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Abstract

Landscape models of geospatial regions provide an intuitive mechanism for exploring complex

geospatial information. However, the methods currently used to create these scale models

require a large amount of resources, which restricts the availability of these models to a

limited number of popular public places, such as museums and airports. In this thesis, we

have proposed a system for creating these physical models using an affordable 3D printer

in order to make the creation of these models more widely accessible. Our system retrieves

GIS data relevant to creating a physical model of a geospatial region and then addresses the

two major limitations of affordable 3D printers, namely the limited number of materials and

available printing volume. This is accomplished by separating features into distinct extruded

layers and splitting large models into smaller pieces, allowing us to employ different methods

for the visualization of different geospatial features, like vegetation and residential areas, in

a 3D printing context. We confirm the functionality of our system by printing two large

physical models of relatively complex landscape regions.
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Chapter 1

Introduction

Visualizing geospatial features is a challenging task. One contributing factor to this challenge

is the variety and size of geospatial data sets. Another lies in how to assign the data to an

appropriate representation of the Earth for a better understanding of regions and their

geospatial features. For example, how to visualize hiking trails in a national park or ski

trails in mountains such that people can better imagine the place and its geospatial features.

Physical visualization is beneficial as a 3D physical model enables tactile exploration and

easy circumnavigation [Hull and Willett, 2017]. These attributes of 3D physical models (i.e.

scale models) help to better explore complex GIS data, which makes this type of physical

visualization useful for both educational and scientific purposes. Moreover, urban designers,

urban planners and architects can benefit from these scale models when presenting their 3D

designs to non-experts [Hull and Willett, 2017]. Currently, popular public places such as

national parks, airports and ski resorts benefit from these models as they help visitors develop

a familiarity with the area quickly. For example, in Figure 1.1e, a scale model of Mount

Rainier National Park, available in Longmire wilderness information center, helps visitors

get familiar with the trails in this national park. Also, this type of physical visualization

can be employed to raise awareness about environmental issues, such as global warming, by

highlighting impacts to endangered regions of interest over time. A number of scale models

can be seen in Figure 1.1.

The most common method used to create such scale models is to use subtractive ma-

chining with a CNC (Computer Numerical Control) machine, where the required model is

machined out of a sheet or volumetric material. Laser cutting, a 2D CNC machining method,

is considered the most affordable option when using CNC. Using laser cutting, sheets of ma-
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(a) Photo by Marion Boissières (CC BY-NC 4.0). (b) Photo by Phil Parker (CC BY 2.0).

(c) Scale model of Topkapi Palace in Istanbul. (d) Photo by Hsiu-i Lee (CC BY-NC-ND 4.0)

(e) Photo by Joe Mabel (CC BY-SA 3.0) (f) Photo by Jordiferrer (CC BY-SA 3.0)

Figure 1.1: Several examples of scale models.
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terial are cut and later stacked to create a 3D model.

Rapid Prototyping (RP) is another method that uses Additive Manufacturing (AM),

where models are created by adding layers of material. Stereolithography (SLA) and Fused

Deposition Modeling (FDM) are two RP-based approaches that can operate on affordable

desktop 3D printers. SLA uses an ultraviolet laser to solidify a rather costly liquid material,

such as resin, while FDM operates by melting and extruding a plastic material.

Every 3D printing process imposes several difficulties on the creation of scale models.

CNC is limited to only one material per session and requires costly machines. Methods

using RP are generally considered inappropriate for building large landscape models due

to the size limitation of machines that use this method [Kvan et al., 2001]. Specifically,

FDM suffers from a lower accuracy, problems with overhanging parts, warpage and a limited

number of materials that may be used per session.

1.1 Goals

The main research goal of this thesis is to design a system that uses affordable 3D printers

(i.e. FDM based) to create scale models of geospatial landscapes. We target the general scale

of landscape models, which is between 1:1000 and 1:2500, for creating these scale models.

While SLA is a reasonable method to use with our system, as it is currently a more expensive

option, we utilize FDM due to its affordability and availability. Using our system we can

create 3D models that both respect the GIS data and the FDM process limitations. We

propose methods to 3D print large physical models using such 3D printers, while providing

methods to physically visualize complex geospatial features such as vegetation and narrow

roads without the creation of overhangs or highly delicate pieces. Furthermore, we consider

the accuracy limitation of these 3D printers in both the design of these 3D models and their

assembly.
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1.2 Problems and Challenges

Since geospatial areas are usually complex with large fine features (e.g. valleys, trails, roads

and vegetation), creating a 3D model of these regions that is suitable for 3D printing is not

an easy task. Although one may assume the use of highly detailed data sets (e.g. LiDAR),

these kinds of data sets are only available for small regions, and capturing them requires

a substantial amount of resources. Furthermore, landscape models are generally created at

scales between 1:1000 and 1:2500. At these scales, utilizing the highly detailed information

of a region of interest is neither necessary nor sufficient for 3D printing. For example, a

perfect tree model has many small delicate features at these scales and is not tailored for

3D printing. On the other hand, vast numbers of 2D and 2.5D geographical data sets (i.e.

digital elevation models (DEM), satellite images and GIS vector data) are freely available.

These data sets have been captured for most areas of the globe through the activities of

various providers and governmental initiatives (e.g. OpenStreetMap, CDSM [CDS, 2014]).

Therefore, a core challenge to creating a physical model of any region is the question of

how to produce a detailed 3D model out of these freely available yet less-detailed datasets.

Moreover, we must also address how such models can be designed to respect the limitations

of the 3D printer. For example, there are challenges in segmenting large 3D models into

small, yet robust, printable pieces and in incorporating different colors into the final result.

Additional challenges include the printing of complex features in a landscape model, such as

vegetation and residential areas, and assisting the assembly of the physical model.

1.3 Methodology

We introduce a modeling system to address the challenges. The inputs to our system are

DEM and 2D GIS vector data. From these data sets our system generates a series of 3D

meshes, each of which represents a unique geospatial feature from the input data. These

feature meshes are further processed to create a collection of 3D elements, where each element

4



is suitable for printing. After printing these 3D elements, they are assembled using a manual

process to create the final physical model.

To create 3D feature meshes, we employ Constrained Delaunay Triangulation (CDT) to

generate a 2D triangulation that respects all of the 2D input features. Using the input DEM,

this 2D triangulation is turned into a 3D mesh. A region growing algorithm is applied to this

3D mesh to extract separate feature submeshes for each input feature. As we use affordable

3D printers, there is a printable size limitation. A grid optimization is used to break large

feature submeshes into printable 3D elements.

In order to support multiple colors and materials in FDM printers, we create multiple

extruded layers. In this way, a lake can be printed in blue and a vegetation region can be

printed in green as part of another printing session. However, a forest region and a grass field

are hard to differentiate without additional information, as they have similar green colors.

To address this issue, while considering the printable models, we create appropriate designs

and patterns for different features to assist with feature recognition.

