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Abstract

A new modified random clusters method for the simulation of landscape the matic spatial patterns is presented.

It produces more realistic and general results than landscape models that have been commonly used to date in

the field of landscape ecology. Simulated patterns are said to be realistic, apart from their patchy and irregular

appearance, because the values of the spatial indices as a function of habitat abundance measured in real landscape

patterns (number of patches, edge length and patch cohesion index) can be replicated with the proposed landscape

model. It allows a wide range of spatial patterns to be obtained, in which fragmentation and habitat abundance can

be systematically and independently varied. Furthermore, a degree of control over the irregularity of the shapes of

the simulated landscapes can be achieved, and it is also possible to simulate patterns with anisotropy. The proposed

method is easy to implement and requires little computation time, which enhances the practical possibilities of this

method in different areas of landscape ecology.

Introduction

The development of methods for the simulation of

landscapes and other categorical spatial data patterns

has focused the attention of many researchers in the

past years (Gardner et al. 1987; Gardner et al. 1991;

O’Neill et al. 1992; Gustafson and Parker 1992; Li

et al. 1993; Li and Reynolds 1994; Gotway and

Rutherford 1996; Moloney and Levin 1996; Myers

1996; Srivastava 1996; With et al. 1997; With and

King 1997; Hargis et al. 1998), mainly due to their

potential usefulness in different areas of landscape

ecology. However, the results are often partial and non

realistic, and a general model that accounts for the

different broad-scale landscape patterns that exist in

reality is still lacking. This paper presents a new simu-

lation method that provides more general and realistic

results than commonly used landscape models.

The objective of a landscape pattern simulation

method is not to reproduce the exact location of the

habitat types of the pattern, but to generate realizations

that account for the information that is considered

relevant for the process under study (Gotway and

Rutherford 1996). The spatial patterning of landscapes

influences many ecological phenomena (the processes

under study), like animal population dispersal and

abundance, biodiversity, wildland fire spread, distur-

bance spread, etc. (e.g., Franklin and Forman 1987;

Fahrig and Merriam 1985; Wilcox and Murphy 1985;

Dorp and Opdam 1987; Andrén 1994; Wiens et al.

1997), and the information considered relevant for

those processes can be summarized in different land-

scape metrics, such as those relating to connectivity,

fragmentation, size and shape of the patches, habi-

tat abundance, and other spatial indices. A successful

landscape model should be able to provide patterns

that replicate the values of the spatial indices observed

in real landscapes.

Simulated patterns can be used as an input for other

modeling steps (Myers 1996), making it possible to

detect which component of spatial heterogeneity is

relevant for the phenomena under study. There are
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many modeling studies in which artificially generated

patterns have been used to explore the relationships

between landscape pattern and ecological processes

(Gardner et al. 1989, 1991; Turner et al. 1989a, 1991;

Palmer 1992; Green 1994; Lavorel et al. 1994, 1995;

With and Crist 1995; Gustafson and Gardner 1996;

With et al. 1997). Artificially generated patterns have

also been used to develop, evaluate, and compare

indices of landscape pattern, as well as to detect cor-

relation between them (Turner et al. 1989b; Li and

Reynolds 1993, 1994; Plotnick et al. 1993; Hargis

et al. 1998). A more detailed description of applica-

tions of landscape models in ecology can be found

in the review by With and King (1997), including the

use of simulated patterns as neutral landscape models.

Many other applications, not necessarily in the field of

landscape ecology, like the evaluation and comparison

of techniques for integrating and analysing spatial cat-

egorical data and the development and evaluation of

sampling designs, can produce relevant insights from

the use of simulated patterns (e.g., Zöhrer 1978; Brus

and Gruijter 1997).

However, the validity of these applications de-

pends upon the realism and generality of the landscape

model used. In so far as landscape models provide

partial and non realistic results, studies where they are

used are likely to produce non robust or misleading

results.

But, why should simulated maps be used for those

purposes instead of real landscape patterns? Li et al.

