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Landscape-scale parameterization of a tree-level
forest growth model: a k-nearest neighbor
imputation approach incorporating LiDAR data

Michael J. Falkowski, Andrew T. Hudak, Nicholas L. Crookston, Paul E. Gessler,
Edward H. Uebler, and Alistair M.S. Smith

Abstract: Sustainable forest management requires timely, detailed forest inventory data across large areas, which is diffi-
cult to obtain via traditional forest inventory techniques. This study evaluated k-nearest neighbor imputation models incor-
porating LiDAR data to predict tree-level inventory data (individual tree height, diameter at breast height, and species)
across a 12 100 ha study area in northeastern Oregon, USA. The primary objective was to provide spatially explicit data
to parameterize the Forest Vegetation Simulator, a tree-level forest growth model. The final imputation model utilized
LiDAR-derived height measurements and topographic variables to spatially predict tree-level forest inventory data. When
compared with an independent data set, the accuracy of forest inventory metrics was high; the root mean square difference
of imputed basal area and stem volume estimates were 5 m>-ha™' and 16 m*ha™!, respectively. However, the error of im-
puted forest inventory metrics incorporating small trees (e.g., quadratic mean diameter, tree density) was considerably
higher. Forest Vegetation Simulator growth projections based upon imputed forest inventory data follow trends similar to
growth projections based upon independent inventory data. This study represents a significant improvement in our capabil-
ities to predict detailed, tree-level forest inventory data across large areas, which could ultimately lead to more informed
forest management practices and policies.

Résumé : L aménagement durable des foréts requiert des données appropriées et détaillées d’inventaire forestier sur de
grandes superficies, ce qui est difficile a obtenir par le biais de techniques traditionnelles d’inventaire forestier. Cette étude
évalue des modeles d’imputation basés sur les k plus proches voisins incorporant des données lidar pour prédire des mesu-
res d’inventaire a 1’échelle de I’arbre (hauteur, diamétre a hauteur de poitrine et espece des arbres individuels) dans une
aire d’étude de 12 100 ha du nord-est de 1I’Oregon, aux Etats-Unis. L’objectif premier est de fournir des données spatiale-
ment explicites pour paramétrer un modele de croissance forestiere a I’échelle de 1’arbre, le «Forest Vegetation Simulator».
Le modele final d’imputation utilise des mesures de hauteur et des variables topographiques dérivées du lidar pour prédire
spatialement des données d’inventaire forestier a 1’échelle de I’arbre. Lorsqu’elles ont été comparées a un fichier indépen-
dant de données, la précision des mesures d’inventaire forestier était élevée: I’erreur quadratique moyenne des estimations
imputées de surface terriére et de volume étaient respectivement de 5 m>ha! et 16 m3-ha!. Cependant, I’erreur des mesu-
res imputées d’inventaire forestier qui tiennent compte des petits arbres (p. ex. le diametre moyen quadratique et la densité
des arbres) était considérablement plus élevée. Les projections de croissance du «Forest Vegetation Simulator» basées sur
des données imputées d’inventaire forestier suivent une tendance similaire aux projections basées sur des données indépen-
dantes d’inventaire. Cette étude représente une amélioration importante de nos capacités a prédire des données détaillées
d’inventaire forestier a ’échelle de 1’arbre sur de grandes superficies, ce qui pourrait éventuellement mener a des pratiques
et des politiques d’aménagement forestier mieux fondées.

[Traduit par la Rédaction]

Introduction for land managers to efficiently and precisely quantify mul-

tiple resources in forested ecosystems (Lund 2004). To ef-

Over the last few decades, increasing concerns over the  fectively manage forested ecosystems in a sustainable
potential impacts of climate change, biodiversity loss, and  manner, the condition of forested ecosystems must be char-
large-scale disturbances, such as insects and wildland fire,  acterized and monitored across multiple spatial extents (e.g.,
coupled with forest commodity needs, have created a need  stand, watershed, region). In an ideal situation, land manag-
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ers would possess detailed forest inventory data quantifying
the size, species, and condition of every tree within every
management unit across an entire forest (Temesgen et al.
2003). Such tree-level information could be summarized
and analyzed to characterize forest status and condition
across any spatial extent. In addition, tree-level forest inven-
tory data could be used to parameterize individual tree-based
forest growth models, such as the Forest Vegetation Simula-
tor (FVS; Crookston and Dixon 2005), so that the future sta-
tus of forested ecosystems can be projected for the purpose
of forest planning. Such an approach would provide a means
to evaluate the efficacy and ecological impacts of alternative
management decisions across multiple spatial and temporal
extents.

Directly measuring every tree over large areas is not prac-
tical given time and funding constraints, thus sampling
theory is employed to estimate forest composition and struc-
ture across large spatial extents (Kohl 2004). k-Nearest
Neighbor (k-NN) imputation is one approach commonly
used to extrapolate forest inventory data collected at discrete
sampling locations to larger areas (Barrett and Fried 2004;
McRoberts et al. 2007). In their simplest form, k-NN impu-
tation algorithms assign forest inventory data collected at
discrete sampling locations to unsampled areas based upon
the statistical similarity or statistical distance (e.g., Euclidian
distance, Mahalanobis distance) between sampled and un-
sampled areas, where statistical similarity is determined
based upon covariates available across the entire area of in-
terest (e.g., remotely sensed data). k-NN imputation ap-
proaches incorporating remotely sensed data have been used
to predict timber volume (Mikeld and Pekkarinen 2004),
basal area (Franco-Lopez et al. 2001; LeMay and Temesgen
2005), tree density (LeMay and Temesgen 2005), and timber
yield (Maltamo and Eerikainen 2001) across large spatial
extents. Typically, k-NN imputation relies on medium reso-
Iution satellite data (e.g., Landsat data) for predicting forest
characteristics. However, recent research has demonstrated
that incorporating predictor variables from high resolution
remotely sensed data improves estimates of forest character-
istics. For example, Tuominen and Pekkarinen (2005) dem-
onstrated that including texture features derived from high
resolution aerial photographs in a k-NN algorithm reduced
stem volume error estimates by 26%, while Maltamo et al.
(2006) demonstrated that a k-NN algorithm including both
LiDAR data and textural information derived from aerial
photography reduced the error of stem volume predictions
by 23% in comparison with estimates attained when using
aerial photography texture alone. In a recent study, Hudak
et al. (2008) demonstrated that a k-NN imputation approach
incorporating a suite of LiDAR-derived metrics produced
reasonable (r = 0.80) species-wise predictions of basal area
across a mixed conifer forest in north Idaho, USA.

