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Abstract

Small felids influence ecosystem dynamics through prey and plant population changes.

Although most of these species are threatened, they are accorded one of the lowest

research efforts of all felids, and we lack basic information about them. Many felids occur in

sympatry, where intraguild competition is frequent. Therefore, assessing the role of inter-

specific interactions along with the relative importance of landscape characteristics is nec-

essary to understand how these species co-occur in space. Here, we selected three

morphologically similar and closely related species of small Neotropical cats to evaluate the

roles of interspecific interactions, geomorphometry, environmental, and anthropogenic land-

scape characteristics on their habitat use. We collected data with camera trapping and scat

sampling in a large protected Atlantic forest remnant (35,000 ha). Throughout occupancy

modeling we investigated whether these species occur together more or less frequently

than would be expected by chance, while dealing with imperfect detection and incorporating

possible habitat preferences into the models. We used occupancy as a measure of their

habitat use. Although intraguild competition can be an important determinant of carnivore

assemblages, in our system, we did not find evidence that one species affects the habitat

use of the other. Evidence suggested that proximity to the nature reserve (a more protected

area) was a more important driver of Neotropical spotted cats’ occurrence than interspecific

interactions or geomorphometry and environmental landscape characteristics—even

though our entire study area is under some type of protection. This suggests that small felids

can be sensitive to the area protection status, emphasizing the importance of maintaining

and creating reserves and other areas with elevated protection for the proper management

and conservation of the group.

PLOSONE | DOI:10.1371/journal.pone.0168441 January 4, 2017 1 / 22

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Nagy-Reis MB, Nichols JD, Chiarello AG,

Ribeiro MC, Setz EZF (2017) Landscape Use and

Co-Occurrence Patterns of Neotropical Spotted

Cats. PLoS ONE 12(1): e0168441. doi:10.1371/

journal.pone.0168441

Editor: Emmanuel Serrano Ferron, Universidade de

Aveiro, PORTUGAL

Received: June 30, 2016

Accepted:December 1, 2016

Published: January 4, 2017

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding:MBNR received funding from the

Coordination for the Improvement of Higher

Education Personnel (CAPES; www.capes.gov.br)

and Idea Wild (www.ideawild.org). EZFS received

funding from the São Paulo Research Foundation
(FAPESP; grant 2013/07162-6; www.fapesp.br).

AGC received funding from The Brazilian Science

Council (CNPq; process 305902/2014-8; www.

cnpq.br). MCR has been continuously supported

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168441&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168441&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168441&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168441&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168441&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168441&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://www.capes.gov.br
http://www.ideawild.org
http://www.fapesp.br
http://www.cnpq.br
http://www.cnpq.br


Introduction

Predators play an important role in regulating ecosystem functioning and dynamics [1, 2].

They affect prey populations and, as a result, alter plant abundance, composition, succession,

dispersion, and diversity [2, 3]. Consequently, the loss of this key group can lead to regime

shifts, alternative states of ecosystems, and possible losses of ecosystem services [2]. Given the

role of carnivores on ecosystem functioning and their sensitivity to the environment, land-

scapes with these animals—implying a relatively intact food web—have high potential for

ecological integrity [4], which encompasses ecosystem health, biodiversity, stability, and sus-

tainability [5]. Therefore, maintenance of carnivores can serve as a useful tool for protected

area design and conservation planning [6].

Among the carnivores, felids are extreme as obligatory flesh eaters [7]. Historically, felids

have suffered several anthropogenic impacts, which represent a major cause of felid mortality

in several regions of the globe and account for up to 70% of deaths in some populations [8, 9].

For example, larger felids are frequently involved in conflicts with humans due to preying on

domestic animals or livestock [9–13], and small felids are constantly suffering from fur trade

[8, 14]. Although several countries banned the export of wildcat skins and signed the Conven-

tion on International Trade in Endangered Species of Wild Flora and Fauna (CITES) [9], ille-

gal hunting of felids still occurs (e.g., [11]). Felids can also be exposed to diseases carried by

domestic carnivores and to poaching, which even at moderate levels over a relatively short

period of time can lead to massive population decline [9, 15, 16]. Hunting and these other

human-related pressures are most likely to occur in areas with high accessibility or low (or

inefficient) protection status, and in unrestricted areas surrounding protected areas [9, 17–19].

In highly protected populations, anthropogenic mortality is rare [9]. More recently, mamma-

lian carnivores face local extinction due to habitat loss and fragmentation, exacerbated by their

relatively large home ranges, low densities, and direct persecution by humans [4, 20–22].

Given the current scenario, understanding how species relate spatially to the environment

and to human disturbances is critical to the assignment of areas for conservation and the

development of conservation strategies [23–26]. Besides landscape characteristics, interspecific

interactions may also regulate the occurrence, distribution or persistence of species [27]. In

carnivore assemblages, intraguild interference competition and killing are potentially impor-

tant determinants of species abundance and distribution and can lead to adaptive responses in

use of space and activity patterns [7, 28, 29], which enable the coexistence of morphologically

similar species [30].

Because of relatively recent divergence and constraints imposed by foraging and diet, felids

present similar morphologies [31, 32]. Thus, they are a good model to understand how closely

related and morphologically similar species can coexist. However, though felids are frequently

sympatric, with the largest assemblages occurring in the tropical regions of the Americas, little

attention has been given to the coexistence of these species and its implications [8]. The Neo-

tropical spotted cats are the main sympatric small felids in Neotropical rainforests: Leopardus

pardalis—ocelot, L. wiedii—margay, and L. guttulus—oncilla (formerly known as L. tigrinus

[33]). These species have discrete differences in body sizes (8–15 kg, 3-9kg, and 1.5-3kg,

respectively [34]) and share an important portion of their food sources [35, 36], therefore dif-

ferential food exploitation is unlikely and intraguild competition is probably high [37]. They

have been accorded one of the lowest research efforts of all felids, and more basic information

on their biology and ecology is urgently needed [7, 8].

Frequently, studies on species occurrence and distribution assume that all species present at

a location are detected with certainty. However, accounting for imperfect detection is funda-

mental to avoid omission errors (false absences) [38, 39] and resultant bias in parameter
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estimation [40]. Such omission errors may lead to incorrect inferences about species-habitat

relationships or patterns of species co-occurrence [41]. A recent adaptation to occupancy

models [42] allows such problems to be dealt with by incorporating detection probability, as

well as possible habitat preferences, directly into the model set and evaluating co-occurrence

patterns among pairs of species [41].