(1993) used computer simulation because field ex-

perimental and chronological approaches were not

feasible due to expense, time requirements, lack of ex-

perimental controls, and difficulties of finding suitable

study sites. Lam (1990) stated that images simulat-

ing remote sensed data would be especially useful for

benchmark or theoretical studies which may involve a

large number of images. Besides the time and money

requirements that the use of real images may involve,

the results obtained from the landscape patterns of a

concrete area may not be applicable to other areas with

different spatial characteristics nor comparable with

the results of other authors at other study sites. That

is to say, the use of some particular data could limit

the scope of application of the modeling results.

Figure 1. Percolation map for p = 0.55 (marked pixels are shown

in lighter color).

A brief review of existing landscape simulation

methods

It is not the purpose of this study to give a detailed de-

scription of these methods, but following are the main

characteristics of the different available approaches.

Existing simulation methods can be roughly classi-

fied in three groups: neutral landscape models, ex-

plicit simulation models and geostatistical simulation

methods.

Neutral landscape models

Neutral landscape models have been defined as those

that produce an expected pattern in the absence of spe-

cific landscape processes (Gardner et al. 1987; With

and King 1997). According to this definition, the pro-

posed modified random clusters simulation method

(hereafter MRC) can be considered a neutral model,

as it does not include any explanatory process of the

resultant spatial patterns.

Among the models included in this category (With

and King 1997), percolation maps have been the most

widely used (Gardner et al. 1987, 1989, 1991; O’Neill

et al. 1988; Turner et al. 1989a, 1991; Gardner and

O’Neill 1991; Gustafson and Parker 1992; Plotnick

et al. 1993; Andrén 1994; With and Crist 1995;

Gustafson and Gardner 1996; Wiens et al. 1997; With

et al. 1997). Percolation maps (simple random maps)

are grids in which each location is occupied with a

certain probability p (Figure 1); they were proposed as
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a neutral model for binary landscape mosaics (Gardner

et al. 1987).

However, simple random maps are not at all ade-

quate models of landscape patterns, as has been clearly

shown when compared with real landscapes. Perco-

lation maps have much more edge length and larger

number of patches than real patterns (Gardner et al.

1991); comparisons of patch cohesion are dramatically

different (Schumaker 1996), and also the cumulative

frequency distributions are clearly divergent (Gardner

et al. 1987). As stated by Srivastava (1996), one of the

criteria in choosing a simulation method is the visual

appeal of the final result, and in the case of percolation

maps this is not very high (Figure 1). In general, visual

inspection is valuable because it may anticipate the

results of more detailed analysis based on spatial in-

dices, which are of course needed for a non-subjective

comparison of spatial patterns.

The main limitation of simple random maps is their

complete spatial independence. In percolation maps,

the habitat type present in a pixel is statistically in-

dependent of the habitat type present in neighborhood

locations. However, real landscapes show positive spa-

tial autocorrelation (spatial dependence), which means

that if at a point of the landscape a certain habitat type

exists, it is more probable that the same type is the one

existing in the neighborhood locations (Palmer 1992).

Percolation maps have proved useful to detect the dif-

ferences between real landscapes and random patterns

(Gardner et al. 1987), but they should not be used as

landscape models because of their deficiencies in this

respect.

Other simulation methods created to address spe-

cific questions of landscape pattern often do not appear

realistic, probably because various aspects of land-

scape pattern were purposefully controlled, like maps

with contagion (Gardner and O’Neill 1991), random

clumps (Gustafson and Parker 1992), and hierarchical

maps (O’Neill et al. 1992).

A more recent approach is the use of the midpoint

displacement fractal algorithm (Saupe 1988). This can

be adapted to obtain thematic patterns with a patchy

appearance in which, according to With et al. (1997)

and With and King (1997), abundance and spatial con-

tagion of the habitat can be easily and systematically

varied.

Hargis et al. (1998) describe a simulation approach

that generates landscape patterns by adding patches

from a data base to a map and placing them at random

locations until the desired percentage of occupancy is

reached. The patches included in that data base were

Figure 2. Three different neighborhood criteria for identifying clus-

ters in step B of the simulation. Pixels considered neighbors of the

central pixel (x) are shown in darker color.

109 actual timber clearcut harvest patches from the

Uinta Mountains of Northern Utah (USA), which may

limit the results of the analysis to that particular kind

of landscape patterns.