To improve the manual assembly process, our system generates 3D models with a proper

coding based on the feature number and grid location, resulting from the segmentation

algorithm. Our system also avoids creating very small pieces that are harder to assemble,

by using a cost function during segmentation. In regions whose features have complex

interactions (e.g. residential areas), our system creates stencil layers that ease the attachment

of features. To help with the fitting of pieces, our system has a configurable offset amount to

be applied to each piece based on the specific 3D printer inaccuracy. To further enhance this

manual process, our system packs smaller pieces together to reduce the number of printing

sessions required. We also help reduce printing time by creating pillars to support the

surfaces of the physical models.
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1.4 Contributions

Our main contribution is to introduce and develop a system that, given a geographical re-

gion and its associated GIS data, creates 3D elements of a scale model that are printable

by affordable 3D printers, e.g. FDM based printers. We have proposed methods to physi-

cally visualize geospatial features that are generally difficult to 3D print for affordable 3D

printers. By employing displacement maps for vegetation regions and stencil layers for res-

idential areas, our system speeds up the assembly process for massive amounts of models,

while respecting the input geospatial data sets. By decomposing a landscape region into its

features, we provide a way to 3D print a scale model using 3D printers that support only

a limited number of materials. Our system provides a local grid segmentation algorithm

to create smaller pieces that fit inside the printable volume of 3D printers. This segmenta-

tion operates on every feature mesh locally, which makes the algorithm more flexible than

a global grid for the whole physical model. Furthermore, since the virtual model of a scale

model is rather highly detailed and complex, separating features and segmenting them helps

in creating smaller 3D elements that are more manageable for the 3D printing software to

process. Lastly, the 3D elements created by our system can be assembled easily after printing

to create large landscapes at scales between 1:1000 and 1:2500. The main contribution of

this thesis has been accepted by EuroVis 2018 and will appear as a full paper in a special

issue of Computer Graphics Forum (CGF) [Allahverdi et al., 2018].

1.5 Overview of Thesis

This thesis is organized as follows. In Chapter 2, a review of previous work is presented. In

Chapter 3, we provide an overview of our system, followed in Chapter 4 by an explanation of

how our system generates an initial 3D model from GIS data. Chapter 5 presents a method

to split large meshes into smaller pieces that can fit inside the 3D printer. In Chapter 6,

we describe the various methods our system uses to create a more recognizable and more
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realistic landscape model. Chapter 7 presents our results and a discussion of their accuracy.

We discuss our implementation details in Chapter 8. Finally, Chapter 9 summarizes the

thesis and discusses possible future works.
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Chapter 2

Background and Related Works

In this Chapter, we make note of the works most related to our system. Since our work

combines geospatial data sets, 3D modeling and 3D printing into an integrated system, we

present works related to these subjects along with an overview of 3D printing technologies

and their limitations.

2.1 Geospatial Data Sets

Geospatial data sets form a huge body of information that can be used to study the world

that we live in. To embed such vast amounts of data into a single integrated location,

the Digital Earth framework was proposed [Goodchild, 2000]. This framework enables the

integration of different types of geospatial data captured from different devices, such as

satellites, UAVs (Unmanned Aerial Vehicles) or mobile devices with a GPS sensor [VTP,

2015, Mahdavi-Amiri et al., 2015a]. Data types available in Digital Earth frameworks are

generally categorized into four groups (Figure 2.1). Each group is described in the following:

• Raster Data: This data type stores information in the cells of a grid. Raster

grids are appropriate for storing continuous data such as temperature. Satel-

lites and UAVs with DSLR cameras are examples of devices that can capture

data in this format. Digital Elevation Models (DEM), satellite images and

orthophotos are the most commonly used examples of this data type.

• Vector Data: This data type is formed of vertices and paths. The vertices

are coordinates and paths define the connections between these vertices. There

are three basic types of vector data: points, pathways and polygons (areas).
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Generally, vector data of any of the aforementioned types can be tagged with

contextual information. Examples include specifications of roads, rivers or

political boundaries. GPS sensing devices are one of the sources that can be

used to capture vector data, such as by carrying a GPS device while moving

along a hiking trail. This is the primary source of data collection for the free

collaborative service known as OpenStreetMap, which provides vector data for

the whole world.

• Point Clouds: Laser detection systems (such as LiDAR) use laser light to

densely sample a region of the globe. The sampled data from these systems

create large sets of 3D points referred to as point clouds. These point clouds

are only available for limited regions of the world and capturing them requires

a huge amount of resources. The raw point clouds are not generally usable

directly, and a set of post-processing algorithms should be applied to them to

create meaningful data, such as 3D models, out of them.

• 3D Content: 3D models of buildings, vegetation and bodies of water are

examples of 3D content. There is currently no device that can directly capture

them, so they are either created manually, interactively [Ketabchi et al., 2015,

Longay et al., 2012] or by using post-processing algorithms on LiDAR point

clouds [Wang et al., 2008, Sun and Salvaggio, 2013].

Raster Vector Point Cloud 3D Content

Figure 2.1: Data types available in Digital Earth frameworks.
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Such geospatial data sets are captured through different techniques (e.g. satellites, Li-

DAR, surveying, or drones) [Campbell and Wynne, 2011]. Much effort have been devoted to

clean-up, post process, and visualize these data sets [Mahdavi-Amiri et al., 2015a, Musialski

et al., 2013, Sellers et al., 2013, Cozzi and Ring, 2011, Cozzi and Bagnell, 2013, Djavaherpour

et al., 2017]. Although a vast variety of available geospatial data exists that can be used

to represent a location, much work has gone into synthesizing geospatial data in order to

obtain a better visualization, correct the available data sets, or build a virtual environment.

For instance, a comprehensive survey on how to construct 3D buildings using point clouds

is presented in [Musialski et al., 2013]. Road systems can be also generated using sketch-

based systems [Applegate et al., 2012, McCrae, 2008]. Terrains can be synthesized using

Digital Elevation Models (DEM) [Zhou et al., 2007] or multiresolution approaches [Brosz

et al., 2008]. A variety of different data sets are also integrated in [Samavati and Runions,

2016, Ketabchi et al., 2015] in an interactive system that corrects the mismatches between

the elevation data sets and imagery. In [Samavati and Runions, 2016, Ketabchi et al., 2015],

in addition to employing geospatial data to determine the location of the geospatial features,

some features are also synthesized to produce better representations for roads, trees, and

water bodies.

2.2 3D Modeling

3D modeling is a general term describing methods to create virtual representation of objects.

Here we discuss 3D modeling in the context of Digital Earth and creating and segmenting

3D content.

To create a 3D model of a region on the Earth, [Ketabchi et al., 2015] integrates DEM,

satellite images and input sketches. In [Manferdini and Remondino, 2010], highly-detailed

3D models found in the Cultural Heritage field are segmented into subcomponents using

both automatic and manual methods to facilitate annotation and data retrieval in a web-
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based visualization. Some 3D modeling methods focus on creating 3D content using images

and footage of a real world environment. These methods generally rely on computer vision

and photogrammetry techniques to reconstruct 3D models of the input data. In most cases,

using these methods requires large data collections or appropriate photos with detectable

features [Schöning and Heidemann, 2015]. The more recent methods in this category focus on

creating 3D models out of point clouds retrieved using LiDAR technology [Sun and Salvaggio,

2013, Wang et al., 2008].