We investigated the role of geomorphometry, environmental and anthropogenic landscape

attributes at multiple scales and interspecific interactions in the habitat use of Neotropical

spotted cats in a large Atlantic forest remnant. Using a likelihood-based framework, we esti-

mated the probability of occurrence and co-occurrence while accounting explicitly for imper-

fect detectability and habitat preferences. We used occupancy as a measure of habitat use, and

developed specific models based on different hypotheses about effects of landscape characteris-

tics and competition on the habitat use of Neotropical spotted cats. We have two alternative

hypotheses: 1) The habitat use of Neotropical spotted cats is mainly driven by landscape char-

acteristics—If landscape characteristics are important factors determining how spotted cats

use the habitat, we would expect anthropogenic-related variables to be the main predictors of

occurrence, given the sensitivity of carnivores to anthropogenic impacts [8, 9]. More specifi-

cally, because human-related pressures are most likely to occur in areas with low protection

status or with high accessibility [9, 17–19], we would predict a negative association between

habitat use and road density (a measure of human accessibility) and between habitat use and

distance to a more protected area (a reserve). We would also expect that prey, hydrographic

density, and forest cover would have a positive effect on habitat use, since those variables rep-

resent important resources (food and water availability) and high-quality habitats, but they

would have a smaller influence than the human-related variables. We would also expect eleva-

tion to have a weak influence on how Neotropical spotted cats use the habitat, unless species

are segregating in altitude due to the montaneous terrain in our study area; this phenomenon

has been observed in other taxa (e.g., [41]). 2) The habitat use of Neotropical spotted cats is

mainly driven by interspecific interactions—If competition is a major determinant of the habi-

tat use of Neotropical spotted cats, we would expect their occupancy and/or detection proba-

bility to be lower when another spotted cat is present or detected; co-occurrence should be less

than expected by chance, predicting avoidance, considering the commonness of interference

intraguild competition and killing among carnivores [7, 28, 29]. We believe that knowledge of

these potential relationships will be useful for planning management actions towards the con-

servation of this key group in Neotropical forests and helpful in clarifying the role of interspe-

cific interactions on the occurrence of small felids, which could benefit our understanding of

how small felids occur in other ecosystems worldwide.

Methods

Study area

Serra do Japi (southeast Brazil, coordinates 47˚03’40"W to 46˚52’20"W and 23˚22’30"S to 23˚

11’35"S; Fig 1) is one of the few large remnants of Atlantic Forest. The Atlantic Forest repre-

sents a global hotspot for biodiversity conservation [43], and currently it is highly fragmented

(more than 80% of the remnants are< 50 ha in size), highly isolated (average distance between

fragments is 1,440 m), and under negative edge influences (73% of remnants are 250 m from

any forest edge) [44]. The study area is a Natural Heritage Area (35,000 ha) considered part of

the UNESCO’s Atlantic Forest Biosphere Reserve [45]. Located within this area is the Biologi-

cal Municipal Reserve (REBIO—2,071 ha) surrounded by a Buffer Zone (11,946 ha) (Fig 1).

The REBIO presents the highest protection status in the area, where the only permitted activi-

ties are research and education. In the Natural Heritage Area and in the Buffer Zone, however,
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agriculture, horticulture and other forms of economic activities are present. The vegetation of

the area is characterized as semideciduous mesophilic forest with mountainous terrain and a

seasonal climate [46]. The mean temperature is 19.7˚C and the mean annual rainfall is 1,422

mm, with a dry and cold season occurring from April to September and a wet and warm sea-

son from October to March [46].

Data collection

From April 2013 to September 2014, we collected data on three Neotropical spotted cats (Leo-

pardus pardalis, L. wiedii, and L. guttulus) at 45 sampling sites (spaced approx. 1.5 km apart)

distributed in a regular grid across the forest remnant. This distance between the sampling

sites provided a good coverage of our study area, and it is in agreement with the TEAM “terres-

trial vertebrate (camera trap) monitoring protocol implementation manual” [47]. Further-

more, we had no evidence for spatial autocorrelation in data while using this spacing (S1

Table).

We conducted three campaigns at each sampling site to collect data: 1- April 2013 to Sep-

tember 2013; 2- October 2013 to March 2014; 3- April 2014 to September 2014. A different

group of 15 sampling sites was surveyed every two months within each campaign (see S1 Fig

for details). Hence, 45 sites were sampled during each campaign. We used camera trapping

(passive infrared camera traps; Bushnell Trophy Cam; N = 5,198 trap days) and scat sampling

during the first and the second campaigns, and only scat sampling during the third campaign.

All cameras were fixed about 20 cm above ground and no bait was used. Traps were installed

Fig 1. Study area. Study area and the sampling sites’ locations at Serra do Japi (Brazil) where Neotropical spotted cats
were sampled using camera trap and scat sampling.

doi:10.1371/journal.pone.0168441.g001
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with a minimum distance of approx. 50 m from roads or trails, and none of the sampling sites

was located close to roads that were highly used or open to the public. We visited each sam-

pling site six times and collected all scats found along a 1-km segment in the dirt road closest

to each site. There was no overlap between neighboring sampled areas because each sampling

site was usually located in the center of its 1-km segment.

In addition to the felids’ data, we collected information on their main prey using the records

from the camera traps. This was possible due to the height at which the cameras were positioned

and the number of records (i.e., detections: Nsmall mammals = 77; Nmedium-sized mammals = 897;

Nground-dwelling birds = 1,936). Although cameras are more commonly used to survey medium-

and large-sized mammals, they can also be used to collect data on small mammals [48–50] and

ground-dwelling birds [51–53]. They may provide a new and cost-effective technique for sur-

veying terrestrial small mammals, particularly when presence data are the main requirement of

the survey [54–55]. The use of camera traps to collect data on small mammals to assess prey

availability for carnivores was already performed [56], but here we went a step further and

included imperfect detection on prey estimates (through occupancy modeling, see “Single-spe-

cies occupancy models” section) instead of using the number of captures. We considered small-

sized mammals (< 1 kg; mainly small rodents and small marsupials) and small birds (< 0.2 g;

mainly passerines and doves) as the main prey for margay and oncilla, and small and medium-

sized mammals (< 13 kg; mainly small rodents, small marsupials, opossums, Brazilian rabbit,

paca, armadillo, and porcupine) as well as small and medium-sized birds (< 0.5 g; passerines,

doves, and tinamous) for ocelot [35, 57–61].