Explicit landscape models

These simulation models reproduce the landscape pat-

terns resulting from the actuation of certain processes

that are explicitly included in the model. Thus, these

are explanatory models, unlike the neutral models

described earlier. Examples of this category are the

model by Moloney and Levin (1996) that simulates the

spatial and temporal ecological dynamics occurring in

a specific annual serpentine grassland in California,

or the one developed by Li et al. (1993) to simulate

the landscape fragmentation resulting from different

forest cutting patterns.

Geostatistical simulation methods

The spatial simulation methods developed in the field

of geostatistics to simulate the spatial distribution of

categorical variables (Deutsch and Journel 1992; Got-

way and Rutherford 1996) are included in this group.

These methods require fairly comprehensive informa-

tion about the statistical properties of the pattern to be

simulated, such as variograms, covariance functions,

etc.

One of the most interesting characteristics of the

MRC method (and also of some of the neutral models

mentioned before) is that it allows simulating com-

plex structures with simple algorithms that require

little or no previous information. This is what Guzmán

et al. (1993) call ‘simplicity of construction and com-

plex appearance of the final result’. Also, computation

times required to produce one simulation may be im-

portant to evaluate the performance of a simulation

method. In this sense, some of the geostatistical meth-

ods cannot be considered fast at all: ‘Though all

methods are workable in practice, some require several

days of run-time on fast computers to produce a single
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realization despite their author’s enthusiastic claims of

speed. Such procedures cannot be a practical basis for

producing many realizations.’ (Srivastava, 1996).

Methods

Description of the modified random clusters

simulation method

The modified random clusters simulation method

(MRC) is a grid-based model that generates thematic

spatial patterns on squared lattices, which in the fol-

lowing description will be assumed to have L2 cells

(where L is the linear dimension of the map). Al-

though it could be used for the simulation of any

categorical spatial data, it has been developed for its

potential interest as a landscape model. The MRC

simulation method comprises the following four steps.

(A) Percolation map generation

The parameter that controls this step is the initial prob-

ability p. For each of the L2 pixels of the image a

random number x (0 < x < 1), taken from a uniform

distribution, is compared with p, and if x < p, then

the pixel is marked. Thus, a map is obtained in which

approximately p · L2 pixels are marked (Figure 1).

These simple random maps have been the subject of

intensive studies in the context of percolation theory,

where they have been used as a model for different

physical properties, and their characteristics, which

change as a function of p, are well known (Stauffer

1985; Feder 1988; Bunde and Havlin 1991). They

have also been used as landscape models, but they

have severe limitations in this respect, mainly due to

their complete spatial independence, as noted earlier.

In MRC, percolation maps are only the first step of

the simulation, and its characteristics are considerably

modified in the following steps.

(B) Clusters identification

In this step, clusters composed of pixels marked in

step A are identified. A cluster is defined as a set of

pixels that have some neighborhood relation between

them. Depending on the neighborhood criterion used,

clusters will be very different, and so this is another

parameter that influences simulation results. The cri-

terion used to generate all the MRC patterns shown in

this paper (except landscape 3 in Figure 15) is the 4-

neighbourhood rule: pixels are considered to belong to

the same cluster if they are adjacent horizontal or ver-

tically, but not along the diagonals (Figures 2 and 4).

Other criteria can also be used (e.g., 8-neigbourhood

(Figure 2), which also considers pixels along the di-

agonals to be neighbors), but no relevant differences

in the simulated patterns are produced by the use of

different symmetric criteria, in the sense that no signif-

icant increase in the variety of the simulated patterns

is achieved (Saura 1998).

However, the use of asymmetric neighborhood cri-

teria (Figure 2) leads to patterns with anisotropy, that

is, with patches orientated in certain direction (Fig-

ure 15, landscape 3). The ability to reproduce this kind

of non isotropic thematic patterns is of great interest,

as they often appear in land cover or geological maps.

(C) Clusters type assignation

In this step, one type (class or category) is assigned to

each of the clusters that were identified in the previous

step. The objective is to transform a map with hun-

dreds or thousands of clusters in a map with n types

(Figure 4), each of them occupying a percentage of

the area of the map Ai(i = 1 . . . n,
∑i=n

i=1 Ai = 100).

In this step types are assigned only to the p · L2 pixels

that were marked in step A of the simulation, thus ob-

taining the Ai percentages with respect to those p · L2

cells.