Although imputation has been effective for predicting
stand-level forest inventory metrics, to date predicting tree-
level forest inventory data via imputation has been limited
to a few studies. Fehrmann et al. (2008) employed k-NN im-
putation to produce nonspatial predictions of individual tree
characteristics, such as single tree biomass, while a recent
study conducted by Wallerman and Holmgren (2007) pre-
dicted plot-level forest inventory data to unsampled areas
via an imputation model incorporating LiDAR and optical
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satellite data. Other studies have used imputation to predict
a suite of stand summary statistics (e.g., stems per hectare
by species, basal area, and volume) that can be used to pa-
rameterize the FVS forest growth model (e.g., Temesgen et
al. 2003). However, there is still a need to further develop
methods to predict tree-level forest inventory data, with a spe-
cific focus on parameterizing forest growth models, such as
FVS. The continual development of LiDAR remote-sensing
technology coupled with recent advances in k-NN imputation
algorithms could improve the accuracy of spatially explicit
predictions of tree-level forest inventory data across large
spatial extents.

Research objective and hypotheses

This paper presents a novel methodology for predicting
tree-level forest inventory data across a 12 100 ha study
area in northeastern Oregon, USA. Specifically, we employ
a recently developed imputation approach (randomForest
imputation; Crookston and Finley (2008)) incorporating
LiDAR-derived predictor variables to generate ‘virtual’ for-
est inventory data across the entire study area. The primary
impetus of this study is to parameterize the FVS model with
the imputed forest inventory data so that forest growth can
be modeled across the entire study area. Upon completion
of the current study, the imputed tree-level forest inventory
data will aid in basic forest management decision making. In
addition to parameterizing FVS, the imputed data could be
used for many purposes, including forest commodity assess-
ment, carbon accounting, and wildlife habitat modeling,
among others.

We evaluate four multivariate imputation models relating
plot-level forest structure (basal area and basal area-
weighted tree diameter) and species composition (forest
type) to a suite of LiDAR height metrics and digital eleva-
tion model (DEM) variables (Table 1). Since the LiDAR
height metrics characterize current forest structure and the
DEM variables characterize biophysical gradients that po-
tentially influence forest species composition, an imputation
model incorporating these variables should produce accurate
predictions of both forest species composition and forest
structure. After developing the initial plot-level imputation
models, we apply them to unsampled areas to generate a
‘virtual’ forest inventory data set consisting of tree-level for-
est inventory data in a format that can be used to parameter-
ize the FVS forest growth model. The following null
research hypotheses are tested to determine if the virtual for-
est inventory data are equivalent to coincident field-based
forest inventory data:

Hyl: Forest inventory metrics from the virtual forest
inventory are not significantly different from forest in-
ventory metrics from a coincident, independent forest
inventory.

Hy2: The sampling error of the virtual forest inventory
is not significantly different from the sampling error of
a coincident, independent forest inventory.

Hp3: Species composition of the virtual forest inven-
tory is not significantly different from species compo-
sition measured in a coincident, independent forest
inventory.
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Table 1. LiDAR metrics used as auxiliary variables in the imputation model.

Metric name

Metric description

HMIN Minimum height

HMAX Maximum height

HRANGE Range of heights

HMEAN* Mean height

HMEDIAN Median height

HMODE Modal height

NMODES Number of modes

HSTD Standard deviation of heights

HVAR Variance of heights

HSKEW Skewness of heights

HKURT Kurtosis of heights

HCV Coefficient of variation of heights

HOSPCT Heights 5th percentile

H10PCT Heights 10th percentile

H25PCT Heights 25th percentile

H50PCT Heights 50th percentile (median)

H75PCT Heights 75th percentile

HO90PCT Heights 90th percentile

HOSPCT* " Heights 95th percentile

CANOPY* Canopy cover (vegetation returns/total returns x 100)
STRATUMO Percentage of ground returns = 0 m

STRATUM1 Percentage of non-ground returns >0 m and <1 m
STRATUM2** Percentage of vegetation returns >1 m and <2.5 m
STRATUM3 Percentage of vegetation returns >2.5 m and <10 m
STRATUM4* Percentage of vegetation returns >10 m and <20 m
STRATUMS' Percentage of vegetation returns >20 m and <30 m
STRATUM6 Percentage of vegetation returns >30 m

TEXTURE Standard deviation of non-ground returns >0 m and <1 m
INSOL Solar insolation (W-m2)

ELEVATION? Elevation (m)

SLPPCT# Slope (%)

ASPECT Aspect (°)

TRASP Transformed aspect (Roberts and Cooper 1989)
SCOSA Percent slope x cos(aspect) transformation (Stage 1976)
SSINA Percent slope x sin(aspect) transformation (Stage 1976)
FLOWD Flow distance to stream (Tarboton 1997)

CTI Compound topographic index (Tarboton 1997)

*Selected as an important variable for imputing basal area.

Selected as an important variable for imputing basal area weighted DBH.
*Selected as an important variable for imputing forest species composition.

Background information

The forest vegetation simulator

In the United States, the FVS is a widely applied forest
growth model used to aid in forest management decision
making (Dixon 2003). The FVS is an empirically driven
model that operates at the individual tree level, providing
summary statistics of initial stand conditions as well as
stand-level projections of future forest growth and condi-
tions (Crookston and Dixon 2005). The FVS has the capabil-
ity to model growth across a wide array of forest species
compositions and structures (i.e., single to mixed species,
even-aged to uneven-aged stands and single- to multi-story
stands; Dixon 2003). In addition, through the use of model
variants (currently 22 unique variants exist) the FVS can be
used to predict growth across many forest types in the
United States and Canada (Crookston and Dixon 2005).