Identification of felids using tricology and genetics

Because felids defecate conspicuously to signal their presence [62, 63] and groom frequently

[64], samples of scats with hairs are particularly easy to obtain. After washing the scats with

running water and drying them, we collected the guard hairs found in each sample to identify

the species to which the hair belonged. We cleaned the guard hairs with ethyl alcohol, and the

cuticular impressions were obtained by pressing the hairs against a thin layer of nail varnish

and leaving them to dry for three to five minutes on glass slides with the help of a bench vise

(adapted from [65]). We photographed the cuticular impressions at 400x magnification (S2

Fig) and compared the pattern of the cuticles with our reference collection (obtained from

hairs collected from museum specimens) and published guides [66, 67].

Hair sampling can lead to reliable detections of rare and cryptic animals [68], and the use

of mammalian hair for identification of taxa, known as tricology, is an established low-cost

method (e.g., [69–74]). This technique has also been proven to be as consistent as molecular

methods for identification of some Neotropical felids [75]. To test the accuracy of our identifi-

cation through tricology, we conducted molecular analysis for 74% of the samples (N = 49).

We used mini-barcoding for molecular identification, comparing two markers from mito-

chondrial DNA [ATP6 (126 bp) and cytochrome oxidase I gene (COI) (187 bp)], applying the

primers developed by [76]. The obtained sequences were compared with reference sequences

from tissue samples of each species. We achieved confirmation for 100% of the samples, giving

us confidence in our identification and confirming the reliability of the method.

Landscape covariates

Wemapped with Quantum Gis software [77] the vegetation cover, hydrography and roads of

the study area using high resolution satellite image interpretation at a 1:5,000 scale and carto-

graphic maps (Secretariat of Economy and Planning—São Paulo State Government, at
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1:10,000). We validated the cover map by extensive field verification with a botanist (see

acknowledgements).

Because observed responses of the organisms to the environment may depend on the extent

at which the environment is being perceived (and thus measured; [21, 78, 79]), we adopted a

multi-spatial extent—also found in the literature as multiple scales [78]–approach while testing

the influence of the covariates on felid occupancy. The extents were defined as concentric cir-

cles (buffers) of 500 and 1,000 m radius around each sampling site, and we calculated each

site covariate for each extent. The smaller buffer (which covers 78 ha) is equivalent to the mini-

mum known size for an ocelot home range (see [80]). This extent is likely smaller than the

average home range of the other two cats as well [80]. The area of the larger buffer (314 ha) is

closer to the home range of some ocelots, but might be also regarded as spatially conservative,

considering the huge variation in home range size known from this and the other two cats

[80]. Further, the larger buffer is the maximum we can use without overlapping with buffers of

adjacent sampling points.

We determined five landscape site covariates: mean elevation, percentage of high-quality

forest cover, hydrographic density, road density, and ‘weighted distance to reserve border’.

The percentage of high-quality forest cover was measured as the percentage of intermediate

and advanced forest succession cover within each buffer, which was calculated using Geo-

graphical Resources Analysis Support System (GRASS) [81]. Road and hydrographic densities

within each buffer were calculated with the Kernel density function in ArcGIS software [82].

We obtained the mean elevation at each buffer from digital elevation models (DEM) available

from Topodata Geomorphic database of Brazil [83]. We measured the distance from each sam-

pling site to the nearest boundary of the Biological Municipal Reserve (REBIO), giving nega-

tive distances (in meters) to sites within the REBIO and positive distances otherwise (i.e., the

center of the reserve received the smallest value). Then the covariate ‘weighted distance to

reserve border’ was obtained by multiplying these distances by the protection status weight of

the subarea in which each sampling site was located (REBIO = 1; REBIO’s Buffer Zone = 2;

within the Natural Heritage Area but outside these two areas = 3; outside these three areas =

4). For ocelot, we used the distance to reserve border instead of ‘weighted distance to reserve

border’ (due to the lack of convergence in the models with this latter covariate). We normal-

ized all covariates and used only covariates with low correlation (S2 Table) in the final model

sets (i.e., group of models being tested together).

Single-species occupancy models

We used occupancy modeling [42]—with a likelihood-based approach—to estimate the site

occupancy (ψ) of each spotted cat species and their main potential prey, and to evaluate the

influential factors on the felids’ occupancy while accounting for detection probability (p).

Because the size of the home ranges of ocelots, margays, and oncillas likely exceed that of our

sampling unit [84–87], we used occupancy as a measure of their habitat use instead of “true

occupancy” [38, 88]. A basic assumption of the occupancy models is that the sites are closed to

changes in occupancy during the repeated surveys [89]. This assumption can be relaxed when

occupancy is interpreted as “use” and movement in and out of the sampled area is random

[41, 89], similarly to our approach for the felids. We assessed the usage made of sites with vari-

ous habitat characteristics within their home range, therefore we should interpret our result in

a third-order selection level [90]. However, because individual animals were not identified,

measures were made at the population level (i.e., it is a Design I study type; [91]).

We adopted a single-season approach [42], wherein data from all three campaigns were

combined. Data from both methods (camera trapping and scat sampling) were included, but
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in different sampling occasions. The decision to adopt a single-season modeling instead of a

multi-season approach was based on our previous analyses, which provided no evidence of

changes in occupancy across the three campaigns. Specifically, we fit both full multi-season

models and models where colonization and extinction were fixed to zero (no change), and the

latter models were ranked as the best (S3 Table). We also developed models that included an

effect of campaign/time on detection probabilities, but model selection results provided no evi-

dence that this effect was needed (S4 Table).

We used a two-step approach while modeling the occupancy of each species of felid and

prey: 1) assess spatial scale that best represents species’ response to each covariate; and 2)

investigate sources of variation in ψ, determining the most influential covariates for occu-

pancy, the parameter with biological meaning and in which we were most interested; as

detailed next. To determine the scale that best represents each species’ response to the habitat,

we used a general model for p (that consisted of as many potential covariates as possible) and

allowed occupancy (ψ) to vary (following [92]) by only the focal habitat covariate measured at

the extents of the two buffer sizes (S5 Table). After selecting the appropriate extent for each

covariate, we developed another model set to investigate the variation in occupancy (S6

Table). In this second step, we allowed ψ to be constant (ψ(.)) or to vary as a function of either

a single covariate or a combination of two (only additive effects). We built only models that

translated plausible biological hypotheses regarding the effects of variables on each species’

occupancy (ψ). We used each covariate at its extent of stronger response for each species (from

the previous step) and a general model for p. The potential covariates used in the general

model for p were: method used to survey each sampling occasion (camera trapping or scat

sampling), degree of soil coverage by plants or leaf litter on the roads where scats were sampled

(0- no coverage; 1- low to medium coverage; and 2- high coverage), and percentage of high-

quality forest cover at the 500 m buffer around each sampling site. By using a general model

for the parameters that were not investigated within a specific model set, we reduced the possi-

bility that imposed constraints (on p, for example) would result in residual sampling variation

being attributed to a variation in occupancy.