When clusters are small, types can easily be as-

signed in such a way that p · L2 · Ai pixels belong to

category i of the thematic image. However, in perco-

lation maps the size of the clusters increases with p.

In particular, the size of the largest cluster of the map

dramatically increases near the percolation threshold

(pc), and for p > pc a large cluster appears connect-

ing opposite sides of the lattice and occupying most

of the area of the map, as shown in Figure 3 (for

the 4-neighborhood rule and large maps p ∼= 0.5928

(Stauffer 1985; Ziff 1986)). Thus, all the possible

combinations of Ai values can only be achieved for

p < pc. This is by no means a limitation for the gen-

erality of simulation results, as will become apparent

later.

In the computer program where the MRC simula-

tion method has been implemented (SIMMAP, Saura

1998), steps B and C take place simultaneously, as-

signing types to the clusters at the same time as they

are being identified.

(D) Filling in the image

This is a key step of the simulation that makes it pos-

sible to obtain simulated landscape patterns with the

necessary degree of spatial dependence, which look

patchy like real landscapes.
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Figure 3. Size of the largest cluster as a function of p for L = 400, expressed as percent of the area occupied with respect to the total L2 pixels

of the map (continuous line) or with respect to the p ·L2 marked pixels (dashed line). Percolation threshold (pc
∼= 0.593 for the 4-neighborhood

criteria) is marked by the vertical line.

After the previous three steps an image has been

obtained in which approximately p · L2 pixels have

been assigned to one of the n types, while the rest

((1 − p) · L2) have no category assigned as yet. In

this step, the most frequent type among the 8 neigh-

borhood cells is assigned to each of those (1 − p) · L2

cells (notice that not all neighbor pixels may have a

type assigned before step D. These unclassified pix-

els are not included in the frequencies count). In case

of a tie between two types, one of them is randomly

assigned. This is similar to 3 × 3 modal filters used

in digital image processing techniques (Thomas 1980;

Chuvieco 1990; Homer et al. 1997).

Thus, categories are assigned depending on those

existing in the neighborhood pixels (spatial depen-

dence). If none of the 8 neighborhood pixels has any

type assigned before step D (that, is none of them was

marked in step A of the simulation, which occurs when

p is low) one of the types in the map is randomly

assigned, but the probability of assigning each type

is equal to its percentage of occupancy (Ai). This en-

sures that in the resulting map approximately Ai · L2

pixels will belong to each of the categories.

Other rules for ‘filling in’ the images were also

tested but either did not show significant differences

from the one described above or provided results that

did not address the objectives of the simulation method

(Saura 1998).

After this step the simulation process is complete

(Figure 4), and a pattern composed of patches with an

intermediate level of spatial dependence is obtained

(note that we use the term ‘patches’ to denominate

the patterns obtained after step D and ‘clusters’ to

denominate patterns prior to step D).

Simulation parameters in the modified random

clusters method

The parameters that control simulation results in MRC

method are:

– Initial probability p (step A).

– Neighborhood criteria (step B).

– Number of types (classes) of the thematic pattern

(n) and percentage of area of the map occupied by

each of them (Ai).

And, if there is no interest in simulating patterns

with anisotropy, the neighborhood criteria can be set

to 4-neighborhood with no significant loss of vari-
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Figure 4. An example to illustrate the simulation steps that make up the modified random clusters method (p = 0.52, 4-neigborhood criteria,

n = 3, L = 50 pixels). Pixels with no class assigned before step Dare shown in black.

ety of the simulated patterns. It is, then, a simple

simulation method, controlled by a small number of

simulation parameters and easy to implement for any

of the purposes described in the introduction.

In MRC the initial probability p is not related to

the abundance of the types in the map, as percentages

of occupancy are determined by cluster type assigna-

tion (step C). This is the opposite of what occurs in

percolation maps, and so special care should be taken

in order to avoid confusion. In MRC p controls the

degree of fragmentation or aggregation of the patches,

as is clearly shown in Figure 5. When p is small,

patches are more numerous and smaller, and thus pat-

terns are more fragmented. As p increases, the number

of patches decreases and its mean and maximum size

increase, resulting in more aggregated landscapes. As

shown in Figure 5, the increase in the size of the

patches as a function of p is not linear, but more rapid

as p is nearer pc(pc
∼= 0.593 for the 4-neighborhood

criteria).