Based on the type of input data, there are different methods one may use to create 3D

content. To create a 3D model out of input sketches in [Olsen et al., 2011], an initial mesh is

created by using Constrained Delaunay Triangulation (CDT), followed by a subdivision to

better fit the input sketch. In [Ketabchi et al., 2015], an initial 3D model of a region on the

Earth is created using a DEM, and using input sketches the system can be guided to apply

corrective deformations to problematic regions caused by the inaccuracy of the DEM.

Another method to create 3D content is to use advancing front mesh generation tech-

niques. Using these methods, a mesh is created out of a boundary by cutting off elements

one by one. In [Schöberl, 1997], by describing a set of abstract rules for cutting off elements,

a method for surface and volume mesh generation was provided.

In other methods, by algebraically combining parametrized boundaries, an interior grid

mesh can be created [Halbert et al., 2017, Thompson et al., 1985]. For volumetric input

data, marching cubes is a method to create a 3D model that traverses voxels in 3D space and

creates appropriate triangles for each of those voxels [Lorensen and Cline, 1987]. In [Hilton

and Illingworth, 1997], unlike marching cubes, the 3D space is not decomposed volumetrically

and a surface mesh is created by placing mesh vertices according to local surface geometry.

In this work, a 3D Delaunay constraint is also used to ensure the creation of a high quality

mesh.

Methods that work on point clouds (e.g. from LiDAR), generally try to segment the
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input point clouds into meaningful regions and then create appropriate 3D content for each

region separately. In [Wang et al., 2008], this segmentation is done using the active contour

algorithm to separate trees from the underlying terrain model. In this work, LiDAR point

clouds are used to create individual tree models. To create these models, the point cloud

is projected into several 2D slices and then, using morphological operations, the boundary

of each tree is found for each slice. Layers are then created by giving a thickness to the

tree boundary in each slice. The final 3D model of a tree is later created by stacking all

of these layers. In [Sun and Salvaggio, 2013], to create 3D building models, a segmentation

is performed using a graph cuts optimization followed by a clustering to group building

points together. The final 3D model for each building is then created by using a 2.5D

dual-contouring approach.

2.3 3D Printing

In this section, we first review a number of 3D printing technologies. We then list a number

of works that focus on using 3D printing.

2.3.1 Technologies

3D printing is considered a rapid prototyping method that enables fast creation of physical

models. There are many different technologies that are used for 3D printing. In the following,

we discuss a number of these technologies.

Stereolithography (SLA)

SLA is a liquid-based method where a photosensitive polymer is solidified using an ultraviolet

laser to manufacture a 3D model layer by layer. This solidification is done using a process

called photopolymerization in which chains of molecules are linked together using light. This

technology requires a rather high amount of maintenance as several parts of the printing

machine need to be replaced regularly, e.g. its material tank and build platform.
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Inkjet 3D Printing

Inkjet 3D printing, also known as binder jetting or 3DP, is a process where a liquid binder is

used to activate a powder such as starch and gypsum plaster. Based on the material used, full

color printing is possible in this technology. Based on the physical model geometry, parts

created using this approach may become brittle and require careful handling. Currently,

there is no desktop version of 3D printers that use this technology, which makes it less

accessible and quite expensive to use.

Fused Deposition Modeling (FDM)

In FDM, a thin filament of plastic is melted and extruded through a nozzle to create layers

of a physical model. Due to the development of cheap FDM printers and cheap materials

this technology is widely accessible. FDM machines do not require a lot of maintenance and

are easy to work with. There is a wide range of materials with different colors and textures

that are available for this technology. A number of these materials are listed in Table 2.1.

Similar to other printing technologies, FDM suffers from a number of problems. In Table 2.2,

we list a number of these problems most related to our system.

2.3.2 Related Works

Many applications have been proposed for 3D prints. For instance, they have been used

to recreate cultural heritage sites [Scopigno et al., 2014], to make 3D puzzles [Xin et al.,

2011, Lo et al., 2009], or produce objects that can stand or spin [Prévost et al., 2013, Bächer

et al., 2014]. In [Djavaherpour et al., 2017], a scale model of the world was created to help

visualize geospatial data sets that span large regions of the globe. Our system considers a

new application for 3D prints (i.e. landscape creation), which, unlike [Djavaherpour et al.,

2017], can show detailed information for much smaller regions, like cities or mountains.

Although 3D prints have many applications in fabrication, they still have some limi-

tations. For instance, much research has been done to strengthen 3D prints by fortifying

13



high-stress parts of the print [Telea and Jalba, 2011, Stava et al., 2012, Zhou et al., 2013].

Since the result of the 3D printing is usually stiff and static, some related work is devoted to

providing elasticity and movement to the final 3D printed object [Panetta et al., 2015, Schu-

macher et al., 2015, Pérez et al., 2015].

Since we wish to use affordable and small 3D printers, we must grapple with two signifi-

cant challenges from 3D printing: limitations on the number of colors and materials as well

as limitations on the size of the printing volume. In the following sections, we review works

in several research areas that address these limitations along with other considerations for

3D printing. One area is focused on designing models that are appropriate for 3D printing

while overcoming material limitations. Reducing material waste is another research area that

aims to reduce use of support material to hold the printed model. The last area focuses on

segmenting 3D models for printing based on different objectives, including the size limitation

of 3D printers.

2.3.3 Design

In order to produce a better looking 3D print, in [Mahdavi-Amiri et al., 2015b] a system was

proposed to segment a model into nearly developable patches that can be used as a guide

for pasting desired materials on top of a 3D print. Some systems have also been designed to

print a texture on an intermediate domain such as water [Zhang et al., 2015, Panozzo et al.,

2015] or plastic [Schüller et al., 2016] and then paste it on the 3D print using a simulation of

the intermediate domain. In [Savage et al., 2014], a technique is provided for routing pipes

inside 3D models to create interactive objects, such as a radio or a haptic feedback rabbit.

For material-aware fabrication, a data-driven approach is presented in [Yang et al., 2015] to

reform shapes based on the fabrication material.
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2.3.4 Material Waste

To avoid wasting material, new methods of packing a segmented 3D object with less unused

space and therefore less need for supporting material have been proposed in [Vanek et al.,

2014b, Yao et al., 2015]. In [Wang et al., 2013], a skin-frame structure is created to reduce

the material usage for the interiors of 3D models. To reduce support material usage for FDM

based 3D printers, an optimization framework is presented in [Vanek et al., 2014a], which

progressively creates a support structure for overhang points, while attempting to minimize

the overall length of this support structure.