We evaluated candidate models and estimated parameters using PRESENCE software [93]

to determine the covariates that best explain occupancy. We ranked candidate models using

the Akaike’s Information Criterion adjusted for small sample size (AICc; N = number of sites)

[94] and excluded all models that did not converge. We considered the covariate(s) from the

top-ranked model(s) (i.e., models with ΔAICc<2) as the most likely determinant(s) of the spe-

cies’ occupancy. When different spatial extents were equally plausible (ΔAICc<2), we chose to
use the extent closer to the home range size of the spotted cats (1,000 m) in the final models.

Additionally, we assessed the relative importance of each covariate by summing the Akaike

weights (wi) of all the models (i) in which that covariate was present [94]. We applied model

averaging [94] to estimate the overall occupancy of each felid at our study area and to estimate

the site occupancy of each prey. The prey index was obtained by summing the site occupancy

of all potential prey for each felid species.

Co-occurrence models

We investigated whether the presence of one felid influences the occupancy and detection

probability of another felid by pair-wise comparisons for all felid species using two-species

single-season occupancy models [41]. We used the ψBa/rBa parameterization in PRESENCE

software [93], assuming that the dominant species was always the larger (i.e., greater mean

body mass) in the analyzed pair (ocelot in ocelot-margay and ocelot-oncilla pairs, and

margay in the margay-oncilla pair; [34]). The parameters estimated for occupancy were:

Habitat Use and Co-Occurrence of Spotted Cats
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ψA (occupancy of dominant species), ψBA (occupancy of subordinate species when the

dominant species is present), and ψBa (occupancy of subordinate species when the domi-

nant species is absent). We modeled ψA, ψBA, and ψBa, incorporating the best covariate

revealed in the single-species models for each species to account for possible differences in

habitat preferences. We also incorporated the method used to survey each sampling occa-

sion (camera trapping and scat sampling) as a covariate for p in all co-occurrence analyses.

We built models that assumed that the occupancy of the subordinate species was influenced

by the dominant species (ψBA 6¼ψBa) or was independent of the dominant species (ψBA =

ψBa).

For detection probability, the parameters estimated were: rA (probability of dominant spe-

cies being detected when the subordinate species is present), pA (probability of dominant spe-

cies being detected when the subordinate species is absent), pB (probability of subordinate

species being detected when the dominant species is not present), rBA (probability of subordi-

nate species being detected when the dominant species is present and detected), rBa (probabil-

ity of subordinate species being detected when the dominant species is present but not

detected). We built models where the detection probability of the subordinate species was

influenced by the presence (pB6¼rBa; pB6¼rBA) or detection (rBa6¼rBA) of the dominant spe-

cies or was independent of the dominant species (pB = rBa = rBA), as well as models that

assumed that the detection of the dominant species was influenced by the detection of the sub-

ordinate species (rA6¼pA) or independent (rA = pA).

We calculated the species interaction factor (SIF) for occupancy (phi; [95]) and detection

probability (delta ¼ rA � rBA
rA � ððrA � rBAÞþðð1�rAÞ � rBaÞÞ

; adapted from the formula for phi from [95]).

The SIF is a ratio of how likely the two species are to co-occur compared to what would be

expected under a hypothesis of independence [94]. We obtained the parameter estimates by

model averaging [95] the estimates of each species-pair model set (i.e., group of all models

tested for each species-pair). If two species occur or are detected independently, SIF = 1. If

SIF<1, species co-occur or are detected less frequently than would be expected if they were

independent (i.e., avoidance). If SIF>1, species co-occur or are detected more frequently than

expected (i.e., aggregation) [95].

To rank candidate models, we adopted the same procedure as the single-species analysis. To

infer about the co-occurence patterns, we considered the estimated parameters (ψA, ψBA, ψBa,

rA, pA, pB, rBa, rBA), the relationships among them, the top-ranked model(s) (ΔAICc<2), and
the SIF calculated for each species pair.

Ethics statement

Jundiaı́ City Hall and private owners provided permission to conduct this project at Serra do

Japi. During this research, the animals were observed in their natural environment and none

of them were captured or handled. Therefore, there are no protocols to be reported to institu-

tional or governmental agencies that regulate animal research.

Results

Spatial scale

Models with the same covariate measured at different extents (500 m vs. 1,000 m) were usually

equally supported, with the exception of high-quality forest cover for ocelot, which was better

explained by the 500 m extent than the 1,000 m extent (S5 Table).

Habitat Use and Co-Occurrence of Spotted Cats
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Single-species occupancy

We had 123 detections (N = 5,198 trap days) of the three Neotropical spotted cats (Table 1; S7

Table). We had some evidence that the habitat use of the cats varied according to landscape

characteristics (Fig 2). Margay and ocelot had higher occupancies closer to a more protected

area (i.e., reserve), and weighted distance to reserve border was the main factor influencing

their habitat use, emerging as the top-ranked model with high relative importance (Fig 3; S6

Table). All other analyzed covariates had overall low relevance (Fig 3; S6 Table).

Table 1. Number of records (detections) by eachmethod (scat sampling and camera trap), number of sampling sites with detections, naïve occu-

pancy, estimated occupancy probability ( bC) from single-season single-speciesmodels, and relative increase above naïve occupancy when using
estimates of the three Neotropical spotted cats in a large Atlantic Forest remnant.