As explained before, any desired percentages of

occupancy of the n habitat types (Ai) can be obtained

for any p < pc. There is no need to use values of

p > pc, because maps with a dominant type (a type

that occupies most of the area of the map) can be

generated for any value of p by fixing the Ai values

accordingly. Furthermore, this makes it possible to

control the degree of fragmentation of the patches em-

bedded in the dominant matrix, by simulating patterns

with the same Ai but different initial probability p, as

shown in Figure 6. This differentiation of abundance

of the classes of the thematic pattern and probability p

is one of the keys of the improvements in this method,

as it allows separate control of fragmentation and habi-

tat abundance, which in percolation maps are mixed

and confused.

In MRC, percolation maps are only the first step of

the simulation, and its characteristics are considerably

modified by the following steps. In fact, very different

thematic images can be obtained from the same perco-

lation map. Figure 15 clearly shows how the modified

random clusters simulation method expands and im-

proves the simulation possibilities of simple random

maps.

Simple random maps are just an extreme case of

the MRC patterns, characterized by complete spatial

independence, that are obtained when p = 0. In this

case type assignation is done entirely at random in

step D (steps A, B and C do not take place), produc-

ing a map in which the type existing in a particular

pixel is not related statistically to those existing in

the neighborhood cells. At the other extreme, there

is maximum spatial dependence in a categorical map

when all the pixels of a certain category belong to

the same patch. Between these unrealistic extremes all

the intermediate degrees of spatial dependence can be

obtained by varying the initial probability p, so that

spatial dependence is higher as p increases.

It should be noted that MRC is a stochastic simula-

tion method, that is, multiple random realizations can

be obtained for the same set of simulation parameters,

which differ in the exact location of the types of the

pattern but are similar in their overall spatial structure.

Landscape metrics for the quantification of

simulation results

As Figures 5, 6, 12, 13, 14 and 15 show, patterns gen-

erated with the modified random clusters method are

remarkably realistic, in the sense that they look patchy

and irregular as real landscapes usually do.
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Figure 5. Six simulated binary landscapes (n = 2) with the same percentages of occupancy (A1 = A2 = 50%) but generated for different

values of the initial probability p. In all the images L = 200 pixels.
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Figure 6. Four simulated landscapes in which the dominant habitat type occupies 80% of the area, but each of them generated for different

values of p. The four patterns have 6 habitat types and their size is 200 × 200 pixels.

To evaluate the realism of the simulations in quan-

titative and non subjective terms, we generated a set of

MRC binary simulated patterns (n = 2) and computed

the values of number of patches (NP), edge length

(EL), patch cohesion index (PC) and area weighted

mean shape index (AWMSI) corresponding to patches

of class 1. These indices were selected because MRC

results could be compared with other simulation meth-

ods and published real landscape data and were par-

ticularly suitable for discriminating between simple

random patterns and MRC maps.

All simulated patterns were 400 × 400 pixels and

the clusters were identified using the 4-neighborhood

criterion (step B of the simulation). The percentage

of occupancy (A1, A2 = 100 − A1) was varied from

1% to 99% in steps of 1% (99 cases) and the ini-

tial probability p ranged from 0.01 to 0.6 in steps of

0.01 (60 cases). In all, 5940 landscapes were simu-

lated, in which percentage of occupancy and degree of

fragmentation were independently and systematically

varied. Also, 400 × 400 pixel percolation maps were

generated with the same proportions of habitat (that

is, from 1% to 99% in steps of 1%), and 10 repli-

cations for each of the 99 cases, making a total of

990 maps. Patches in the landscape were defined us-

ing the 4-neighborhood rule, which is the one used by

most authors when computing landscape metrics (e.g.,

Gardner et al. 1987, 1991; Turner and Ruscher 1988;

With et al. 1997), although some others have used the

8-neighborhood rule (Schumaker 1996; Hargis et al.

1998).
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Figure 7. Number of patches as a function of percentage of occupancy (A1) for the set of MRC simulated patterns.