The FVS is parameterized with standard tree-level forest
inventory data consisting of tree-lists quantifying required
(species and diameter at breast height) and optional state
variables (tree count, diameter growth, height, height
growth, and crown ratio) for each tree within a plot, stand,
or other management unit (Dixon 2003). The model can
also incorporate information quantifying the slope, eleva-
tion, aspect, and site potential or habitat type at the sample
point, plot, or stand levels (Crookston and Dixon 2005).
After the input data are read, the model performs a self-cali-
bration procedure during which its internal growth models
are adjusted to mimic growth rates apparent within the in-
ventory data when provided by the user (Crookston and
Dixon 2005). Following calibration, the FVS provides sum-
mary statistics of initial stand conditions and then projects
forest growth and other dynamics into the future. As the
model runs, forest growth and yield projections are adjusted

Published by NRC Research Press



Falkowski et al.

to account for user-specified forest management activities,
such as harvesting. Growth projections can also be adjusted
to account for tree mortality, tree regeneration, and fire, as
well as the impact of parasites and pathogens if so desired.

Although the FVS is primarily used to forecast forest
growth and yield based on different silvicultural treatments,
it has also been used to evaluate trends in wildlife habitat
quality (Eng 1997; Wilson 1997; Maffei and Tandy 2002),
to assess the impacts of forest policy on future forests
(Cousar et al. 1997), to evaluate fire hazard and potential
fire behavior (Fulé et al. 2004), and to gauge future forest
conditions (Atkins and Lundberg 2002). Despite the diver-
sity of applications, there are limitations to the FVS model.
For example, since it is empirically driven, predictions of
future forest conditions are only valid if future climate con-
ditions do not deviate far from current conditions. In addi-
tion, because the FVS is not a process-based model, its
efficacy for evaluating forest growth under dynamic rates of
physiological or biogeochemical processes is limited. How-
ever, current work is underway to incorporate the influence
of future climate projections into FVS growth predictions
(Crookston and Dixon 2005). In addition, research con-
ducted by Milner et al. (2003) demonstrated that the FVS
could be coupled with a process-based model (Stand-Bio-
Geochemical Cycles; Milner and Coble 1995) to simulate
biogeochemical and physiological influences on forest
growth and yield.

The FVS could potentially be used to predict future forest
conditions across large spatial extents. However, as previ-
ously mentioned, the FVS model requires tree-level forest
inventory data for parameterization, which are difficult to
collect continuously across large areas. As a result, the use
of the FVS has typically been limited to stand-level or
multistand-level studies. However, the continual develop-
ment of imputation algorithms and remote-sensing technol-
ogy that precisely characterize the vertical and horizontal
structure of vegetation (e.g., LIDAR and RADAR) may pro-
vide a means to obtain spatially continuous predictions of
tree-level forest inventory data across entire landscapes.

k-NN imputation

In forest inventory and assessment, k-NN imputation is
typically used to predict forest inventory attributes in unin-
ventoried areas based upon a two-phased sampling design.
In the first phase, ‘auxiliary variables’ that can be easily
measured across the entire landscape of interest are obtained
(e.g., remotely sensed data). The second phase involves a
detailed inventory of ‘variables of interest’ (e.g., forest in-
ventory data) at discrete sampling locations within the study
area (Moeur and Stage 1995). This procedure produces two
separate data sets; a reference data set containing both auxil-
iary variables and variables of interest measured at each
sampling location, and a target data set composed only of
auxiliary variables measured across the entire population of
interest. The goal of imputation is to predict the variables of
interest (i.e., forest inventory data) in unsampled areas. To
achieve this, the reference data are used as a training set to
characterize the relationship between the auxiliary variables
and the variables of interest. Missing attributes within the
target data set are then estimated by imputing them from
the nearest neighbors within the reference data set, where
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nearness is measured in terms of the statistical similarity or
distance (e.g., Euclidian distance, Mahalanobis distance) be-
tween auxiliary variables in the reference and target data
sets. When k = 1, the missing target value is simply taken
from the nearest neighbor in the reference data set, and
when k is >1 other methods, such as a weighted average,
are used to calculate the values of a missing observation
from the k-selected neighbors (Crookston and Finley 2008).

k-NN imputation via the random forest proximity matrix

Many different approaches have been developed to quan-
tify the statistical distance between target and reference ob-
servations. Typically, these approaches determine the
distance between observations based on the Euclidian dis-
tance (or weighted variants of the Euclidian distance) be-
tween reference and target observations (Crookston and
Finley 2008). Although any distance metric could be used,
the current study employs a novel k-NN imputation distance
metric that quantifies the statistical distance between refer-
ence and target observations based on a proximity matrix
calculated via the randomForest (RF) classification and re-
gression tree algorithm. This distance metric was selected
because it has produced reliable predictions of stand-level
basal area and tree density across a similar study area in the
Inland Northwest, USA (Hudak et al. 2008). Although the
RF imputation method has recently been explained in detail
by Crookston and Finley (2008) as well as by Hudak et al.
(2008), the novelty of this approach warrants a brief review
of its functional approach. In its native form, the RF algo-
rithm develops classification or prediction rules by growing
an ensemble (>100 to >1000) of classification or regression
trees from random subsets of training data, while randomly
permuting independent variables at each node (see Breiman
(2001), Prasad et al. (2006), and Lawrence et al. (2006) for
detailed descriptions of the RF algorithm). In addition to
predicting or classifying new observations, the RF algorithm
calculates the proximity of every observation by classifying
each observation via each tree within the ensemble. The
proximity of a pair of observations is increased by one every
time they end up in the same terminal node after classifica-
tion. The final proximity values are divided by the total
number of trees in the ensemble to calculate the overall
proximity between each observation. For example, if a pair
of observations ends up in the same terminal node 75 times,
and there are 100 total trees in the ensemble, the proximity
of these two observations equals 0.75. Subtracting one from
the final proximity values is analogous to calculating the
statistical distance between each observation in the data set;
a high proximity equals a small statistical distance and vice
versa (Breiman 2001; Crookston and Finley 2008). Crook-
ston and Finley (2008) developed a k-NN imputation ap-
proach that incorporates the RF proximity matrix when
searching for similar neighbors. To facilitate k-NN imputa-
tion a few modifications have been made to the original RF
algorithm. One important modification extends the RF algo-
rithm to allow for multivariate imputation (i.e., to impute
the values of multiple response variables simultaneously).
This is achieved by growing a separate ensemble of trees
for each response variable in the model. The final proximity
(i.e., statistical distance) of each observation is calculated by
joining the proximity matrices from each ensemble of trees.
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Fig. 1. Damon study area — LiDAR canopy cover, hill shade composite.