2.3.5 Segmentation

To overcome the problem of the size of 3D printers, Chopper was proposed to segment a

3D print into printable pieces that can be later attached to each other using some male and

female pins [Luo et al., 2012]. Other systems include CofiFab [Song et al., 2016], in which

a laser-cut base is constructed by coarsening the mesh. The mesh is then segmented and

attached to the base. As a result, the 3D printing time and material usage are reduced and

larger objects can be printed due to the segmentation of the initial mesh. In this thesis, we

are concerned with segmenting a large surface representing a landscape region and, unlike

Chopper, we do not need to account for arbitrary meshes. As we have different geospatial

features in a landscape region, we can segment each of their corresponding meshes separately,

which results in a more appropriate segmentation. We use a grid segmentation for each of

these features while respecting a cost function that minimizes both the total number of pieces

and the number of small pieces. We also solve the limitations on color by creating separate

extruded layers for different geospatial features.
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Material Description

PLA PLA (Polyactic Acid) is a cheap thermoplastic (i.e. becomes

liquid at certain temperatures) which is made from renewable

materials such as corn starch, tapioca or sugarcane. PLA is

considered a bio-degradable material as it is plant based.

ABS ABS (Acrylonitrile Butadiene Styrene) is a thermoplastic which

is relatively more expensive than PLA. Models created with

ABS are strong and have a little flexibility.

Nylon This material is a PA (Polyamide) thermoplastic which has

good mechanical properties. As it melts at about 250 degrees

Celsius, it requires a 3D printer that can heat its extruder to

this temperature.

T-Glase The chemical name of this material is Polyethylene Terephtha-

late (PETT). This material is able to produce a glass-like solid.

Wood Filament This material is created by mixing wood particles with PLA

along with a polymer that binds them. This material can create

models that have a wood-like surface.

Flexible Filament A flexible filament can create a rubber-like model. However,

this type of material is difficult to work with and requires some

replacement of 3D printer parts to support printing with this

material.

Conductive Filament By mixing graphene with PLA, conductive materials are cre-

ated. This type of material can be used to 3D print simple

electric circuits.

Table 2.1: Materials available for use with FDM technology.
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Limitation Description

Low Accuracy Based on printing settings, the Z axis of printing can have a low

accuracy and will create a stepping effect.

Overhang Parts of the model hanging in the air (i.e. overhangs) require ad-

ditional support structures to hold them while printing. Removing

this support structure completely is a difficult task when using only

one extruder to print both the model and the support structure.

It is also troublesome to remove support material from very small

parts of a model, as it may break those parts.

Warpage As FDM works by heating a plastic, it can result in warping the

extruded material. Using a heated bed or some tape can help reduce

this warpage. However, the larger a part grows horizontally, the

more this warpage increases [Armillotta et al., 2018].

Printing Area FDM, similar to other RP based methods, have 3D printers with

limited printable area.

Limited Material FDM printers have a limited number of materials they can use dur-

ing a single printing session.

Table 2.2: FDM technology limitations.
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Chapter 3

System Overview

As discussed in Chapter 1, the 3D printing of scale models using geospatial data sets is a

challenging task. In order to create this physical model, we developed a modeling system

with several components. In this chapter, we briefly discuss the major parts of our system

and how they help to create a physical model. We give an overview of these parts and how

they work together to solve the challenges faced as part of creating, printing and assembling

physical models of landscapes.

To print a physical model of a geospatial regions, the region of interest on the globe is

taken as input (see Figure 3.1). Our system then retrieves the required geospatial elevation

data and features corresponding to the region based on the user’s needs from a preselected set

of sources, including OpenStreetMap (OSM) and Canadian Digital Surface Model (CDSM).

Some examples of these features include vegetation areas, roads, lakes and buildings. Ele-

vation data is stored as a regular grid of data points, while features are in vector format,

representing a path (e.g. roads) or boundaries (e.g. lakes).

3.1 Mesh Generation

Our system creates an initial 3D mesh that respects the elevation data and the features. This

is done by creating a 2D triangulation that respects the features and then updating each

point of the triangulation with its respective height using the elevation data. This 3D mesh

is then processed into a set of submeshes for each feature. These submeshes are extruded as

layers for 3D printing.
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Figure 3.1: We use several GIS sources to retrieve the required features and elevation data

for the region of interest. A Constrained Delaunay Triangulation is employed to create

an initial 3D model. Using a technique based on winding numbers, feature submeshes are

extracted from this model. These submeshes are used to create extruded layers. Each of

these layers is designed based on the characteristics of its corresponding feature to create

a more realistic model. For extruded layers that do not fit inside the 3D printer, a grid

segmentation method is used to create appropriate smaller pieces. Eventually, printing all

the pieces and assembling them creates the final physical model.

3.2 Segmentation

If a layer does not fit inside the 3D printer, our system applies a segmentation algorithm

to create smaller printable pieces. A non-linear optimization is solved to minimize a cost

function that will prevent creation of very small pieces. A post-processing step will attempt

to further merge smaller pieces in order to create more desirable pieces.
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3.3 Adding Details to Geospatial Features

In the final phase, our system creates a 3D model file after adding extra details to each

piece to assist with feature recognition. To model vegetation features, our system runs a

simulation and applies a displacement map to its mesh. For urban structures that have

delicate features with complex interactions, our system provides a layering mechanism to

overlay additional layers (i.e. stencil layers). Our system also provides different roof designs

for modeling buildings to create more realistic feature layers.

3.4 Assembly

Assembling all of the 3D printed models creates the final physical model of the desired region.

Our system provides offsetting to account for 3D printer inaccuracies and make assembly of

the printed pieces easy. Each step of this process, as illustrated in Figure 3.1, is described

in the following chapters.

3.5 Summary

In this chapter, we gave an overview of the various components of our system. We discussed

how our system generates 3D models from GIS sources and how it handles the size limitation

of 3D printers using segmentation. Furthermore, we described how our system adds details

to geospatial features to better represent them along with how our system helps to speed up

assembling 3D printed parts.
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Chapter 4

Mesh Generation

In this chapter, we discuss the process our system employs for generating the 3D model for

a region of interest using GIS sources. We also discuss how our system creates separate 3D

models for each feature in order to print them with a different material.

3D printing physical models starts with the creation of 3D virtual models. Using a

3D printing software, 3D models are turned into specific commands that a 3D printer can

interpret to fabricate a physical object. Since we do not have 3D models of landscapes for

the whole globe, our system first needs to generate a corresponding 3D model for the desired

region that needs to be printed.

4.1 Triangulation

In order to 3D print an object, a 3D model has to be created based on the GIS data.

Although creating a regular 3D mesh from the elevation data is straightforward, constraining

the model to respect feature data requires more consideration. To create this 3D model, we

first generate a 2D mesh by employing Constrained Delaunay Triangulation (CDT) [Chew,

1987], with the geospatial vector features as constraints (see Figure 3.1). We chose CDT to

preserve the resolution of the geospatial vector features without increasing the resolution of

the mesh globally.