Figure 8. Total edge length as a function of percentage of occupancy (A1) for the set of MRC simulated patterns.
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Figure 9. Comparison between the number of patches of real landscapes in Georgia (large rhombs) and the simulated patterns. The upper

continuous line corresponds to simple random maps (p = 0) and the lower one to the simulated patterns obtained for p = 0.1.

Figure 10. Patch cohesion index (PC) as a function of percentage of occupancy (A1) for the set of MRC patterns. The continuous line

corresponds to the PC values for simple random maps (p = 0).



671

Figure 11. Area weighted mean shape index as a function of percentage of occupancy (A1) for the set of MRC simulated patterns.

Edge length is the sum of all the edges between

cells that are horizontally or vertically adjacent and

belong to different habitat types. EL is a good index

of fragmentation (Li et al. 1993), taking lower values

as the pattern is more aggregated.

The patch cohesion (PC) index (Schumaker 1996),

has the following expression:

PC =
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where pi and ai are respectively the perimeter and

the area of each of the m patches of the habitat class

of interest, and N the total number of pixels in the

landscape (L2). The PC value is minimum (PC = 0)

when all patches of habitat are confined to single iso-

lated pixels, and maximum (PC = 1) when every pixel

is included in a single patch that fills the landscape

(Schumaker 1996).

The area weighted mean shape index (AWMSI)

has the following expression:
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where pi and ai are respectively the perimeter and the

area of each of the m patches of the class of interest

in the landscape. AWMSI measures the irregularity

or complexity of the shapes of the patches, and its

value is minimum (AWMSI = 1) for perfect square

patches. This index uses patch area as a weighting fac-

tor because larger patches are assumed to have more

effect on overall landscape structure (Li et al. 1993;

Schumaker 1996).

Results and discussion

The results for number of patches (NP) and total edge

length (EL) are shown in Figures 7 and 8, where values

corresponding to percolation maps are shown in a con-

tinuous line. Simple random maps, which are obtained

as a particular case when p = 0, produce the most

fragmented patterns of any that can be generated with

the MRC method. Below this upper limit, all degrees

of fragmentation can be obtained by varying the ini-

tial probability p. The upper limit for NP and EL of
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Figure 12. Six binary simulated patterns with the same habitat abundance (20%) and for the same initial probability (p = 0.2), but generated

under different initial A′
1

values, with patches of type 1 later assigned to habitat type 2 until 20% of occupancy is reached. The nearer the initial

A′
1

is to 50–60%, the more irregular and convoluted are the shapes of the patches. In each simulated pattern the initial A′
1

value and the area

weighted mean shape index (AWMSI) of the obtained pattern are indicated. Obviously, in the case A′
1

= 20% (upper left), no reassignment of

patches was needed.
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MRC simulated patterns by no means limits its use as

a landscape model; Gardner et al. (1991) showed that

real landscapes have much less edge length and num-

ber of patches than percolation maps with the same

percentage of occupancy. The values of EL and NP

as a function of the percentage of occupancy for 27

forest/non-forest binary landscapes can be reproduced

with the modified random clusters method, as is appar-

ent from a comparison of Figures 7 and 8 in this paper

with figure 5 in Gardner et al. (1991).

To support this observation, values for the number

of patches as a function of the percentage of occu-

pancy for real landscapes were taken from Turner and

Ruscher (1988) and Turner (1990) and compared with

results for the MRC simulation method. Those land-

scape patterns were obtained from black and white

aerial photography of nine counties of Georgia (USA),

with scales ranging from 1:20.000 to 1:60.000. In all,

177 cases were taken from those data, which included

eight land cover categories (urban, agricultural, tran-

sitional, improved pasture, coniferous forest, upper

deciduous forest, lower deciduous forest and water),

and four different physiographic regions (mountains,

piedmont, upper and lower coastal plain). In order to

render the NP values comparable with one another and

with the 400 × 400 cell simulated patterns, the num-

ber of patches was multiplied by the quotient between

400 × 400 and the number of cells of each of the 177

raster maps (with sizes varying from 12.696 to 38.088

cells, each cell representing one hectare). In spite of

the variety of the data, MRC was effective for all the

values of the number of patches observed in these

landscapes (see Figure 9). In this figure, the number

of patches corresponding to p = 0.1 is presented in a

continuous line, to emphasize that with p >= 0.1 we

could account for 173 of the 177 cases (97,7%). This

indicates that too low values of the initial probability

p are not adequate for landscape simulation, as they

are more fragmented than they appear in reality. In

fact, very low values of p produce results too close

to complete spatial independence; in the limit case

(p = 0) the result was simple random maps which

bore little resemblance to real landscapes (Figure 9).