N detections N sites w. detections Naïve occup. Detection probability (p) Rel. increase above naïve occup.
(%)2Scats Camera traps Scats Camera traps Occup. prob. bC1

Ocelot 8 16 12 0.27 0.07 0.08 0.48 (±0.15) 80

Margay 27 12 17 0.38 0.11 0.05 0.64 (±0.17) 69

Oncilla 33 29 21 0.47 0.14 0.07 0.64 (±0.13) 37

1Occupancy probability and standard deviation estimated by model averaging.
2Percentage increase in estimated proportion of occupied sites when incorporating detection probability (p) [(estimated occupancy probability/naïve
occupancy)-1*100].

doi:10.1371/journal.pone.0168441.t001

Fig 2. Neotropical spotted cats’ site occupancy. Interpolated site occupancy of the three spotted cats at an Atlantic
Forest site in Brazil: ocelot—Leopardus pardalis (top left), margay—L.wiedii (top right), oncilla—L. guttulus (bottom left).

doi:10.1371/journal.pone.0168441.g002
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Fig 3. Covariates effect on the occupancy of Neotropical spotted cats. Influence of geomorphometry,
environmental, and anthropogenic covariates on the occupancy of spotted cats in a large Atlantic Forest
remnant, showing the sum ofwi (which indicates the relative importance of covariates) and the associated
beta estimates with standard error estimated from the single-season single-species models.

doi:10.1371/journal.pone.0168441.g003
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Margay and oncilla, the two smaller and more cryptic cats, had more detections from scat

sampling, a method that had a detection probability of twice the detection probability of cam-

era traps (Table 1).

Co-occurrence patterns

There was no evidence that one species affects the occupancy of the other (Tables 2 and 3). For

all three pairs of species (ocelot-margay, ocelot-oncilla, and margay-oncilla), the models where

the pair had similar occupancies and the subordinate species had similar occupancy regardless of

the dominant being at the sampling site or not (i.e., ψA = ψBA = ψBa) were ranked as the top

models (Table 2). Furthermore, models where the covariate ‘weighted distance to reserve border’

was incorporated with ocelot and margay occupancy were always ranked better than the models

without this covariate, reinforcing the importance of the reserve for both species (Table 2).

We also found no evidence that the presence of margay or oncilla have an effect on the

detection probability of the more dominant species, the ocelot (i.e., that pA6¼rA), or that the

presence or detection of ocelot has an effect on the detection of margay (i.e., that pB6¼rBA =

rBa or pB6¼rBA6¼rBa; Tables 3 and 4). However, we found evidence that the presence of mar-

gay and the presence and detection of ocelot increases the detection probability of oncilla (i.e.,

margay-oncilla: pB6¼rBA = rBa; ocelot-oncilla: pB6¼rBA6¼rBa; Tables 3 and 4).

Table 2. Co-occurrence occupancymodels used to evaluate the role of interspecific interactions on the habitat use of three sympatric Neotropical
spotted cats in a large Atlantic Forest remnant.

Model AIC ΔAIC wi K -2LL

Ocelot-Margay

ψA(reserve dist) = ψBA(reserve dist) = ψBa(reserve dist) p(global1) 349.56 0 0.76 9 326.42

ψA(reserve dist) 6¼ψBA(reserve dist) = ψBa(reserve dist) p(global) 352.25 2.69 0.20 10 325.78

ψA = ψBA = ψBa p(global) 355.87 6.31 0.03 8 335.87

ψA 6¼ψBA = ψBa p(global) 358.03 8.47 0.01 9 334.89

ψA 6¼ψBA 6¼ψBa p(global) 361.32 11.76 0.00 10 334.85

Ocelot-Oncilla

ψA(reserve dist) = ψBA = ψBa p(global2) 386.13 0 0.34 8 366.13

ψA(reserve dist) 6¼ψBA = ψBa p(global) 389.20 3.07 0.07 9 366.06

ψA(reserve dist) 6¼ψBA 6¼ψBa p(global) 392.53 6.40 0.01 10 366.06

Margay-Oncilla

ψA(reserve dist) = ψBA = ψBa p(global3) 443.56 0 0.60 5 432.02

ψA(reserve dist) 6¼ψBA = ψBa p(global) 445.84 2.28 0.19 6 431.63

ψA(reserve dist) 6¼ψBA 6¼ψBa p(global) 447.44 3.88 0.09 7 430.41

ψA,ψBA = ψBa p(global) 447.61 4.05 0.08 5 436.07

ψA 6¼ψBA 6¼ψBa p(global) 448.84 5.28 0.04 6 434.63

ψA = ψBA = ψBa p(global) 452.62 9.06 0.01 4 443.62

p(general1) = pA 6¼rA 6¼pB 6¼rBA 6¼rBa; method;

p(general2) = pA = rA 6¼pB 6¼rBA 6¼rBa; method;

p(general3) = pA = rA = pB = rBA = rBa; method.

ψA = occupancy of dominant species; ψBA = occupancy of subordinate species when the dominant species is present; ψBa = occupancy of subordinate

species when the dominant species is absent. Reserve dist = Covariate ‘weighted distance to reserve border’. We used “=” to designate that two or more

parameters were set as equal (e.g., ψBA = ψBa means that the occupancy of the subordinate species is independent of that of the dominant species). We

used “ 6¼” to designate that two or more parameters were set as different (e.g., ψBA 6¼ψBamodels assumed that the occupancy of the subordinate species

was influenced by the dominant species).

doi:10.1371/journal.pone.0168441.t002
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Discussion

When investigating species’ distribution and use of habitat, assessing the relative importance

of landscape attributes and the role of interspecific interactions is often difficult. Here, we used

occupancy modeling [41, 42] to explicitly incorporate detection probability and habitat vari-

ables while examining co-occurrence patterns and landscape use by three sympatric and mor-

phologically similar species of Neotropical cats. Predators can be considered a key group

because they affect prey and plant populations, influencing ecosystem dynamics [1–3].

Table 4. Co-occurrence occupancymodels used to evaluate the role of interspecific interactions on the detection probability of three sympatric
Neotropical spotted cats in a large Atlantic Forest remnant.