A triangulation of point set P is a Delaunay triangulation if no points of P are inside the

circumcircle of any triangle (see Figure 4.2). An extension of Delaunay triangulation is Con-

strained Delaunay triangulation (CDT), where in addition to points, the input may contain

a set of line segments called constraints, which they become the edges in the triangulation.

As these constraints fix several edges of the triangulation, it may not be possible to achieve
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(a) (b)

(c) (d)

Figure 4.1: For the input features in (a), we can create the CDT in (b). In (c), by restricting

edge lengths, we ensure the resolution of our mesh is more than the resolution of the input

elevation data. As described in Section 4.2.2, the triangles in this mesh are marked according

to their corresponding features (d).
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(a) (b) (c)

Figure 4.2: A triangulation has the Delaunay property if all the circumcircles of the triangles

are empty (a). If there exists a circumcircle that contains other points, the triangulation is

no longer Delaunay (b). In CDT, the points that are not visible from a triangle (i.e. they

are across a constrained edge) are ignored. The triangulation in (c) is a CDT where the

constraint is shown in red. Due to this constraint, the circumcircle does not contain any

visible points, and therefore, the triangle satisfies the Delaunay property.

the Delaunay property in CDT. Therefore, in CDT, the circumcircle of triangles only checks

the points that do not cross a constraint (i.e. they are visible from the points of the triangle)

for the Delaunay property (see Figure 4.2c).

There are several approaches to implementing CDT. We have used an incremental ap-

proach [De Floriani and Puppo, 1992] to create our desired mesh by adding constraints

incrementally. In this approach, every time a point or constraint is inserted in a CDT, the

triangulation is updated accordingly. In this process, we also restrict edge lengths to an

appropriate limit to make sure the resolution of our mesh is not less than the resolution of

our elevation data (see Figure 4.1c). Adding elevation data to this triangulation produces

our initial 3D model as a mesh (Figure 4.3).
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(a) (b) (c)

Figure 4.3: For any number of features (a), we use CDT to create an initial mesh (b). A

region growing algorithm is applied later to determine what feature each face belongs to (c).

4.2 Creating Separate Feature Layers

Our initial 3D elevation mesh can be used to identify the peaks and valleys of the selected

region. However, geospatial features are not necessarily visible in this model. Those features

describe real-world entities, such as roads, buildings or vegetation areas, and are important

for understanding a region of interest. To help in their identification, we can use a separate

and appropriate material with a natural and familiar color (e.g. translucent blue for lakes

Figure 4.4: To allow the display of more information, we create separate layers for each

feature.
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Figure 4.5: An example of extruding feature submeshes vertically. The extrusion is done by

adding two vertical triangles for each boundary edge of a submesh.

or bodies of water) to print the feature region. Alternatively, rather than using a separate

material, we can extrude those regions to make them visible on the mesh. However, this

solution requires a guide to describe each feature and may result in confusion when identifying

features.

In order to use a different material for each feature, we create a set of feature submeshes

and then extrude each of these submeshes to create a set of extruded layers (Figure 4.4). We

extrude the submeshes vertically to avoid overhangs on the edges of printed layers. This will

increase the accuracy of layer edges and helps with fitting them in the final physical model

(see Figure 4.5). A detailed discussion is provided in Chapter 7. These extruded layers can

be later attached by indenting the underlying mesh. We can also add details to each of these

extruded layers based on the properties of the feature associated with that feature layer, as

described in Chapter 6. Eventually, these extruded layers should fit together nicely into the

indented mesh to represent the final model.

4.2.1 Extracting Feature Boundaries

Geospatial features are represented as a set of points, pathways or areas tagged with contex-

tual information to identify their corresponding entities. To create extruded layers for each

feature, our system begins by extracting submeshes for all of our input geospatial features.
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For each of these features, our system obtains a vector of 2D points defining the boundary

of an area that a feature occupies in 2D. In the case of pathway features, as described in

Section 6.1, we transform them into area features by applying a slight offsetting. This is

followed by extracting boundary loops as closed paths from the vector of points, and de-

termining whether each boundary loop is an outer boundary or an inner boundary. We

assign a counter-clockwise direction for outer boundaries and a clockwise direction for inner

boundaries. These directions help us define the inside region of each feature. We input all of

the directed boundary paths for each feature to CDT, and retain this direction information

for each edge that corresponds to a feature boundary in the resulting triangulation.

4.2.2 Feature Interior Marking

To create feature submeshes, it is necessary to know the interior triangles encompassed by

the feature vectors. These feature vectors are a collection of line segments (Figure 4.3b),

and their interior triangles are not readily available; that is, extracting features submeshes

out of these vectors is not a trivial task. Feature submeshes may overlap or contain other

feature submeshes (e.g. buildings inside a vegetation area). In the case of feature submeshes

contained in other feature submeshes, we need to extract the containment hierarchy of the

feature submeshes. This hierarchy is a tree with the root node being the base feature that

contains everything (e.g. ground). In this tree, a feature is a child of another feature only

if it is contained in that feature. This containment hierarchy is beneficial in several ways.

For example, we can exclude roads that are outside a residential region from being printed,

or we can use it to create a stencil layer, as described in Section 6.3, to print all the feature

submeshes contained in a residential area. Hence, a robust method is needed to identify

the feature hierarchies for the feature submeshes. To achieve this, we perform a region

growing algorithm that extracts the containment hierarchy and accounts for overlapping

feature submeshes.

We denote the list of all the triangles in the mesh as M , and the ith feature as fi. The
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feature submesh Mi represents the submesh of M which is inside fi. We say fi is contained

in fj if and only if all of the triangles in Mi are also present in Mj. Based on this definition,

we create a tree T that represents the hierarchy of feature submeshes, where each node of

this tree is a feature boundary, and the feature boundary fi is a child of fj if and only if fi

is contained in fj. For a given triangle t, we let ft denote the smallest feature that contains

t (Figure 4.6a). We can then find the hierarchy of feature containment by traversing all the

ancestors of the node corresponding to ft in T . As an example, the containment hierarchy

for the features shown in Figure 3.1 is illustrated in Figure 4.7.

To determine feature containment and also the smallest feature for every triangle in the

mesh, we use a technique based on winding numbers [Hormann and Agathos, 2001]. The

winding number is one of the methods used to check the inclusion of a point in a polygon.

It shows the total number of counterclockwise turns of a curve around a given point. More

formally, let us use polar coordinates for a closed curve and translate our coordinate system

to set our query point as its origin. Then the curve is defined as:

r = r(t) and θ = θ(t) for 0 ≤ t ≤ 1.

f
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j
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j

(b)

Figure 4.6: In (a), the red feature submesh is inside two other feature submeshes. To

detect this situation, as shown in (b), we cast an infinite ray to determine the hierarchy of

surrounding feature submeshes. Each arrow here shows a crossing for a feature boundary.
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Figure 4.7: An example of hierarchy containment for the features shown in Figure 3.1.
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Figure 4.8: An example curve and winding numbers for several points.