. John Day, Ore.

. Seneca, Ore.

Furthermore, the algorithm also allows the user to grow
each tree ensemble with a different number of trees and (or)
with a unique set of predictor variables. This functionality is
useful when certain response variables are more important
than others (i.e., should be weighted higher in the imputa-
tion) or when specific predictor variables explain variation
in one response variable but not in others (Crookston and
Finley 2008).

Methods

Study area

This study was conducted within the Damon study area
(~12 100 ha), which is within the Shirttail and Van Aspen
subwatersheds of the Blue Mountain Ranger District in the
Malheur National Forest near Seneca, Oregon, USA
(44.14°N, -118.97°W; Fig. 1). The area is an uplifted plain
composed of sedimentary and metasedimentary rocks cov-
ered by volcanic ash soils originating from the Mount Ma-
zama, eruption which occurred around 7677 + 150 years BP
(Zdanowicz, et al. 1999). Aspects vary across the region, but
in general range from north to east and from southeast to
southwest across the northern and southern portions of the
study area, respectively. Slopes are primarily less than 30%;
however, slopes do reach 50% in a few areas. Precipitation
ranges from 40 to 65 cm per year, primarily occurring as
snow in the winter months. In general, forest stands are
dominated by Pinus ponderosa var. scopulorum, as a result
of historic fire regimes. However, Abies grandis var. idaho-
ensis and Pseudotsuga menziesii var. glauca also occur on
north-facing aspects and in higher elevations as well as in
areas that historically favored the removal of large P. pon-
derosa via logging. Minor amounts of Pinus contorta var.
latifolia and Larix occendentalis Nutt. can be found through-
out the study area, while Populus tremuloides Michx. occurs
throughout riparian areas across the Damon study area.

Sampling design and data collection

Forest inventory data were collected within 88 forest
stands encompassing the full range of forest structure and
species composition present across the Damon study area.

Can. J. For. Res. Vol. 40, 2010
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Two separate forest inventories were conducted within each
of the 88 stands: a variable-radius plot inventory and a
fixed-radius plot inventory. For the variable-radius plot in-
ventory, a total of 641 variable-radius plots were inventoried
following a systematic sampling design, where the spacing
between plots and total number of plots within each stand
was dependent upon stand density and stand variability. The
variable-radius plot inventory was designed to produce an
estimate of total stand basal area within 20% of one stand-
ard deviation in each stand. Once located, a relaskop was
used to determine which trees were within the variable-ra-
dius plot boundary. Diameter at breast height (DBH), height,
species, crown ratio, and other standard inventory metrics
were recorded for every tree or snag selected by the rela-
skop. Seedlings and saplings were also tallied and measured
within each plot on a smaller fixed-radius plot; elevation,
slope, aspect, habitat type, and forest type were recorded at
every plot within every stand. For the fixed-radius plot in-
ventory, one 0.04 ha fixed-radius inventory plot was in-
stalled within each of the 88 stands (i.e., a total of 88 fixed-
radius plots). The location of the fixed-radius plot was ran-
domly selected from the pool of variable-radius plots within
each stand. The aforementioned inventory metrics were re-
corded within each of the 88 fixed-radius plots. Seedlings
and saplings were also tallied and measured on a subplot
within each fixed-radius plot. During the inventory, a Trim-
ble GeoXT global positioning system was used in conjunc-
tion with a differential correction procedure to accurately
measure the position of each forest inventory plot. For the
purpose of this study, the fixed-radius plot inventory is used
as a reference data set for imputation model development
and tree-level forest inventory data prediction, while the var-
iable-radius plot inventory data set is used as a validation
data set to evaluate the accuracy of the imputed (i.e., ‘vir-
tual’) forest inventory data.

LiDAR acquisition and processing

Discrete return LiDAR data were acquired 15-16 Septem-
ber 2007 across the Damon study area by Watershed Scien-
ces (Corvallis, Oregon). The sensor operated at 1084 nm.
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Fig. 2. k-Nearest neighbor virtual forest inventory schematic. An imputation model relating stand-level forest inventory data (e.g., basal area
and forest type) to LIDAR metrics (Table 1) is developed. New virtual forest inventory plots (represented by black circles) are systemati-

cally located across a stand. LIDAR metrics are calculated within each new virtual inventory plot and are related to the nearest neighbor (in
terms of the LiDAR metrics) within the reference data set via the imputation model. The tree records from this nearest neighbor are used as

surrogate forest inventory data in the virtual forest inventory plot.

Reference Data set
(Inventory and LiDAR Data)

0
a

Imputation Model

y=f(x,)

Target Data set
(LiDAR Data In Uninventoried Stand)

Table 2. Imputation models and associated variables evaluated in this study.

Model Y1 Y> Y3 Independent variables (X)

1 BA Forest type BA weighted DBH  LiDAR metrics for associated Y
2 BA Forest type LiDAR metrics for associated Y
3 BA BA weighted DBH LiDAR metrics for associated Y
4 BA LiDAR metrics for associated Y

Note: BA, basal area.

The acquired LiDAR data had an average pulse density of
6.31 pointssm=2 and an absolute vertical accuracy of
0.024 m. Once acquired, the raw LiDAR data points were
classified as ground or non-ground returns using the Multi-
scale Curvature Classification algorithm (Evans and Hudak
2007). Following classification, a high resolution (1 m)
DEM was interpolated from the ground returns, and the
height above ground surface was calculated for all non-
ground returns through DEM subtraction. Following proc-
essing, a variety of LiDAR-based height and topographic
metrics (Table 1) that have proved useful for characterizing
forest structure and species composition (Hudak et al. 20006,
2008) were calculated from the LiDAR returns coincident
with each forest inventory plot within the reference and tar-
get forest inventory data sets.

