies using stable isotope labelling by
amino acids in culture (SILAC) of control or Gamitrinib-treated
cells. Of the original 44 proteins of the mitochondrial Hsp90
proteome identified by 1D mass spectrometry, 33 were
independently confirmed for response to Gamitrinib in SILAC
experiments (Fig. 1a). Of the remaining 11 proteins, 7 were below
adequate detection levels for SILAC quantification, and 4 did not
show significant changes.

These verified mitochondrial Hsp90-regulated proteins (Fig. 1a
and Supplementary Table S1) comprised the following: transcrip-
tion factors TFB1M and TFB2M involved in organelle gene
expression22 and glucose homeostasis23; ribosomal proteins
(MRPLs, MTG1 and ERAL1) associated with RNA transla-
tion24–26; regulators of purine biosynthesis and the methyl cycle
(MTHFD2)27; and effectors of oxidative phosphorylation2,
including SDHB, IDH3G, NDUFS3, PDHB and MDH2 (ref. 28)
(Fig. 1b). Mitochondrial proteins participating in redox status and
detoxification pathways (PRDX6, POLDIP2, CYB5R1 and
ETHE1)29–31 were also identified in the mitochondrial Hsp90
proteome (Fig. 1b).

Mitochondrial Hsp90 regulation of tumour metabolism. The
impact of a mitochondrial Hsp90 proteome (Fig. 1b) on cellular
homeostasis was next investigated. For these experiments, we
quantified the level of 301 individual metabolites in prostate
adenocarcinoma PC3 cells treated with non-cytotoxic con-
centrations of Gamitrinib21 or, alternatively, silenced for
expression of TRAP-1 by small interfering RNA (siRNA)21.
Both approaches produced global defects in tumour cell
metabolism (Supplementary Data 2). Consistent with a
requirement of Hsp90 for oxidative phosphorylation (Fig. 1b),
Gamitrinib-treated cells exhibited aberrant accumulation of citric
acid cycle metabolites, succinate, fumarate and malate (Fig. 2a).
This was associated with altered glutaminolysis (elevation in
glutamine and a-ketoglutarate) (Supplementary Fig. S2) and
deregulated fatty acid metabolism (Fig. 2b), leading to higher
levels of palmitate and linoleate, increased long chain fatty acid
transport into mitochondria (elevation of palmitoylcarnitine and
stearoylcarnitine), and excess lipid oxidation (accumulation of the
ketone body 3-hydroxybutyrate (Supplementary Fig. S3).
Mitochondrial Hsp90-targeted cells also showed increased
AMP/ATP ratio (Supplementary Fig. S3), indicative of cellular
starvation, and consistent with the loss of ATP production,
phosphorylation of the energy sensor, AMP-activated kinase
(AMPK), and inhibition of mammalian target of Rapamycin
complex (mTORC1) observed in response to Gamitrinib21.

Targeting mitochondrial Hsp90s impaired the catabolism of
branched-chain amino acids, with accumulation of valine,
isoleucine and leucine (Fig. 2c), and decreased levels of
branched-chain amino acid catabolites, isobutyryl-carnitine,
succinylcarnitine, 2-methylbutyryl-carnitine and isovaleryl-carni-
tine (Fig. 2c, Supplementary Fig. S4). This was associated with
defects in redox status (Fig. 2d), cholesterol homeostasis (Fig. 2e)
and purine nucleotide metabolism (Fig. 2f), resulting in higher
levels of cholesterol metabolites associated with lipid

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3139

2 NATURE COMMUNICATIONS | 4:2139 |DOI: 10.1038/ncomms3139 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


peroxidation, ROS-dependent allantoin generation (Fig. 2f,
Supplementary Fig. S5), and increased oxidized glutathione,
cysteine-glutathione disulphide and the glutathione catabolic
product, 5-oxoproline (Supplementary Fig. S6). Increased ROS
production under these conditions may result from dysfunctional
mitochondrial metabolism (see above), and/or increased nitric
oxide generation from arginine, a possibility suggested by the
accumulation of citrulline under these conditions (Fig. 2g,
Supplementary Fig. S7).