Now, the winding number is defined by:

θ(1)− θ(0)

2π

This number is an integer, as we only consider closed curves (i.e. the starting and ending

points are identical). Using this number we can decide if a point is inside a curve by checking

if this number is greater than zero (see Figure 4.8). We expand this definition of winding

numbers in our algorithm to extract the feature containment hierarchy.

Our algorithm begins by traversing all triangles in M . For each triangle t, we cast an

infinite ray from the center of the triangle. If we cross an edge on the boundary of feature ft,

similar to the winding number method, we determine if the ray is exiting the feature based

on the edge direction. In this case, we check if we have a node for ft in our tree T . If so, we
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return ft as the smallest feature that the triangle t is contained in. If there is no node for

ft, we continue traversing the infinite ray to find all the edges intersected by the ray that

belong to a feature boundary (see Figure 4.6b). For each of these edges, we assign a winding

number wfi , based on the direction of the corresponding vector in the feature boundary

fi. We create a sequence of these winding numbers, starting from the closest crossing. An

example sequence for the feature boundaries in Figure 4.6b can be seen below:

(+1fi ,−1fi ,+1fj ,+1fi).

We reduce this sequence by cancelling each −1 with the next +1 for the same feature

boundary. For instance, the example sequence above reduces to:

(+1fi ,+1fj).

This sequence shows the hierarchy of feature submeshes surrounding this triangle (fi, fj).

We apply this process for all triangles to both create the hierarchy tree T and find the

smallest feature submeshes that contain each triangle. As explained in Section 4.2, these

feature submeshes are used to create extruded layers (Figure 4.3c).

Handling Partial Covering: Geospatial features can naturally overlap (see Figure 4.6b).

In our physical models, only the surface of a region is visible and we need to choose one fea-

ture, out of all the overlapping features, for each triangle to belong to. This is not a trivial

task, as there is no information in our input data about the feature type precedence. To

address this issue, we offer two possibilities. First, we use a priority list defined by the user,

and in case of overlaps these priorities are used to decide which feature submesh should be

chosen. An example is when a river feature overlaps a road feature. In such situations, we

can decide if the road is going over the river, as a bridge, or goes under the river, in the case

of an underground tunnel. In each case, the surface material would be assigned to either the

river feature or the road feature. If the priority is not explicitly defined, we utilize a statis-

tical procedure to determine which feature has top priority by checking the corresponding
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Figure 4.9: The containment hierarchy for our Lauterbrunnen result.

feature boundaries, summing the edge lengths for those edges along the boundary of the

overlap, and choosing the one that has the longest total length. From this, we choose the

dominant feature submesh and ignore small overlapping feature submeshes.

Figure 4.9 illustrates the containment hierarchy created by our system for our Lauter-

brunnen physical model discussed in Chapter 7.

4.3 Summary

In this chapter, we first discussed how our system generates an initial mesh out of input

GIS data. Using CDT, we combined both elevation and vector geospatial features data into

a single mesh. We later described a region growing algorithm to find the hierarchies of

different feature regions. Using this info, we can split the initial mesh into separate feature

submeshes. Each feature submesh can be printed using a different material based on the

characteristics of its corresponding feature submesh. In the next chapter, we discuss what

happens when a feature submesh is larger than the printable volume of the 3D printer.

We present a segmentation algorithm that splits these larger meshes into smaller printable

pieces.
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Chapter 5

Segmentation

After generating each feature submesh, we need to create an extruded layer that can be

printed with a different material. However, if a feature submesh is larger than the printable

volume of our 3D printer, we need to break it into smaller pieces first, and then we can extrude

them to create extruded pieces for printing. We propose a method to create these pieces

such that they fill the printable volume as much as possible (see Figure 3.1). Although our

method is extendable to volumes, in our application, we mainly encounter feature submeshes

that only exceed the 2D plane limitation. Furthermore, in those rare cases that a feature

submesh extends beyond the height limitation, segmentation is trivial and does not require

a sophisticated method. Hence, in our method we ignore the height limitation and project

feature submeshes into the 2D plane for segmentation. In this chapter, we explain our

segmentation method in detail.

5.1 Local Grid Segmentation

The largest printable area takes different shapes and sizes in different 3D printers. These

shapes primarily include squares, rectangles and circles. To simplify the segmentation, for

all of these cases we consider the largest square that fits within the printable area of the 3D

printer to be the maximum size of a printable mesh. We later describe how to employ the

unused areas to optimize the printing process in Section 5.2.

It is natural to reduce the number of segments, similar to the polygon interior covering

(PIC) problem, where the aim is to cover a target polygon with the smallest units of a given

convex polygon. This problem is known to be NP-hard [Culberson and Reckhow, 1994]. In

PIC, the only criterion is the number of convex polygons used for covering. In our case,
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we use squares to cover each feature submesh. Unlike PIC, after covering the whole feature

submesh, we need to evaluate every resulting piece to see how appropriate they are for 3D

printing (Figure 5.1).

To cover each feature submesh, we create a regular grid with each cell having the largest

square size that is printable. By placing each mesh over this grid, we can break it into

smaller pieces that fit inside the 3D printer. Since we use a local grid for each feature

submesh, we can independently translate and rotate the mesh to find different ways to slice

it. We call each translation/rotation pair a configuration in our algorithm. Based on the

specific requirements of 3D printing, we define a cost function to evaluate each configuration

and choose the optimal one (Figure 5.2). In the following section, we discuss how we perform

this task and discuss the cost function.

5.1.1 Cost Function

There are many different metrics to consider when segmenting a feature submesh into a set

of smaller pieces. We are interested in creating pieces that are not too small, as they are

harder to fit into the final printed model and are also more fragile. To prevent creating small

pieces, we define the cost function as,

Figure 5.1: Each piece is a connected component of a feature submesh after segmentation.

We need to evaluate each piece based on how appropriate they are for 3D printing.
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Figure 5.2: For each orientation of a feature submesh on a regular grid, where L is the grid

cell size, we search different possible translations, shown as a 2D vector in the figure. To

speed up this search, each translation axis is uniformly discretized to m values and the space

of orientations is uniformly discretized into d values. We choose the optimal configuration

for breaking the submesh into smaller pieces, shown as red.
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C(r, t) =
∑

i

1

ai
,

where C(r, t) is the cost of using the configuration with rotation r, and translation t and

ai is the area of each piece (Figure 5.1). Note that ai is determined after uniformly scaling

the feature submesh and the grid to make the sides of each grid cell unit length. We

chose the inverse function to compute cost among several alternatives, as it is a simple and

computationally appropriate option.

The upper bound of our cost function is infinity, as there is no limit to how small the

pieces may become. To find the lower bound, we need to solve the following minimization,

min
(r,t)

N∑

i

1

ai
,

where we assume we have N ∈ N pieces. Solving this minimization leads to the answer

ai =
A
N

, if we denote the area of the mesh as A. Therefore, for a fixed number of pieces, we

have,

min
N∑

i

1

ai
= N ×

N

A
=

N2

A
.