Model AIC ΔAIC wi K -2LL

Ocelot-Margay

ψ(top) pA = rA = pB = rBA = rBa 339.14 0 0.77 5 327.60

ψ(top) pA = rA,pB = rBA = rBa 341.81 2.67 0.20 6 327.60

ψ(top) pA 6¼rA 6¼pB 6¼rBA = rBa 346.45 7.31 0.02 8 326.45

ψ(top) pA 6¼rA 6¼pB 6¼rBA 6¼rBa 349.56 10.42 0.00 9 326.42

Ocelot-Oncilla

ψ(top) pA = rA 6¼pB 6¼rBA 6¼rBa 386.13 0 0.21 8 366.13

ψ(top) pA = rA = pB = rBA = rBa 391.69 5.56 0.01 5 380.15

ψ(top) pA 6¼rA 6¼pB = rBA = rBa 393.20 7.07 0.01 7 376.17

ψ(top) pA = rA 6¼pB = rBA = rBa 394.36 8.23 0.00 6 380.15

Margay-Oncilla

ψ(top) pA = rA = pB = rBA = rBa 443.56 0 0.28 5 432.02

ψ(top) pA = rA 6¼pB 6¼rBA = rBa 444.05 0.49 0.22 7 427.02

ψ(top) pA = rA 6¼pB = rBA = rBa 444.96 1.40 0.14 6 430.75

ψ(top) pA 6¼rA 6¼pB 6¼rBA = rBa 445.41 1.85 0.11 8 425.41

ψ(top) pA 6¼rA 6¼pB = rBA = rBa 445.46 1.90 0.11 7 428.43

ψ(top) pA = rA 6¼pB 6¼rBA 6¼rBa 445.69 2.13 0.10 8 425.69

ψ(top) pA 6¼rA 6¼pB 6¼rBA 6¼rBa 447.42 3.86 0.04 9 424.28

While modeling detection probability (p) for each pair of species, we incorporated the covariate “method” in p and kept occupancy (ψ) as it was in the top-

ranked model from the co-occurrence occupancy models used to evaluate ψ (Table 2): Ocelot vs. Margay ψ(top) = [ψA(reserve dist) = ψBA(reserve dist) =

ψBa(reserve dist)]; Ocelot vs. Oncilla ψ(top) = [ψA(reserve dist) 6¼ψBA = ψBa]; Margay vs. Oncilla ψ(top) = ψA = ψBA = ψBa.

doi:10.1371/journal.pone.0168441.t004

Table 3. Occupancy (ψ), detection probability (p and r), and species interaction factor (SIF—phi and delta) estimated from co-occurrence occu-
pancymodels of three sympatric Neotropical spotted cats in a large Atlantic Forest remnant.

ψA ψBA ψBa rA pA pB rBA rBa Phi Delta

Ocelot—Margay 0.60 0.63 0.63 0.06 0.06 0.08 0.08 0.08 1.00 1.00

Ocelot—Oncilla 0.67 0.80 0.80 0.05 0.05 0.04 0.41 0.10 1.00 3.53

Margay—Oncilla 0.61 0.68 0.63 0.09 0.08 0.08 0.13 0.12 1.03 1.11

ψA = occupancy of dominant species; ψBA = occupancy of subordinate species when the dominant species is present; ψBa = occupancy of subordinate

species when the dominant species is absent; rA = probability of dominant species being detected when the subordinate species is present; pA = probability

of dominant species being detected when the subordinate species is absent; pB = probability of subordinate species being detected when the dominant

species is not present; rBA = probability of subordinate species being detected when the dominant species is present and detected; rBa = probability of

subordinate species being detected when the dominant species is present but not detected; Phi = ratio of how much more (>1) or less (<1) likely the species

are to co-occur at a site compared to what would be expected if the species occurred independently of each other; Delta = ratio of how much more (>1) or
less (<1) likely the species are to be detected together in a survey compared to what would be expected if they were detected independently.

doi:10.1371/journal.pone.0168441.t003
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However, most species of felids are threatened, or we lack basic information about them. All

three Neotropical spotted cats analyzed here are believed to be suffering from population

decrease, and two (L. wiedii and L. guttulus) are considered ‘Near Threatened’ or ‘Vulnerable’

[96]. We demonstrated that the proximity to a more protected area (nature reserve) is the

main factor influencing the habitat use of Neotropical spotted cats within their home ranges in

a large Atlantic forest remnant, and we had low support for the hypothesis that interspecific

interactions modulate how they use the landscape.

Our first prediction that among the landscape characteristics, the human-related variables

would be more important predictors of landscape use by Neotropical spotted cats was in part

corroborated. Roads and human accessibility, for instance, are important determinants of the

occupancy of sensitive species (e.g., game species—[97]); and road kills can be common

among felids and other carnivores [98, 99]. Here, we had some evidence that road density,

which is also a measure of human accessibility, may have a negative effect on occupancy of

some spotted cats (given its negative beta estimates for two out of the three species analyzed),

particularly on ocelots; however, it did not have a strong effect and was not a major factor for

them. Besides area accessibility, higher protection status is also usually associated with lower

human-related pressures [9, 17, 18]. Our results showed that more strict protection status is

important for the Neotropical spotted cats, especially for ocelots and margays, which used

more areas closer to the reserve even though our entire study area is under some type of pro-

tection. Although ‘weighted distance to reserve border’ was not a high-ranked model for

oncilla, the influence of this covariate on its occupancy was also in the predicted direction

(negative). In previous studies, only ocelots or larger felids (pumas and jaguars) were more

commom in areas with higher legal protection than in less protected areas [100, 101]. Whether

these distinct outcomes are derived from differences in the felid community structure (e.g.,

more larger felids occuring in these previous studies than in our study area) or arise from

some intrinsic local characteristic of the sites (e.g., level of anthropogenic pressures) can only

be answered with further studies.

Prey availability can usually influence the abundance, density, occupancy and habitat use of

carnivores [56, 102–105]. Although the relationship between the prey index and occupancy

was in the predicted direction (positive), we did not have enough evidence that this variable,

hydrographic density, high-quality forest cover, and elevation influence the spotted cats’ habi-

tat use. The possible opportunistic feeding behavior of Neotropical small cats [36] could

explain the lack of effect of prey on their habitat use. However, we also note that prey availabil-

ity, measured as the sum of prey occupancy at each sampling site, varied only slightly across

sites (mean 1.31±0.12) and did not account for differences in prey density. Therefore, we can-

not yet discard a possible effect of prey on spotted cats’ habitat use.