Overall, Gamitrinib treatment produced more extensive
changes in the tumour metabolome, compared with siRNA
silencing of TRAP-1 (Fig. 2 and Supplementary Figs S2–S7). This
may reflect incomplete TRAP-1 knockdown by siRNA, or,
alternatively, compensatory mechanisms provided by mitochon-
drial Hsp90, which is inhibited by Gamitrinib, but not by TRAP-1
knockdown. As a control, treatment of PC3 cells with 17-
allylamino 17-demethoxygeldanamycin (17-AAG), which inhibits
Hsp90 in the cytosol, but not mitochondria20, or transfection of a
control, non-targeting siRNA, had minimal effects on metabolic
pathways (Supplementary Figs S2–7). In previous experiments,
addition of the triphenylphosphonium ‘mitochondriotropic’
moiety, alone or in the presence of 17-AAG, had no effect on
mitochondrial function20.

Mechanism of mitochondrial Hsp90 control of tumour meta-
bolism. To elucidate how mitochondrial Hsp90s regulate tumour
bioenergetics, we next focused on SDHB, the iron–sulphur sub-
unit of ETC Complex II32, which required Hsp90s for proper

folding (Fig. 1a,b, Supplementary Table S1, Supplementary Data 1),
and functional activity (Supplementary Fig. S2). Treatment of
tumour cells with Gamitrinib caused insolubility of Complex II
over a range of detergent concentrations (Fig. 3a and Supplemen-
tary Fig. S8a). In contrast, mitochondrial proteins comprising
other ETC Complexes (I, IV, III and V) were minimally affected
(Fig. 3a). Immune complexes precipitated from mitochondrial
fractions of tumour cells with two independent antibodies to
SDHB, but not control IgG, contained TRAP-1, in vivo
(Supplementary Fig. S8b). In addition, immunoprecipitated
SDHB associated with recombinant TRAP-1, in vitro
(Supplementary Fig. S8c), demonstrating that these two
proteins interact in tumour mitochondria. Suggestive of a
chaperone-‘client protein’ recognition33, this interaction was
required to preserve SDHB stability, as Gamitrinib treatment
(Fig. 3b), or siRNA silencing of TRAP-1 (Supplementary Fig.
S8d) caused SDHB degradation in tumour cells (Fig. 3c).

We next asked whether a TRAP-1–SDHB complex was
important during cellular stress. In control experiments,
exposure of tumour cells to concentrations 450 mM of the
oxidative agent, hydrogen peroxide (H2O2), reduced SDHB
levels (Fig. 3d). siRNA silencing of TRAP-1 exacerbated this
response and induced nearly complete loss of SDHB expression
at lower H2O2 concentrations (Fig. 3d). As a control, the
expression of the flavoprotein subunit of Complex II, SDHA28,
was not affected (Fig. 3d). Functionally, treatment of tumour
cells with Gamitrinib inhibited Complex II activity in a
concentration-dependent manner, whereas 17-AAG had no
effect (Fig. 3e). Reciprocally, addition of recombinant TRAP-1
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Figure 1 | Mitochondrial Hsp90 proteome. (a) LN229 cells were treated with vehicle (Control) or non-cytotoxic concentrations of mitochondrial-targeted

Hsp90 inhibitor, Gamitrinib, and detergent-insoluble mitochondrial proteins were identified by one dimensional mass spectrometry (spectral counts),

or, alternatively, by SILAC technology. The heat map quantifies changes in protein solubility (43-fold cutoff) between the treatments assessed using the
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to SDHB immuno-affinity isolated from mitochondrial extracts
enhanced Complex II activity in a concentration-dependent
manner, in vitro (Fig. 3f).

Mitochondrial Hsp90 regulation of bioenergetics stress. The
results above have suggested that Hsp90-directed protein folding
preserves the stability and function of SDHB in tumour cells. To
determine whether this mechanism regulates oxidative phos-
phorylation, we next quantified the respiration rates of tumour
cells in real time. At the same concentrations that induce SDHB
misfolding (Fig. 3a), and impaired mitochondrial metabolism
(Figs 1,2), Gamitrinib inhibited the oxygen consumption rate
(OCR) in prostate PC3 cancer (Fig. 3g,h, Supplementary Fig.
S9a), or glioblastoma LN229 (Supplementary Fig. S9b–d) cells, in
a concentration-dependent manner. 17-AAG had no effect on
OCR (Fig. 3g,h, Supplementary Fig. 9). siRNA knockdown of
TRAP-1 in PC3 (Fig. 3i,j, Supplementary Fig. S10a), or LN229
(Supplementary Fig. S10b–d) cells, partially attenuated the inhi-
bition of OCR mediated by Gamitrinib, compared with control
transfectants. In contrast, transfection of tumour cells with non-
targeting siRNA had no effect on OCR, with or without Gami-
trinib (Fig. 3i,j, Supplementary Fig. S10a–d). The partial