The cost function has hyperbolic growth as we decrease the areas of the pieces, and

prevents creating small pieces. Moreover, if we increase N , the minimum cost will increase

quadratically, which illustrates that the cost function also minimizes the number of pieces.

As we know the minimum value for N (with unit length grid cell dimensions) is ⌈A⌉, we can

determine the global minimum:

min
∑

i

1

ai
=

⌈A⌉2

A
.

This lower bound cannot be achieved for all shapes of a mesh. For example, in Figure 5.3a,

the shape of the mesh allows one to create equal area pieces (Figure 5.3b). In Figure 5.3c,

we see an example where creating equal area pieces with the minimum number of pieces is
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(a) (b) (c) (d)

Figure 5.3: The shape in (a), can be repositioned on the grid to create equal area pieces (b).

In (c), there is no way to create 2 equal area pieces with two grid cells, and achieving the

lower bound cost is not possible. If we allow for the creation of more pieces, we can create

3 equal area pieces (d).

not possible. In some cases, it may be possible to create equal area pieces if we first break

the mesh into more pieces (Figure 5.3d). However, in general creating more pieces is not

desirable, and we should consider adding more pieces only if it results in a smaller cost for

the whole mesh.

In order to see under which conditions the cost function will increase the number of

pieces, we can perform an analysis of the cost function. We start by checking when it is

possible to ensure that increasing the current number of pieces would not result in a smaller

cost value. If, for the current configuration, ai ≥
A
r
, where r ≤ 1, and M ≥ N is the new

number of cells, we have,

N∑

i

1

ai
≤

Nr

A
≤

M2

A
⇒

1

r
≥

N

M2
.

Therefore, we can be sure that no better answer will be found by increasing the number

of cells to M if ai ≥
N
M2A. This suggests that, if there is a case in which increasing the

number of pieces can prevent creating a very small piece, the cost function would allow for

an increase in the number of pieces. As we discuss in Section 5.1.2, we attempt to search the
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discretized space of configurations as much as possible, and if a better configuration with

more pieces is found, we would consider that as well.

5.1.2 Finding the Best Configuration

To find the best configuration, we can rotate and translate each feature submesh on a regular

grid with cells whose areas are each the same as the printable area of the 3D printer. The

range of possible translations, as we are searching on a regular square grid, is:

0 ≤ tx, ty < 1, (5.1)

where tx and ty are translations along the x and y axes respectively. For the rotation, thanks

to the symmetry of the square grid cells, we need to only rotate up to 45 degrees:

0 ≤ r ≤
π

4
. (5.2)

All possible combinations of r and t = (tx, ty) define all the possible configurations.

Therefore, our problem is finding minC(r, t) over the aforementioned domain for r and

t. This problem is a non-linear optimization. One way of solving this optimization is using

iterative methods, such as gradient descent. However, this function has several undefined

points where the area of the pieces reaches zero, which makes finding the global minimum

of the function using iterative approaches troublesome. To avoid such problems, we solve

this non-linear optimization by discretizing the ranges of both r and t to ten uniform steps

each and performing a brute-force search. Since the segmentation time of feature submeshes

is quite negligible compared to the 3D printing time, we decide on using this exhaustive

search to avoid any probable local minima. Apart from creating more undesirable pieces, a

local minima can potentially result in more 3D printing sessions. This leads to an increased

overall 3D printing time due to the required preparation time for each session. Furthermore,

the discretization resolution can be changed in our system if a higher accuracy is required.

An example output of our segmentation can be seen in Figure 5.4.
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Figure 5.4: The result of our segmentation method for the features of our Lauterbrunnen

result, discussed in Chapter 7.

5.2 Post Processing

A local grid can help to segment a feature submesh separately from the rest of the feature

submeshes. However, as we limit the segmentation to use a single square grid for the whole

feature submesh, creating a number of very small pieces might be unavoidable, as shown in

Figure 5.5. One way of fixing this issue is to merge some of the resulting pieces locally after

segmentation (Figure 5.6).

We start by creating a connectivity graph from the results of the global grid segmentation.

Each node in this graph represents a piece, and we connect two nodes if the corresponding

pieces are adjacent (Figure 5.7a). In order of highest cost, we traverse the nodes of the graph

and merge all adjacent pieces until the resulting piece completely fills the full printable area

(not the largest fitting square), and then repeat the process for all the remaining nodes in

the graph (see Figure 5.7b). In this greedy approach, as we start with the smallest piece, we
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Figure 5.5: An example shape that, when using a global grid, unavoidably creates small

pieces.

(a) (b)

Figure 5.6: The blue pieces in (a) after post-processing can include neighbor pieces as well,

as in (b).

typically merge the most undesirable pieces first. Based on our cost function, merging these

very small pieces first will have the most reduction in the overall cost of the segmentation.

5.3 Summary

In this chapter, we explained a method to split large feature submeshes to smaller printable

pieces. We first used a local grid to split an input mesh into pieces that fit inside the 3D

printer area. We proposed a cost function for searching different translations and rotations

of the input mesh over this grid. We then analyzed how this cost function prevents creating
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(a)

(b)

Figure 5.7: In (a), a part of a feature submesh and its corresponding connectivity graph is

shown. The size of nodes in the graph is proportional to the cost of their corresponding

pieces. The node with the highest cost is shown in red. In (b), we have applied our post-

processing to merge adjacent pieces. The merged pieces are shown in red. Note that in this

example, we assume the largest printable area of the printer is a rectangle slightly bigger

than the grid cells, which makes this merging possible.
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small pieces while also preferring to reduce the number of segmented pieces. In the last

section, we described a post-processing method to merge some of the unavoidable small

pieces locally after segmentation. In the next chapter, we discuss the different ways our

systems uses to make more recognizable and more realistic pieces.
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Chapter 6

Adding Details to Geospatial Features

For each geospatial feature (e.g. vegetation, pathways and buildings), we create a feature

submesh and extrude it. Without additional information, one way to help users identify a

feature would be to assign a natural material and color. However, changing the material and

color is not sufficient for visualizing certain features, such as vegetation regions. Therefore,

we need to add special characteristics and details to feature submeshes. For each feature,

we add details to its submesh while considering two important goals: a) how real it looks

(at the scale of our physical model), and b) how easy it is to identify. We address these

two goals by using aerial photos of the region that we are printing as a reference to evaluate

whether the resulting feature submeshes look real, and also by using general-purpose maps

to check if the feature types can be identified at least as easily as on those maps.

In this chapter, we discuss adding details for three major feature types in landscape

models, namely pathways, vegetation and urban structures. For each of these features, we

explain our design decisions for adding details that respect the aforementioned goals.

6.1 Pathways

The first type of feature we consider consists of roads, trails, waterways and similar features

that define a pathway on the land (see Figure 6.1). The raw information for this type is

a sequence of points (i.e. feature vector), tagged with a number of contextual properties.

The available contextual properties vary from region to region. For roads, several common

properties are road type, maximum speed, road surface and its name. There is generally

no information about the width of a road, though the width is implied by the type of road.