The same is true of total edge length, as a compari-

son of Figure 8 with Figure 5 in Gardner et al. (1991)

demonstrates. The maximum edge length is achieved

for 50% of habitat abundance (Figure 8), just as has

been shown to occur in real data from remote sensing

in the north of Costa Rica (Traub 1997).

No landscape model that produces a single value

of EL or NP for a fixed percentage of occupancy can

account for the diversity of cases that exist in real

landscapes, because a range of values can occur for

the same habitat abundance (see the data for Georgia

landscapes in Figure 9 and other landscape data, e.g.,

Traub 1997). In this sense, MRC provides a continuum

variation of the values of those spatial indices, which

is a significant improvement on some of the previously

existing landscape models.

However, these two indices (NP and EL) may cor-

relate only weakly with some ecological processes like

animal population dispersal, because pattern indices

that ignore habitat area are considerably biased by

small patches that contribute little or nothing to disper-

sal success (Schumaker 1996). Schumaker proposed

the patch cohesion index (PC) which, according to

the dispersal model used, correlated better with dis-

persal success than any other of the commonly used

landscape metrics. He computed the values of PC for

old-growth forests in the National Forests of the Pa-

cific Northwest of USA (a total of 2100 randomly

selected landscapes), with percentages of occupancy

ranging from 1% up to 33.4%. The observed PC val-

ues were in most cases over 0.9, and lower values

of PC were obtained only for sparse habitat, but al-

ways over 0.8. PC values for MRC simulated patterns

are shown in Figure 10. The figure illustrates how

simulated landscapes with high patch cohesion for all

the percentages of occupancy can be obtained, just as

occurs in the real patterns examined by Schumaker.

The MRC method, then, is able to generate the val-

ues of spatial metrics existing in real landscapes for

indices that seem to correlate strongly with ecological

processes. Again, PC values for simple random maps

are very different from those observed in landscapes

(Figure 10), as noted by Schumaker (1996). The dif-

ference in the slope for PC values corresponding to

percolation maps in Figure 10 in the present paper and

figure 9 in Schumaker (1996) is due to the different

criteria used to define patches here (4-neighborhood)

and by Schumaker (8-neighborhood). Each of the lines

tends to equal 1 near the percolation threshold, which

occurs at different values in both cases (around 59.3%

of occupancy for 4-neighborhood and 40.7% for 8-

neighborhood). Patch cohesion index is not sensitive

to landscape changes when a large percentage of the

landscape is occupied (Figure 10), which could be

a limitation for its use in that range of occupancy

percentages.

The results for the area weighted mean shape index

covered a wide range of values, as shown in Figure 11.

However, there is a clear dependence of AWMSI with
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Figure 13. A pattern with four habitat types (right, n = 4) is obtained after splitting the patch types of a binary landscape (left, n = 2).

Figure 14. Two simulated patterns with the same habitat proportions (n = 6) and obtained for the same initial probability p = 0.4 (L = 200

cells). However, the one on the right was generated by splitting the patch types of a binary pattern (n = 2) with A1 = A2 = 50%.

A1 and the greatest complexity of shapes is given by

habitat abundance around 55%. Of course, when habi-

tat is either very abundant or sparse patterns are not

complex; in extreme cases where all the habitat is

confined to single isolated pixels or where all the land-

scape is occupied by the same habitat type, AWMSI

would yield its minimum value (AWMSI = 1).

More general results as to patch shape index are

readily obtained: landscapes with a high AWMSI can

be generated (this occurs for A1 near 55%) and the

habitat abundance decreased later by reassigning the

type 1 patches to type 2 until the desired occupancy

percentage is reached. This is only possible if p is not

too close to pc (as in Figure 12, where p = 0.2). In

this way A1 is fixed depending more on the irregu-

larity of the shapes to be obtained than on the habitat

abundance, which can later be rearranged until the de-

sired percentage of occupancy is attained (Figure 12).