reduction in the respiratory capacity and SDHB inhibition
produced by Gamitrinib when added after siRNA silencing of
TRAP-1, as compared with the near complete inhibition observed
when Gamitrinib is added without prior siRNA to TRAP-1, may
reflect a compensatory protective response by the mitochondria
as a result of the extended partial TRAP-1 inhibition produced
by siRNA knockdown of TRAP-1, potentially involving
organelle Hsp90.

Most tumours undergo metabolic reprogramming, and utilize
aerobic glycolysis as their main energy source3. Therefore, we
asked whether oxidative phosphorylation enabled by Hsp90-
directed protein folding was important for tumour maintenance.
Tumour cells transfected with control siRNA and maintained in
abundant nutrients (10mM glucose) exhibited normal cellular
respiration (Fig. 4a,b, Supplementary Fig. S10e). This response
was increased at lower glucose concentrations (1mM), suggestive
of a compensatory mechanism that elevates ATP output by
oxidative phosphorylation during nutrient deprivation (Fig. 4a,b,
Supplementary Fig. S10e). Under these experimental conditions,
siRNA knockdown of TRAP-1 abolished the compensatory
increase in OCR at limiting glucose concentrations (1mM),
whereas cellular respiration in 10mM glucose was minimally
affected (Fig. 4a,b, Supplementary Fig. S10e).
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In reciprocal experiments, we transfected a control plasmid or
TRAP-1 cDNA in normal NIH3T3 fibroblasts (Fig. 4c), which
have low endogenous levels of mitochondrial Hsp90 and TRAP-1
(ref. 18). NIH3T3 fibroblasts transfected with control cDNA
exhibited reduced ATP production (Fig. 4c), and phosphorylation
of AMPK (Fig. 4d) at limiting glucose concentrations, consistent
with cellular starvation. In contrast, transfection of TRAP-1
restored ATP production (Fig. 4c), and reduced AMPK
phosphorylation (Fig. 4d) at low glucose concentrations.

Role of mitochondrial Hsp90s in SDH-mutant tumours. These
experiments suggest that Hsp90 and TRAP-1 control multiple
mitochondrial pathways of bioenergetics, and their role in oxi-
dative phosphorylation may support energy production under
conditions of nutrient deprivation. To test the implications of this
model for tumour cell survival, we next targeted ETC Complex II
function using pharmacological inhibitors. Treatment of tumour
cells with the Complex II inhibitor, thenoyltrifluoroacetone
(TTFA), but not 3-nitropropionic acid, increased the expression
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of hypoxia-inducible factor-1a (HIF-1a) (Fig. 5a), an oncogenic
transcription factor implicated in adaptive responses to cellular
stress34. Inhibition of mitochondrial Hsp90s with Gamitrinib
(Fig. 5b), or siRNA silencing of TRAP-1 (Fig. 5c), was
insufficient, alone, to modulate HIF-1a levels, whereas both
treatments strongly enhanced TTFA induction of HIF-1a in
tumour cells (Fig. 5b,c). In parallel experiments, tumour cells
exposed to hypoxia exhibited increased recruitment of Hsp90 to
mitochondria, compared with cytosol (Fig. 5d,e), and this
response was reversed by HIF-1a silencing by siRNA (Fig. 5f,g).
The mitochondrial pool of HK-II was also increased under
hypoxic conditions (Fig. 5d,e), and this response was also
abolished by siRNA knockdown of HIF-1a (Fig. 5f,g). In
contrast, normoxic conditions (Fig. 5d,e), or transfection of
tumour cells with non-targeting siRNA (Fig. 5f,g) had no effect.