Data analysis

Imputation model development

Imputation model development was conducted within the
R statistical software program (R Development Core Team
2005) via the yalmpute R package (Crookston and Finley

2008). Prior to developing the imputation model, a variable
selection procedure was employed to select the optimal Li-
DAR variables to use in the final imputation models. This
process, which is implemented via the varSelRF R package
(Diaz-Uriarte 2007), selects important predictor variables
through an iterative, backwards variable elimination process
designed to minimize the RF out-of-bag error rate without
creating bias in the final model. Three separate variable se-
lection procedures were run on the reference data set: one to
select the optimal LiDAR variables for predicting plot-level
basal area, another to select variables for basal area
weighted tree diameter prediction, and another for selecting
the best variables for predicting forest species composition.
Once the important variables were selected, a three-step
process was employed to impute tree-level forest inventory
via a k-NN imputation approach. First, a multivariate impu-
tation model relating plot-level forest structure and species
composition (Y variables; basal area, basal area weighted
tree diameter, and forest species composition) to the selected
plot-level LiDAR metrics (X variables; Table 1) was devel-
oped from the reference data set. Since there were three Y
variables, three separate tree ensembles were grown within
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Table 3. Evaluation statistics and equivalence tests for imputation models.
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EI slope (%)

EI intercept (%)

20.43
21.04
16.20*

105.33
64.21
69.19
42.63
73.10
71.45
108.15
81.93
56.51
52.33
96.91

18.84*
26.44
18.70*

103.04
104.40
112.03
133.38
142.20
131.03
128.12
94.11

103.65
102.90
114.89

16.67*
23.68
14.39%

91.60
62.09
70.28
41.57
51.76
56.12
99.78
91.57
48.46
51.18
107.71

Inventory metric r RMSD
Model 1 (Ypa, YwnBH, YFortyp = f(XBA, XwitDBH, XForTyp))
BA (m%*ha™) 0.82 5.51
Total volume (m3-ha™')  0.87 15.59
Stand density index 0.83 136.58
Tree density
Total 0.14 1830.82
>53 cm 0.70 11.31
40-53 cm 0.45 15.20
23-40 cm 0.62 63.49
18-23 cm 0.36 49.17
8-18 cm 0.49 170.23
0-8 cm 0.09 1824.93
QMD (cm) 0.41 6.79
Weighted DBH (cm) 0.65 9.21
Overstory DBH (cm) 0.69 7.95
BA sampling error 0.23 2.07
Accuracy Kappa
Forest type 64.07% 23.25
Model 2 (YBa, Yrorryp = f(XBA, XForTyp))
BA (m%*ha™) 0.78 6.24
Volume (m3ha™!) 0.77 20.49
Stand density index 0.80 153.95
Tree density
Total 0.18 1526.90
>53 cm 0.12 41.78
40-53 cm 0.01 42.78
23-40 cm 0.04 87.03
18-23 cm 0.25 81.83
8-18 cm 0.10 276.56
0-8 cm 0.05 1393.29
QMD (cm) 0.27 7.34
Weighted DBH (cm) 0.17 17.29
Overstory DBH (cm) 0.18 19.26
BA sampling error 0.08 2.28
Accuracy Kappa
Forest type 66.67% 27.49
Model 3 (Ysa, Ywinn = f(XBA, XwiDBH))
Basal area (m%ha™') 0.85 5.14
Volume (m3ha™!) 0.86 15.99
Stand density index 0.87 118.76
Tree density
Total 0.29 1412.73
>53 cm 0.74 11.11
40-53 cm 0.40 15.86
23-40 cm 0.65 61.62
18-23 cm 0.47 46.16
8-18 cm 0.46 172.90
0-8 cm 0.21 1436.03
QMD (cm) 0.32 7.14
Weighted DBH (cm) 0.70 8.27
Overstory DBH (cm) 0.68 7.85
BA sampling error 0.15 2.13
Accuracy Kappa
Forest type 69.23% 12.89

13.87*
8.75%
16.45%

24.89
44.01
56.33
19.29
35.09
58.81
24.49
15.44%
5.47%
6.31%
25.41

18.70*
17.19%
20.51

32.19
355.55
171.26
17.39%
28.87
58.40
77.78
14.6*
33.57
42.26
12.5%

13.97*
7.37%
13.69*

18.83*
55.08
54.26
16.7*
36.00
60.24
21.30
8.24%*
6.48%
6.79%
19.7*
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Table 3 (concluded).

Inventory metric r RMSD EI slope (%)  EI intercept (%)
Model 4 (Ypa = f(XBa))
Basal area (m*ha') 0.88 4.76 17.21% 13.67*
Volume (m?ha™') 0.89 13.85 18.74* 8.28%*
Stand density index 0.88 118.16 16.05* 14.78*
Tree density
Total 0.23 1330.26 100.21 31.43
>53 cm 0.62 10.43 64.34 50.77
40-53 cm 0.55 14.59 50.28 52.78
23-40 cm 0.64 62.77 44.90 14.33*
18-23 cm 0.39 49.13 65.26 41.18
8-18 cm 0.38 177.50 61.71 55.90
0-8 cm 0.09 1329.35 114.46 33.86
QMD (cm) 0.23 6.92 97.92 8.7*%
Weighted DBH (cm) 0.59 9.51 59.72 5.7*%
Overstory DBH (cm) 0.63 8.39 55.71 7.87%
BA sampling error 0.17 2.12 104.84 17.02%
Accuracy Kappa
Forest type 68.18% 31.06

Note: EI is the interval at which the metrics become equivalent. RMSD, root mean squared dif-
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ference; BA, basal area; QMD, quadratic mean diameter; DBH, diameter at breast height.