When simulating patterns with multiple types (n > 2),

similar devices can be used to have more control over

the complexity of patch shapes. By generating a binary

map (n = 2) for A1 = A2 = 50% (high AWMSI) and

splitting the patches in each of the two categories into

two new types (Figure 13), a four-type map (n = 4)

can be produced in which patch shapes are more com-

plex and less isodiametric than if the map was simply

simulated by fixing the desired n and Ai in step C (Fig-

ure 14). That is, maps can be generated with a value of

Ai for which a high AWMSI is obtained, and patches

can later be reclassified to obtain the desired number of

categories and proportions, resulting in patterns with

the high AWMSI corresponding to the initial Ai . This

was also the method used to generate landscape 2 in

Figure 15. These methods increase the variety of the

simulated patterns that can be obtained with the MRC,

allowing more independent control of the patch shapes

of the simulated patterns than is possible by simple

variation of the initial probability p.
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Figure 15. Four simulated thematic patterns obtained from the same percolation map (up, p = 0.5). All have four habitat types (n = 4) and

a size of 200 × 200 pixels. The rest of the simulation parameters are: (1) A1 = A2 = 22%, A3 = A4 = 28%. (2) Initially n = 2 and

A1 = 45% A2 = 55%, but patches were split into four habitat types (n = 4) with A1 = 23% A2 = 22% A3 = 53% A4 = 2%. (3) Asymmetric

neighborhood criteria, A1 = A4 = 28% A2 = A3 = 22% (4) A1 = 79% A2 = A3 = A4 = 7%.
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All the algorithms required for the simulation of

thematic patterns with the proposed MRC method

were implemented on a specific software, SIMMAP

(Saura 1998), with which all the simulated land-

scape patterns presented in this paper can be gener-

ated. SIMMAP also computes the indices described

in Landscape metrics for quantification of simulation

results section, as well as several others. As noted

earlier, the computational effort required to produce

one realization may be an important aspect to con-

sider when evaluating the performance of a simulation

method. MRC requires low computation times to gen-

erate one simulated landscape pattern: as implemented

on the SIMMAP program, and running on a standard

PC at 200 MHz, times per realization are around 1 s

(100 × 100 pixels landscapes), 4 s (200 × 200 pixels)

and 16 s (400 × 400 pixels).

Conclusion

Many of the landscape models that have been used

in landscape ecology provide results that are par-

tial and often unrealistic. It is not surprising that

Schumaker (1996), comparing the patch cohesion of

landscapes with the values corresponding to perco-

lation maps, stated that “this analysis suggests that

the relationship observed here between patch cohe-

sion and dispersal success derives from a characteristic

property of real landscapes that is not found in sim-

ple artificial landscapes, and that studies of simulated

habitat pattern may thus provide little insight into the

extent to which habitat fragmentation actually alters

connectivity (. . . ).

These observations suggest that the use of

computer-generated landscapes could both inflate the

value of poor predictors of ecological quality and

diminish the power of useful indices”.

Indeed, in so far as landscape models are unable to

reproduce the values of the landscape metrics that are

found in reality, studies where they are used are likely

to produce non robust or misleading results.

The proposed modified random clusters simula-

tion method may be a significant improvement in this

sense, in that it provides more general and realistic

results than previous landscape models. It is more

realistic because the results presented in this study

show that MRC accounts for the values of the land-

scape metrics that have been observed in landscapes

as a function of percent of occupancy; and it is more

general in that the results of some other landscape

models are or may be considered particular cases of

the wide array of patterns that can be generated with

the proposed method.

MRC makes it possible to simulate landscapes

with every possible degree of fragmentation and spa-

tial dependence, ranging from the unrealistic extreme

of simple random maps to higher degrees of spatial

dependence and aggregation as the initial probability

p increases. Patterns with multiple habitat classes and

any abundance of each of the categories can be gen-

erated. Furthermore, it is possible to simulate patterns

with anisotropy, and to achieve some control over the

irregularity of the shapes of the simulated landscapes.

These results are achieved with simple algorithms

that are easily implemented and low time consuming.

This enhances the practical possibilities of this method

for modeling the effects of landscape configuration

on ecological processes and for the other purposes

mentioned in the introduction.
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