Mutations in Complex II35, including SDHB36, have been
linked to hereditary or sporadic pheochromocytoma (PCC)37,
and paraganglioma (PGL)38, potentially through a mechanism of
HIF-1a-dependent tumorigenesis39. Consistent with HIF-1a-
dependent accumulation of Hsp90 to mitochondria after
Complex II inhibition (Fig. 5e,g), TRAP-1 was strongly
expressed in PCC/PGL samples carrying SDHB and SDHD
mutations, compared with tumours with mutations in RET, NF1
and VHL, or of unknown genotype (Fig. 5h,i). Functionally, PCC/
PGL tumours with Complex II mutations and high levels of
TRAP-1 (Fig. 5j) were more sensitive to Gamitrinib-mediated
killing, in vitro (Fig. 5j), suggesting a compensatory pro-survival
role of mitochondrial Hsp90s in transformed cells with defective
oxidative phosphorylation39.

Discussion
In this study, we have identified mitochondrial Hsp90s18 as global
regulators of tumour cell metabolism, including oxidative

phosphorylation and redox networks. This pathway hinges on
chaperone-directed protein folding in mitochondria15, and affects
a discrete Hsp90/TRAP-118 proteome intercalated in multiple,
fundamental pathways of cellular homeostasis. This mechanism
may be ideally suited to buffer the risk of proteotoxic stress in
transformed cells with high biosynthetic needs19, preserve
organelle integrity against CypD-dependent apoptosis20 and
maintain multiple sources of energy production, including HK-
II-dependent glycolysis21, and oxidative phosphorylation (this
study), especially under stress conditions of hypoxia and nutrient
deprivation.

The considerable interest in aerobic glycolysis3 as a central
feature of tumour metabolic reprogramming1, together with the
signalling role of oncogenes in these responses40, have brought
into question the function of mitochondrial bioenergetics, and in
particular oxidative phosphorylation, in tumour maintenance28.
However, recent studies have suggested that mitochondrial
oxidative phosphorylation continues to remain critical for
tumour cells6, favouring resistance to therapy7,8 and promoting
cell survival9. The data presented here provide a mechanistic
framework in support of these observations, and identify Hsp90/
TRAP-1-directed protein folding in mitochondria18 as a key
requirement of oxidative phosphorylation in tumours. This
involved the formation of physical complex(es) between Hsp90/
TRAP-1 and the iron–sulphur subunit of mitochondrial ETC
Complex II, SDHB32, preserving its folding, stability and
enzymatic function under oxidative stress. Functionally, Hsp90/
TRAP-1 regulation of SDHB maintained energy production
under conditions of low nutrients and hypoxia, which are
hallmarks of tumour growth, in vivo41, and dampened
biochemical signals of cellular starvation that are typically
associated with tumour suppression42.

SDHB32 has attracted attention as a gene mutated in certain
human neuroendocrine tumours36. The molecular requirements
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of how these mutations contribute to malignancy are still being
worked out36, but one consequence of pharmacological or genetic
inactivation of SDHB observed here was an increased recruitment
of Hsp90 to mitochondria18. This pathway required HIF-1a,
which is deregulated in SDHB-mutant tumours, and may
potentially contribute to disease maintenance39. The increased
accumulation of mitochondrial Hsp90s under these conditions
may help compensate for the impaired oxidative phosphorylation
resulting from defective SDHB function36, enhancing organelle
integrity against CypD-mediated permeability transition18 and
energy production via HK-II-directed glycolysis21. Consistent
with this model, SDHB-mutant tumour cells were more sensitive

to Gamitrinib-mediated killing than other neuroendocrine
malignancies, suggesting that Hsp90-directed protein folding in
mitochondria provides an adaptive and potentially ‘addictive’
survival factor for these cells.

There is now intense interest in pursuing aberrant tumour cell
metabolism for cancer therapeutics10. However, inhibitors that
can safely target these pathways in tumours, as opposed to
normal tissues, especially with respect to oxidative
phosphorylation7,8, have not been clearly identified43. As a
mitochondrial-directed Hsp90 inhibitor20, Gamitrinib may be
ideally suited to function as a general antagonist of tumour
cell metabolism. Supported by the differential targeting of
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tumour, as opposed to normal mitochondria18, and a favourable
safety profile in preclinical models20, Gamitrinib inhibition of
mitochondrial Hsp90s may simultaneously disable metabolic and
survival adaptive networks in genetically heterogeneous tumours.