*Statistically equivalent.

the yalmpute packages RF imputation mode. Each ensemble
consisted of 3000 bootstrap replicates (i.e., classification and
regression trees). Furthermore, only the LiDAR metrics that
were selected as being important for a particular Y variable
were used to generate the tree ensemble for that Y variable.
For the second step, the final imputation model was applied
to the target data set (i.e., the variable-radius plot forest in-
ventory data set). In addition to imputing plot-level Y vari-
ables to each variable-radius plot location, this step
determined which forest inventory plot in the reference data
set is closest, in terms of statistical distance, to each vari-
able-radius plot location in the target data set. Finally, tree-
level inventory data from the reference data set were used as
surrogate tree-level forest inventory for the closest plot (in
terms of the statistical distance) in the target data set
(Fig. 2). This process produced a virtual forest inventory
data set for each of the 88 stands surveyed via the variable-
radius plot inventory. Four separate imputation models were
evaluated for imputing tree-level forest inventory data fol-
lowing the three-step process outlined above: a full imputa-
tion model and three reduced imputation models (Table 2).

Model evaluation and hypothesis testing

The accuracy of the imputed tree-level forest inventory
data was determined through a comparison with forest in-
ventory data measured during the validation inventory. Nu-
merous stand-level forest inventory metrics (e.g., basal area,
total volume, tree density by DBH class, quadratic mean di-
ameter), as well as stand-level sampling error for basal area,
were calculated from both the imputed and validation forest
inventory data sets. These metrics were compared via Pear-
son’s correlation coefficients () and root mean squared dif-
ference (RMSD; Stage and Crookston 2007). In addition, the
first two hypotheses (Hyl and H(2; equivalence of forest in-
ventory metrics and sampling errors) were tested via statisti-

cal equivalence tests, which were used to test the null
hypothesis of no significant difference between the two for-
est inventory data sets. Specifically, a regression-based
equivalence test (Robinson et al. 2005) was employed to
test for intercept equality (i.e., the mean of imputed forest
inventory metrics are equal to the mean of validation forest
inventory metrics across the entire population) and for slope
equality to 1 (i.e., if the pairwise (between-stand) forest in-
ventory metrics are equal, the regression will have a slope of
1). The region of equivalence was set to +20% (of the
mean) for the intercept (by) and to +20% for the slope (by).
The null hypothesis of dissimilarity between the imputed
and validation inventory metrics was rejected if the interval
of equivalence (+20%) contained two joint one-sided
97.25% confidence intervals (o = 0.05) for the slope or in-
tercept. The accuracy of forest species composition from
the imputed data (Hy3) was determined via the overall accu-
racy and Cohen’s Kappa statistics (Cohen 1960; Congalton
and Green 1999).

FVS growth projection comparison

To further assess the performance of the virtual forest in-
ventory data, the FVS was parameterized with the forest in-
ventory data from the best-performing imputation model.
Forest growth was then projected in 10-year increments for
90 years with data from the selected imputation model as
well as with data from the validation forest inventory. To
determine if the growth projections from both data sets fol-
lowed similar trends, basal area projections were compared
within each of the 88 stands via r, RMSD, and equivalence
tests.

Landscape-level prediction and growth projection
The best-performing imputation model was also employed
to predict tree-level forest inventory data across the entire
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Fig. 3. Scatter plots of imputed metrics (from Model 4) versus field forest inventory metrics.
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Damon study area. To achieve this, the LiDAR point data
were summarized in 20 m bins (i.e., grid cells) across the
study area, and the best-performing imputation model was
then applied to each grid cell. Following this process, every
20 m grid cell within the Damon study area contained tree-
level forest inventory data, which could be used to estimate
various forest inventory metrics. The FVS was also parame-
terized to spatially predict forest growth within each 20 m
grid cell across the entire Damon study area.

Results

Variable importance

The final imputation models were developed from 10 of
the 40 original candidate LiDAR metrics (Table 1). The var-
iable selection procedure employed herein rated canopy
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cover, height of the 95th percentile, mean height, and pulse
density within strata two and four as the most important var-
iables for imputing basal area. The pulse density within
strata two, three, and five, as well as the height of the 95th
percentile were selected as important variables for the basal
area weighted DBH metric. Forest species composition was
best explained by three LIDAR DEM metrics: the compound
topographic index, elevation, and percent slope (Table 1).

Imputation model accuracy and statistical equivalence
The full imputation model (Model 1; Table 3) produced
estimates of basal area, total volume, and stand density in-
dex (SDI) that were strongly correlated (r > 0.8) with the
validation inventory metrics, whereas the density of trees
>53 ¢cm DBH and between 23 and 40 cm (DBH), basal area
weighted DBH, and the DBH of overstory trees exhibited
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moderate correlations (r > 0.5). All other inventory metrics
were weakly correlated (r < 0.5) with the validation forest
inventory metrics. In terms of statistical equivalence of the
means, basal area, total volume, SDI, quadratic mean diam-
eter (QMD), weighted DBH, and the DBH of overstory trees
were statistically equivalent to the validation inventory data.
However, except for SDI, the pairwise equivalence test (i.e.,
slope equivalence to 1) indicated that none of the inventory
metrics were equivalent at the £20% equivalence level. Fur-
thermore, the sampling error of the virtual forest inventory
was not statistically equivalent to the sampling error of the
validation forest inventory data set. The forest species com-
position of the imputed forest inventory had an overall accu-
racy of 64.07% and a Kappa value of only 23.25 (Table 3).

The second model (Model 2; Table 3) also produced esti-
mates of basal area, total volume, and SDI that were
strongly correlated (r > 0.77) with the validation inventory
metrics. However, all other forest inventory metrics were
weakly correlated (r < 0.27) with the validation forest inven-
tory metrics. The statistical equivalence test of the means in-
dicated that basal area, volume, the density of trees 23—
40 cm (DBH), and QMD were equivalent at the +20% level,
while the pairwise equivalence test indicated that basal area
and SDI were also equivalent at the +20% level. The sam-
pling error from Model 2 was not equivalent to the sampling
error of the validation forest inventory, and in terms of for-
est species composition, Model 2 had overall accuracy and a
Kappa value of 66.67% and 27.49, respectively (Table 3).