Intraguild competition can be an important determinant of carnivore abundance and dis-

tribution, as it can lead to spatial or temporal segregation among species [7, 28, 106]. However,

when examining species co-occurrence patterns, it is often difficult to distinguish the differ-

ence between habitat preferences and competitive exclusions. Furthermore, since species pres-

ent at a location are not always detected with certainty, incorporating detection probability

along with habitat preferences directly into the model set may avoid incorrect inferences about

co-occurrence patterns [41]. By adopting this approach, we found no evidence that the pres-

ence of either ocelot, margay, or oncilla have a negative influence on how the other species use

the habitat. Thus competitive exclusion among them is unlikely, at least within the analyzed

scale, and at a relatively conserved and protected area such as ours. The lack of spatial parti-

tioning based on interspecific interaction was also found for North American carnivores, and

similarly to our study, habitat preferences were more important in structuring the community

[107, 108]. Nonetheless, because occupancy does not account for variations in density, it is still
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possible that the presence of one species affects the density of the other, as previously suggested

[109]. We also encourage further research to analyze the effects of larger felids (e.g., pumas

and jaguars) on the habitat use of smaller cats, which unfortunately, we did not have data to

investigate (only six detections of pumas and none of jaguar). In addition, since land use and

human activity can alter occupancy patterns [110] and behavior [111] of carnivores, it would

be of interest to explore whether interspecific relations and co-occurrence patterns among

small felids are affected by different degrees of human disturbances, which unfortunately we

did not have enough data to investigate. Finally, although the models used here can yield

strong inferences about species co-occurrence patterns, this does not imply strong inference

about the processes that generated the observed patterns, and it would be useful to observe the

system dynamics over time [41].

We found evidence that one species affects the behavior of the other in at least one respect,

as oncilla is more likely to be detected if margay is present or if ocelot is either present or

detected. Felids are highly territorial and use scent marks such as urine and feces to mark their

territories [62]. Two things should be noted from the fact that most of the felids’ detections

came from scat sampling, and therefore, their territorial scent mark: first, since we collected

the feces as they were detected, sites with scat detections became unmarked after each sam-

pling occasion. Second, scent marks are frequently over-marked either by the same animal or

other individuals [62]. Therefore, we suggest that the presence of a spotted cat (and conse-

quently, its feces) increased the detection of another spotted cat as it was attracted to either

over-mark the feces (before it was removed) or use an area rendered unmarked (through col-

lection of the scats). The small felids may be able to avoid direct confrontations by marking

recently used areas within their home range and using different parts of their home range

according to where the other is currently marking (i.e., using the area). However, to clarify the

mechanisms underlying our findings, more detailed studies on the behavior of the Neotropical

spotted cats are necessary. What we can suggest so far is that territorial demarcation may

potentially help to regulate how these small felids share their habitats, consequently alleviating

or reducing the competition among them.

In conclusion, our results suggest that human-related factors, such as distance to a reserve,

are more important drivers of Neotropical spotted cats’ habitat use than are interspecific inter-

actions, environmental landscape attributes, geomorphometry or, potentially, prey availability.

We suggest that the dietary overlap of the three species might be small enough to allow co-exis-

tence [57–61], or that another behavioral mechanism in addition to differences in habitat pref-

erence, such as time partitioning, may allow them to co-exist [100, 112, 113].

Management recommendations

Given the importance and vulnerability of spotted cats in Neotropical forests, several actions

are required for their conservation, including enhancing forest connectivity and gathering

basic information on their ecology and behavior [4, 114]. Here we underline the main manage-

ment recommendations resulting from our study:

1. We demonstrated that the most important factor for managing small felids can be the

maintenance and establishment of nature reserves and other areas that are managed to

ensure minimal disturbance and human presence (i.e., IUCN Protected Area Category Ia—

Strict Nature Reserve [115]). Protected areas can decrease habitat loss [116] and anthropo-

genic pressures [17, 18] as well as improve the occupancy of key groups (Nagy-Reis et al.

present study). However, because poaching may still occur illegally, effective law enforce-

ment and other management actions such as environmental education are also important

to ensure the conservation of small felids.
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2. The use of methods that incorporate detection probability is critical to the understanding of

species’ responses to habitat and interspecific interactions. We showed how dealing with

imperfect detection results in a substantial relative increase above naïve occupancy for rare,

cryptic, and elusive animals such as small felids, reinforcing the importance of accounting for

detection probability in ecological and behavioral studies on such species. Our research also

emphasizes the feasibility of alternative methods for surveying felids, such as scat sampling

combined with tricology, which has a higher detection probability than camera traps and sup-

plies non-invasive material for studying diet and performing molecular analysis, providing

essential information on population parameters and ecology [63, 117]. We also confirmed the

reliability of tricology as a low cost alternative to molecular methods for identification of Neo-

tropical felids, as long as meticulous procedure is adopted by a trained researcher.

Supporting Information

S1 Fig. Location of the sampling sites at the study area (Serra do Japi, Brazil) where Neo-

tropical spotted cats were sampled using camera trap and scat sampling. Sampling sites

represented with a same color were sampled simultaneously within each campaign. Campaign

1 (April 2013 to September 2013)–Group A (black): Apr-Mai; Group B (blue): Jun-Jul; Group

C (green): Ago-Sep. Campaign 2 (October 2013 to March 2014)–Group A: Oct-Nov; Group B:

Dec-Jan; Group C: Feb-Mar. Campaign 3 (April 2014 to September 2014)–Group A: Apr-Mai;

Group B: Jun-Jul; Group C: Ago-Sep.

(PDF)

S2 Fig. Photos of the cuticular impressions of each Neotropical spotted cat at 400x magni-

fication. From the left to the right: ocelot (Leopardus pardalis), margay (L. wiedii), and oncilla

(L. guttulus).

(PDF)

S1 Table. Spatial independence of detections for three Neotropical spotted cats sampled

with camera trap and scat sampling (1.5 km between sampling sites) at a large Atlantic

Forest remnant in Brazil. Results of Moran’s I autocorrelation tests [1]—based on the number

of detection records of each species and the geographic position of each site. We used R 2.13.0

software [2] and the ape package [3]. 1. Legendre P & Legendre L. Numerical Ecology. New

York: Elsevier; 1998. 2. R Development Core Team. R: A language and environment for statis-

tical computing. R Foundation for Statistical Computing. 2014. Available:<www.R-project.

org>. Accessed 2 Oct 2014. 3. Paradis E, Blomberg S, Boljer B, Claude J, Cuong HS. et al. Anal-

yses of phylogenetics and evolution: package “ape”. Available:<ape-package.ird.fr>. Accessed

10 Jul 2015.

(PDF)

S2 Table. Spearman’s correlation matrix for the site covariates measured at a large Atlantic

Forest remnant in Brazil. The four landscape site covariates (elevation, hydrographic density,

road density and percentage of high-quality forest cover) were measured at 500 and 1,000 m

spatial extents (buffer sizes). Highly correlated (rs<0.50) outcomes are in bold. S prey = prey

index for margay and oncilla; O prey = prey index for ocelot; � = excluded covariates.