Methods
Antibodies and reagents. The following antibodies to succinate dehydrogenase
complex subunit B (SDHB, 1:500, Abcam), succinate dehydrogenase complex
subunit A (SDHA, 1:3000, Abcam), HK-II (1:1000, Cell Signaling), Cox-IV (1:1000,
Cell Signaling), hypoxia-inducible factor-1a (HIF-1a, 1:500, Cell Signaling), Hsp90
(1:1000, BD Biosciences), Thr172-phosphorylated AMPKa (1:1000, Cell Signaling),
AMPKa (1:1000, Cell Signaling), TRAP-1 (1:1000, BD Biosciences), and b-actin
(1:5000, Sigma-Aldrich) were used. A total oxidative phosphorylation antibody
cocktail (1:500, Mitoscience) directed against the 20-kDa subunit of Complex I
(20 kDa), cytochrome C oxidase subunit II of Complex IV (22 kDa), SDHB subunit
of Complex II (30 kDa), core 2 of Complex III (B50 kDa) and F1a (ATP synthase)
of Complex V (B60 kDa) was used. The complete chemical synthesis, HPLC
profile, and mass spectrometry of mitochondrial-targeted small molecule
Hsp90 antagonist, Gamitrinib has been reported20. The Gamitrinib variant
containing triphenylphosphonium as a mitochondrial-targeting moiety20 was
used in this study. Non-mitochondrially directed Hsp90 inhibitor, 17-AAG
was obtained from LC-Laboratories. Oligomycin, carbonyl cyanide
p-trifluoromethoxyphenylhydrazone (FCCP), antimycin A, 3-nitropropionic acid
and (TTFA) were obtained from Sigma-Aldrich.

Transfections. For gene knockdown experiments, tumour cells were transfected
using control, non-targeting siRNA pool (Dharmacon, cat. no. D-001810) or
specific ON-Target SMARTpool siRNAs to TRAP-1 (Dharmacon, cat. no.
L-010104) or HIF-1a (Dharmacon, cat. no. L-004018). The various siRNAs were
transfected at 10–30 nM using Oligofectamine (Invitrogen). Transfection of
plasmid DNA was carried out with Lipofectamine (Invitrogen), as described20.

Subcellular fractionation. Mitochondrial fractions were isolated from
Gamitrinib-treated LN229 cells (0–20 mM for 5 h) using an ApoAlert cell fractio-
nation kit (Clontech), as described20. Briefly, LN229 cells or PC3 cells were
mechanically disrupted by 70 strokes with a Dounce homogenizer in isolation
buffer containing 1mM DTT plus protease inhibitor cocktail. Cell debris was
removed by centrifugation at 700 g for 10min. The supernatant was further
centrifuged at 10,000 g for 25min, and supernatants or mitochondrial pellets were
processed for further analysis.

Mitochondrial protein folding. Mitochondrial fractions were isolated from
vehicle- or Gamitrinib-treated LN229 cells (5mM for 12 h), and suspended in equal
volume of mitochondrial fractionation buffer containing increasing concentrations
of CHAPS (0, 0.05, 0.1, 0.2, 0.5, 1 or 2%). Samples were incubated for 20min on ice
and detergent-insoluble protein aggregates were recovered by centrifugation
(20,000 g) for 20min. Pelleted proteins were separated by SDS-gel electrophoresis
and visualized by silver staining (Sigma-Aldrich).

Proteomics studies. To identify mitochondrial proteins that require organelle
Hsp90s for proper folding and/or activity (mitochondrial Hsp90 proteome),
individual silver-stained bands isolated from mitochondrial fractions of vehicle or
Gamitrinib-treated LN229 cells were analysed by 1D MS (see Supplementary
Methods). As an independent experimental approach, global proteomics analysis of
vehicle or Gamitrinib-treated LN229 cells was carried out by SILAC technology
(see Supplementary Methods). Changes in the expression of 301 metabolites were
determined by ultrahigh performance liquid chromatography/mass spectroscopy
and gas chromatography/mass spectroscopy in PC3 cells treated with vehicle or
Gamitrinib (2.5, 5 mM), non-mitochondrial-targeted 17-AAG (5mM), or alter-
natively, transfected with control non-targeting or TRAP-1-directed siRNA (see
Supplementary Methods).

Purification of TRAP-1 proteins. NIH3T3 cells were transfected with human
TRAP-1-Myc plasmid cDNA. After 48 h, cells were washed with PBS and lysed in
PBS containing 1% TX-100 plus phosphatase inhibitor cocktail (Roche). Lysates
were centrifuged at 14,000 g for 10min at 4 �C, and c-Myc-tagged TRAP-1 proteins
were isolated by immunoprecipitation with an antibody to c-Myc coupled to
agarose beads (Sigma-Aldrich). Samples were then washed five times with lysis
buffer, and TRAP-1-myc was eluted from the immune complex with 100 mgml� 1

c-Myc peptide (Sigma-Aldrich) in PBS. To eliminate free c-Myc peptide and
further enrich eluted TRAP-1-containing material, samples were purified with
centrifugal filter (30 K, Millipore).