In terms of correlations, the third model (Model 3; Ta-
ble 3) was similar to Model 1. Basal area, volume, and SDI
were strongly correlated (r > 0.85) with the independent
data. The density of trees >53 cm and 23-40 cm (DBH),
basal area weighted DBH, and the DBH of overstory trees
exhibited moderate correlations (r = 0.65-0.74), whereas
other forest inventory metrics displayed weak correlations
(r < 047). At the £20% equivalence level, the means of
basal area, volume, SDI, the density of trees larger than
53 cm and trees 23-40 cm (DBH), QMD, weighted DBH,
and the DBH of overstory trees were equivalent to the vali-
dation forest inventory data. However, the pairwise equiva-
lence test indicated that only basal area and SDI were
equivalent to the validation inventory data at the +20%
equivalence level. The mean sampling error for Model 3
was equivalent to the sampling error for the validation in-
ventory; however, the pairwise estimates of sampling error
were not equivalent at the +20% equivalence level. Overall
accuracy and the Kappa value for the species composition of
the imputed forest inventory data were 69.23% and 12.89,
respectively (Table 3).

Imputed forest inventory data from the fourth model
(Model 4; Table 3) produced the most accurate results when
compared with the independent forest inventory data set.
Specifically, basal area, volume, and SDI exhibited strong
correlations (r > 0.88), whereas the density of trees >23 cm
(DBH), basal area weighted DBH, and the DBH of over-
story trees were moderately correlated (r = 0.55-0.64) with
the independent forest inventory data set. All other forest in-
ventory metrics displayed weak correlations (r < 0.39). In
terms of statistical equivalence, the mean and slope equiva-
lence tests indicated that basal area, volume, and SDI were
equivalent to the validation forest inventory data at
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Fig. 4. Average Forest Vegetation Simulator basal area growth pro-
jections from the imputed (black) and validation (grey) inventory
data sets of the 88 stands studied. Solid line is the projected data
and dashed lines are *1 standard deviation.
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the +20% equivalence level. Furthermore, the mean equiva-
lence test indicated that the density of trees 18-23 cm
(DBH), QMD, basal area weighted DBH, the DBH of over-
story trees, and the sampling error were equivalent to the
validation forest inventory data. In terms of forest species
composition, the imputed data had an overall accuracy of
68.18% and a Kappa value of 31.06 (Table 3; Fig. 3).

Growth projection comparison

In general, the FVS growth projections from the imputed
forest inventory data (from Model 4) and the validation for-
est inventory data followed similar trends. Specifically, cor-
relations between basal area projections were greater than
0.91 (mean, minimum, and maximum basal area correlations
are 0.96, 0.91, and 0.99, respectively), and RMSDs were
less than 6.54 m2-ha! (mean, minimum, and maximum
basal area RMSDs are 1.97, 0.24, and 6.54 m2-ha-!, respec-
tively).

Discussion

Forest inventory metrics

The most accurate model (Model 4) was developed based
on one Y variable (basal area) and four X variables
(CANOPY, H95PCT, HMEAN, STRATUM2, and STRA-
TUM4; see Table 1). In terms of correlation coefficients
and RMSD statistics, Model 4 produced accurate estimates
of basal area, total volume, SDI, as well as the density and
DBH of large trees. However, imputed estimates of small-
tree density and QMD, which incorporates small-tree diame-
ters, were not accurate when compared with the validation
forest inventory data set. The statistical equivalence test em-
ployed herein indicates that basal area, volume, and stand
density calculated from the imputed forest inventory data
were statistically equivalent to the same inventory metrics
calculated from the validation inventory data set (i.e., we re-
jected Hyl, the null hypothesis of dissimilarity); all other in-
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Fig. 5. Forest Vegetation Simulator basal area growth projections from the imputed (black lines) and validation (grey lines) inventory data

sets of 16 stands.
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ventory metrics were not equivalent at the +20% equiva-
lence level (i.e., we failed to reject Hyl, the null hypothesis
of dissimilarity). These results suggest that the LIDAR met-
rics or modeling strategy presented herein cannot suffi-
ciently characterize tree density or DBH, especially when
small trees are incorporated into the inventory metrics.
Compared with other k-NN imputation studies, the impu-
tation model presented in the current study produced compa-
rable estimates of most forest inventory metrics. For
example, Maselli et al. (2005) developed an imputation al-
gorithm from Landsat data and attained a correlation of
0.72 and a RMSE of 3.65 m*ha-! when imputing basal

area. Temesgen et al. (2003) compared tree-list predictions
in mixed species, uneven-aged stands from four separate k-
NN algorithms with different distance metrics and found
that each of the algorithms tested produced similar results
(stems per hectare RMSE = 302-631, basal area RMSE =
17-28 m%ha!, volume RMSE = 92.9-280 m3-ha™!). Reese
et al. (2002) implemented a NN algorithm that included
Landsat-derived auxiliary variables and attained an average
RMSE of ~ 120 m3-ha-! when predicting stem volume. In a
separate study, Holmstrom et al. (2001) utilized predictor
variables from aerial photographs and achieved RMSEs of
49.4 and 26.8 m3ha! for plot-level and stand-level esti-
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Fig. 6. Forest Vegetation Simulator (FVS) basal area growth projections displaying errors of divergence for two different stands (figure
rows). Column A: FVS basal area growth projections. Column B: probability density function of tree diameters. In both columns the black
and grey lines correspond to the imputed and validation inventory data sets, respectively.
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mates of stem volume, respectively. Tuominen and Pekkari-
nen (2005) also used predictor variables from aerial photog-
raphy and achieved a relative RMSE of 58%. Studies that
incorporated LiDAR-derived predictor variables produced
more accurate results. For example, Maltamo et al. (2006)
integrated LiDAR with aerial photography to generate stem
volume imputations with a 5.89% RMSE, whereas Hudak et
al. (2008) used LiDAR and reported correlation coefficients
of 0.76 and 0.78 when imputing tree density and basal area,
respectively. Wallerman and Holmgren (2007) developed an
imputation model that integrated LiDAR information and
optical data from the SPOT sensor and reported RMSEs of
45 m2ha ! and 209 stems-ha~! when imputing basal area
and tree density, respectively.