(PDF)

S3 Table. Multi-season single-species occupancy models used to evaluate the effect of time

(“campaign”) on the habitat use of sympatric Neotropical spotted cats at a large Atlantic

Forest remnant in Brazil. p(general) = campaign + method + soil coverage + percentage

of high-quality forest cover at 500 m buffer size; “gamma” = colonization; “eps” = extinction;
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“.” = no covariate included; “0” = parameter was fixed to 0.

(PDF)

S4 Table. Model selection analysis for detection probability (p) covariates for three Neo-

tropical spotted cats at a large Atlantic Forest remnant in Brazil. “Campaign” = campaign

in which data was collected (1- April 2013 to September 2013; 2- October 2013 to March 2014;

3- April 2014 to September 2014); “Groups” = order within the campaigns that sampling sites

were surveyed; “Method” = method used in each sampling occasion (camera trapping or scat

sampling); “.” = no covariate included (i.e., null model).

(PDF)

S5 Table. Model selection analysis for occupancy (ψ) covariates (elevation, percentage of

high-quality forest cover, hydrographic density and road density) measured at different

spatial extents (buffer sizes) for three Neotropical spotted cats at a large Atlantic Forest

remnant in Brazil. p(general) = method + soil coverage + percentage of high-quality forest

cover at 500 m buffer size.

(PDF)

S6 Table. Single-season single-species occupancy models (cumulative wi>0.80) used to

evaluate the effect of weighted distance to reserve border, geomorphometry, environmen-

tal, and anthropogenic landscape attributes on the habitat use of sympatric Neotropical

spotted cats at a large Atlantic Forest remnant in Brazil. p(general) = method + soil cover-

age + percentage of high-quality forest cover at 500 m buffer size.

(PDF)

S7 Table. Spearman’s correlation matrix for the three Neotropical spotted cats found at a

large Atlantic Forest remnant in Brazil (based on the number of detection records at each

sampling site).

(PDF)
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6. Soulé ME & Terborgh J. Continental conservation: Scientific foundations of regional reserve networks.
Washington: Island Press; 1999.

7. Macdonald DW, Loveridge AJ, Nowell K. Dramatis personae: an introduction to the wild felids. In: Mac-
donald DW& Loveridge AJ, editors. Biology and conservation of wild felids. New York: Oxford Univer-
sity Press; 2011. pp. 3–58.

8. Nowell K & Jackson P. Wild cats: Status survey and conservation action plan. IUCN/SSCCat Special-
ist Group. Switzerland: IUCN; 1996.

9. Loveridge AJ, Wang SW, Frank LG, Seidensticker J. People and felids: conservation of cats and man-
agement of conflicts. In: Macdonald DW & Loveridge AJ, editors. Biology and conservation of wild
felids. New York: Oxford University Press; 2011. pp. 161–196.

10. Murphy T &Macdonald DW. Pumas and people: lessons in the landscape of tolerance from a widely
distributed felid. In: Macdonald DW& Loveridge AJ, editors. Biology and conservation of wild felids.
New York: Oxford University Press; 2011. pp. 431–452.

11. Michalski F, Boulhosa RLP, Faria A, Peres CA. Human–wildlife conflicts in a fragmented Amazonian
forest landscape: determinants of large felid depredation on livestock. Anim Conserv. 2006; 9(2):
179–188.

12. Cavalcanti SMC, Marchini S, Zimmermann A, Gese EM, Macdonald DW. Jaguars, livestock, and peo-
ple in Brazil: realities and perceptions behind the conflict. In: Macdonald DW& Loveridge AJ, editors.
Biology and conservation of wild felids. New York: Oxford University Press; 2011. pp. 383–402.

13. Jackson RM, Mishra C, McCarthy TM, Ale SB. Snow leopards: conflict and conservation. In: Macdon-
ald DW& Loveridge AJ, editors. Biology and conservation of wild felids. New York: Oxford University
Press; 2011. pp. 417–430.

14. Sanderson JG &Watson P. Small wild cats: The animal answer guide. Baltimore: The Johns Hopkins
University Press; 2011.

15. Craft ME. Ecology of infectious diseases in Serengeti lions. In: Macdonald DW& Loveridge AJ, edi-
tors. Biology and conservation of wild felids. New York: Oxford University Press; 2011. pp. 263–282.

Habitat Use and Co-Occurrence of Spotted Cats

PLOSONE | DOI:10.1371/journal.pone.0168441 January 4, 2017 17 / 22

http://dx.doi.org/10.1126/science.1205106
http://www.ncbi.nlm.nih.gov/pubmed/21764740
http://dx.doi.org/10.1126/science.1064397
http://www.ncbi.nlm.nih.gov/pubmed/11729317


16. Munson L, Terio KA, Ryser-Degiorgis M-P, Lane EP, Courchamp F. Wild felid diseases: conservation
implications and management strategies. In: Macdonald DW& Loveridge AJ, editors. Biology and
conservation of wild felids. New York: Oxford University Press; 2011. pp. 237–262.

17. Bruner AG, Gullinson RE, Rice RE, Fonseca GAB. Effectiveness of parks in protecting tropical biodi-
versity. Science. 2001; 291: 125–128. doi: 10.1126/science.291.5501.125 PMID: 11141563

18. Peres CA & Palacios E. Basin-wide effects of game harvest on vertebrate population densities in Ama-
zonian forest: implications for animal-mediated seed dispersal. Biotropica. 2007; 39(3): 304–315.

19. Ewers RM & Rodrigues ASL. Estimates of reserve effectiveness are confounded by leakage. Trends
Ecol Evol. 2008; 23(3): 113–116. doi: 10.1016/j.tree.2007.11.008 PMID: 18280005

20. Woodroffe R & Ginsberg JR. Edge effects and the extinction of populations inside protected areas.
Science. 1998; 280(5372): 2126–2128. PMID: 9641920

21. Lyra-Jorge MC, Ribeiro MC, Giocheti G, Tambosi LR, Pivello VR. Influence of multi-scale landscape
structure on the occurrence of carnivorousmammals in a human-modified savanna, Brazil. Eur J Wildl
Res. 2010; 56: 359–368.

22. Jorge MLSP, Galetti M, Ribeiro MC, Ferraz KMPMB. Mammal defaunation as surrogate of trophic
cascades in a biodiversity hotspot. Biol Conserv. 2013; 163: 1–9.
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