SDH activity assay. Tumour cells were analysed for SDH complex activity as
reduction of the dye 2,6-dichlorophenolindophenol, which recycles the substrate
ubiquinone using Complex II enzyme activity. Briefly, mitochondria isolated from

PC3 or LN229 cells were lysed in enzyme assay buffer containing 1% N-dodecyl-b-
D-maltopyranoside plus protease inhibitors (Roche) for 1 h at 4 �C under constant
agitation. After centrifugation at 15,000 g for 20min at 4 �C, supernatants were
loaded on anti-Complex II antibody-coated 96-well plates, and incubated with
increasing concentrations of recombinant TRAP-1 for 2 h. Enzyme activity was
determined from SDH-dependent reduction of dye 2,6-dichlorophenolindophenol,
and quantified as changes in absorbance at 600 nm for 3 h at 2min intervals using a
plate reader (Beckman Coulter).

Cellular respiration. OCRs were assayed using the Extracellular Flux System 24
Instrument (Seahorse Bioscience, Billerica, MD). PC3 or LN229 cells were grown in
standard media and after trypsinization and re-suspension in growth media, 25,000
cells were plated in each well of a Seahorse XF24 cell culture plate (100 ml volume).
After 4-h incubation to allow the cells to adhere to the plate, an additional 150 ml of
media was added to each well, and the cells were grown for 24 h at 37 �C with 5%
CO2. The media was then exchanged with unbuffered DMEM XF assay media
(Seahorse Bioscience) supplemented with 2mM glutaMAX, 1mM sodium pyruvate
and 5mM glucose (pH 7.4 at 37 �C), and equilibrated for 30min at 37 �C and
B0.04% CO2 before the experiment. Cellular oxygen consumption was monitored
in basal condition (before any addition) and after addition of oligomycin
(1.25 mM), FCCP (0.4 mM) and antimycin (1.8 mM), all dissolved in DMSO. The
three drugs were injected into the XF24 sequentially, and the OCRs measured using
the extracellular flux analyser with three cycles of mixing (150 s), waiting (120 s)
and measuring (210 s). This cycle was repeated following each injection44. To test
the effect of mitochondrial Hsp90s on cellular respiration, PC3 or LN229 cells were
treated with non-cytotoxic concentrations of Gamitrinib (0–10 mM) or 17-AAG
(2.5–5 mM) and continuously analysed for OCR changes. Alternatively, cells were
transfected with control or TRAP-1-directed siRNA and analysed after 24–36 h.

Patient samples. All experiments involving patient-derived material were
approved by the Tufts Medical Center Institutional Review Board following
informed consent. A series of genetically characterized PCC/PGL with documented
mutations of major susceptibility genes (n¼ 10, SDHB; 6 SDHD; 4 VHL; 3 RET; 2
NF1), apparently sporadic PCC/PGL (n¼ 22) and normal human adrenal medulla
was examined in this study. All of the tumours with VHL, RET or NF1 mutations
were intra-adrenal, while 10/13 with SDHB, 3/6 with SDHD, and 10/25 with no
known mutations were extra-adrenal. Two of the extra-adrenal tumours with
SDHD mutations were in the head or neck and the remainder retroperitoneal.
For four of the tumours with SDHB mutations, tissue was available only from
metastatic sites. One SDHB-mutated tumour was an adrenal bed recurrence of a
primary malignancy that had given rise to metastases. All of the other specimens
were primary tumours.

Statistical analysis. Data were analysed using the two-sided unpaired t-tests using
a GraphPad software package (Prism 4.0) for Windows. Data are expressed as
mean±s.d. or mean±s.e.m. of multiple independent experiments. A P-value of
o0.05 was considered as statistically significant. For pair-wise comparisons in
metabolite screening studies, the Welch’s t-tests, Wilcoxon’s rank sum tests or
ANOVA were performed. For classification studies, random forest analyses
were performed. Statistical analyses are performed with the program ‘R’
http://cran.r-project.org/.
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