Sampling error

Although the mean sampling error of the virtual forest in-
ventory is equivalent (+20%) to the mean sampling error of
the validation forest inventory, the pairwise comparisons are
not equivalent at the £20% level (i.e., we fail to reject Hy2,
the null hypothesis of dissimilarity). Further analysis indi-
cates that the difference between the virtual and validation
forest inventory sampling errors is =15 m2-ha! in seven of
the 88 stands — four stands exhibit negative differences
greater than 15 m2ha! and three stands exhibit positive dif-
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ferences greater than 15 m?-ha-!. The positive differences
occur in small stands with highly variable forest structure
(i.e., stands with widely spaced individual trees or clumps
trees). Overestimating sampling error in stands with high
structural variability is not surprising given that small shifts
in the location of an imputation target (i.e., plot location)
would produce drastically different intrastand estimates of
plot-level forest inventory parameters. Although the method-
ology presented herein attempted to impute to exact refer-
ence plot locations (i.e., field plot locations), global
positioning system measurement errors could offset the im-
putation targets enough to introduce significant differences
in sampling error estimates when stand conditions are highly
variable. This becomes a problem in small stands because
there are fewer targets to account for the high variability in
forest structure. The negative differences in sampling error
occur in relatively homogeneous, closed-canopy stands with
basal areas greater than 160 m2-ha-!. Since only five of the
88 stands analyzed in this study have basal areas greater
than 160 m2-ha-!, there is only a small pool of reference
plots for the algorithm to choose from when imputing to
areas with high basal areas. This results in the same refer-
ence plot being imputed to multiple target locations within
stands with high basal areas, ultimately reducing sampling
error estimates.
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Fig. 7. Forest Vegetation Simulator (FVS) basal area growth projections displaying errors of convergence followed by divergence for two
different stands (figure rows). Column A: FVS basal area growth projections. Column B: probability density function of tree diameters. In
both columns the black and grey lines correspond to the imputed and validation inventory data sets, respectively.
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Species composition

When compared with the validation forest inventory data,
the imputation models displayed species composition accu-
racies ranging between 64% and 69% for seven different
forest type classes. However, the Kappa values were quite
low (£31%), indicating that the overall accuracies were less
than 31% better than a random classification (i.e., a classifi-
cation arrived at by pure chance). Furthermore, models that
included LiDAR topographic metrics (Models 1 and 2) had
the lowest overall accuracies and had Kappa values below
30%. In this case, we failed to reject the null hypothesis of
species composition dissimilarity (Hy3). This result indicates
that the forest types present across the Damon study area
cannot be accurately classified based upon topographical
variables alone. This is not surprising given the relatively
narrow range of environmental conditions and forest types
found across the study area. Current forest species composi-
tion throughout the study area is more likely a function of
disturbance history (i.e., logging and fire) as opposed to en-
vironmental gradients. Employing LiDAR-derived topo-
graphic metrics to predict forest species composition may
produce higher classification accuracies in study areas with
stronger environment gradients and less disturbance history.
In addition, integrating remotely sensed data collected by
spectral sensors (e.g., Landsat and SPOT) with the LiDAR
metrics presented herein may improve species composition
accuracies across similar study areas.
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FVS growth projections

Results of the growth projection comparison between for-
est inventory data from the virtual and validation forest in-
ventory data sets demonstrates that the growth projections
follow similar trends in most of the 88 stands analyzed is
this study. In general, stand basal area projections from the
imputed and validation inventory data sets were highly cor-
related, had low RMSDs, and followed similar trends when
averaged across all stands (Fig. 4). Nineteen of the 88 basal
area projections had RMSD statistics >3 m2ha!. Eleven of
these 19 stands had imputed tree density errors that were
greater than 500 trees-ha~!, while nine had imputed basal
area errors greater than 5 m2ha -1. Only four of these 19
stands had species composition imputation errors. A visual
comparison of the FVS growth projections within each stand
revealed four unique scenarios: (i) no imputation error; near
perfect agreement between projections across all time steps
(Fig. 5A); (ii) an imputation error at time zero resulting in
offset growth projections (Fig. 5B); (iii) no imputation error
at time zero; however, growth projections diverge (Fig. 5C);
and (iv) an imputation error at time zero with growth projec-
tions intersecting midway through the projection time series
(Fig. 5D). The latter two types of errors (i.e., diverging or
intersecting growth projections) are caused by significant
differences in the density of trees by size class between the
imputed and field-measured forest inventory data. For exam-
ple, diverging growth projections typically occur in stands
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Fig. 8. Spatial FVS basal area growth projections. Four time steps across the north section of the Damon study area: A is 2007, B is 2037, C

is 2067, and D is 2097.
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with larger basal areas (<10 m2-ha-!), with a large difference
in the density of small trees (seedlings) between the imputed
and field-measured forest inventory data. This results in an
over- or under-estimation in basal area at the end of the
growth projections (Fig. 6). On the other hand, intersecting
growth projections typically occur in stands with moderate
basal areas (>20 m?ha!) exhibiting imputation errors in
both the density of small and large trees (Fig. 7). These re-
sults suggest that in the forest types present within the
Damon study area, FVS growth projections are more influ-
enced by errors in forest structure than by errors in species
composition. Future research should focus upon developing
improved methods for characterizing the density and size of
small trees in the forest understory. The best imputation
methodology presented herein can also be employed to cre-
ate spatially continuous predictions of tree-level forest in-
ventory data, which can in turn be used to spatially
parameterize FVS at landscape scales. Figure 8 presents
four time periods from a spatial FVS growth projection exe-
cuted across the north section of the Damon study area.

I N e km
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Conclusions

This study presents a novel methodology for predicting
tree-level forest inventory data in unsampled areas via an
imputation modeling procedure incorporating LiDAR-de-
rived predictor variables. The imputation methodology pre-
sented herein proved to be an effective approach to
generate ‘virtual® forest inventory data from LiDAR metrics
across the Damon study area. Most forest inventory metrics
calculated from the imputed data had high accuracies when
compared with independent forest inventory data. Further-
more, most FVS growth projections followed similar trends.
This study represents a significant improvement in our capa-
bilities to predict the size and species of every tree within
every management unit across an entire forest. The imputed,
tree-level forest inventory data will be used in conjunction
with FVS to evaluate various alternative management deci-
sions across the Damon study area. Specifically, a project
focused upon evaluating the efficacy of fuels reduction treat-
ments is now underway. In addition to evaluating manage-
ment decisions, imputed tree-level forest inventory data
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could be used for a variety of applications, including forest
commodity assessment, carbon accounting, wildlife habitat
assessment, among others.
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