Rivers generally do not have width properties tagged to them as well. However, in the case
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(a)

(b)

Figure 6.1: Here a number of pathway features are shown. Hiking trails are shown in

gray, waterways are shown in blue and red lines represent streets and highways. In (a), a

region of Vancouver city is shown, and (b) shows a part of New York city (© Mapbox,

© OpenStreetMap).
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of big rivers, there is often additional information that shows the boundary of the riverbank

as a polygon.

To create and print an extruded layer for this feature type, we create a polygon that

resembles a pathway. To do this, we apply an offsetting to the input feature vector to

create its feature submesh. If we use the exact width of a pathway for offsetting, it can

become too thin at the scale of 3D landscape prints. To help make this feature type more

identifiable and create visible pathways when we print, we assign a minimum width to these

features (Figure 6.2). This limit is based on the general precision of 3D printers and also

the visibility for the target scale of our physical model. Furthermore, we adjust the relative

width of different types of pathways based on their type (e.g. a highway road is made wider

than a service road). All of the values for the width of each type can be set inside the input

file for our system. For more infomration see Appendix A. We also use the Visvalingam

and Whyatt curve simplification algorithm [Visvalingam and Whyatt, 1993], to reduce error

and increase the reliability of our offsetting. In this algorithm, a given line is simplified

by iteratively removing points that result in the least amount of change. There are cases

in which pathways have complex interactions, for example in residential areas, that cause

assembly of the individual pathways to be difficult. In these cases, we join all of the offset

pathways into a single feature submesh and attach them to an underlying layer, as described

in Section 6.3, and avoid producing many fragile pathway models.

6.2 Vegetation

The data commonly available for vegetation comes in the form of polygons represented as a

set of points. These polygons describe the boundary of the vegetation region, and may be

tagged with contextual properties such as tree types and the name of the region. However,

these properties are not available for all the regions of the globe.

3D printing vegetation is a challenging task. There are several established methods
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Figure 6.2: We connect offset polylines as a simple and fast approach to create an offset

polygon for pathways.

(a) (b)

Figure 6.3: A comparison of random distribution of trees in (a) with our simulation in (b).

In (a), there are a lot of overlapping trees, which is not a natural behavior of trees as they

compete for access to light.
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(a) Individual tree models. (b) Combined tree models.

Figure 6.4: Combining all the tree models into a single layer is beneficial for 3D printing.

for modeling and simulating virtual 2D and 3D vegetation [Deussen et al., 1998, Palubicki

et al., 2009, Runions et al., 2007, Ketabchi et al., 2015]. However, for our target scale,

printing a huge number of delicate and highly detailed tree models is not possible due to

the printer limitations. Also, the miniature scale is fragile and hard to print and assemble.

One approach to overcome this issue is to use a small number of large trees to symbolically

represent the vegetation area (see Figure 1.1d). With this approach, the final print is more

stable. However, this method drastically simplifies the vegetation region by ignoring the

density and size of the trees. Therefore, there are two challenges to face: a) populating

a vegetation region such that it looks natural, and b) modeling individual trees that are

appropriate for 3D printing, yet similar to the real shape of the tree.

To improve the resemblance between the printed region and the real region, we populate

the vegetation area with tree models, while creating variations in the size, shape and distribu-

tion of trees by using a simulation technique. To find a natural distribution for a vegetation

area, we use an L-system grammar inspired by the work of Lane and Prusinkiewicz [Lane and

Prusinkiewicz, 2002]. The two main production steps are: a) self-thinning, where larger trees

dominate smaller ones and b) senescence, where some of the old trees die and are removed.

The final result of this simulation gives a set of tree positions and sizes (Figure 6.3).

Now, given a natural distribution for the trees, we can create the vegetation area by

placing tree models at each of the distributed tree positions and sizing them based on the

simulation’s result. However, at the scale of our physical models, the vegetation area may
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(a) (b) (c)

Figure 6.5: Adding tree primitives to the extruded layer. (b) and (c) use displacement

mapping to blend the tree primitives in densely populated regions.

cover thousands of trees. For example, our simulation in the Lauterbrunnen region of Switzer-

land produced more than 5000 tree positions. It is not possible to print and assemble all of

these tree models individually. One way to address this challenge is to blend all of the trees

on the extruded layer (Figure 6.4).

Another issue lies in the complex nature of detailed tree models. The real diameter of

a tree in our physical model is too small, and no useful details can be seen at this scale.

For example, at the 1:2000 scale of our Lauterbrunnen model, the diameter of each tree on

average is about 2 millimeters (based on the average crown width of the Scots pine, which

is about 3.8 meters [Sharma et al., 2017]). Therefore, we use simple primitives to represent

individual trees. Each primitive is simple for printing, and at the same time resembles

a real tree seen from far away. One approach to find such primitives is to simplify the

3D model of a tree and compare it with a set of pre-defined primitives to find the best

matching primitive. For example, pine trees can be modeled with cone primitives. These

primitives can be sized according to the simulation results and placed on a base extruded

layer. In regions that are densely populated with trees, these simple primitives can have

many intersections, which are extremely hard to print. For these regions, our system applies

a displacement map [Marschner and Shirley, 2016] to the feature submesh, which blends

the simple primitives with the underlying mesh (Figure 6.5). Each vertex in the feature
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(a)

(b)

(c)

Figure 6.6: In (a), a mesh and a refined version of it are shown. By applying the displacement

map in (c), the refined mesh better shows the individual trees (b).
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submesh is translated by a vector based on this displacement map. As the resolution of

this map is much higher than the feature submesh, our system increases the mesh resolution

before applying it (see Figure 6.6). Finally, to create a vegetation layer in our system, we

have to choose one of the pre-defined primitive types in our system, along with the number

of levels to refine the feature submesh. More information for creating a vegetation layer is

provided in Appendix A.

6.3 Urban Structures

The creation of urban regions faces two main challenges. One challenge lies in creating

appropriate models for buildings. Another is that assembling a large number of buildings

in such areas will be tedius and time consuming. For many regions in the world, available

GIS data lacks detailed information for individual buildings, and the creation of appropriate

models becomes difficult. The automatic or semi-automatic creation of building models from

satellites and photographs is an active research area and the output of these methods can be

used for various applications such as urban planning, virtual tourism and computer gaming.

As we only use 2D GIS sources, we employ a statistical approach to creating building models,

which is described in the following.

6.3.1 Building Models

Based on the scale of a physical model, buildings can be modeled as simple blocks, individual

boxes or as detailed as a house with windows, doors and other features. At our desired scale,

roofs play a tangible role in making building models more realistic. The 2D GIS data

retrieved by our system only provides the outlines of the buildings and no information about

the precise design of each building. We use a statistical distribution approach to randomly

design each building’s roof based on what can be observed from aerial photos of the region

(Figure 6.7). For example, in the photos from Figure 6.7, we may observe that around 90%
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(a) Photo by Tom Key (CC BY-SA 3.0) (b) Photo by Tom Key (CC BY-SA 3.0)

(c)

Figure 6.7: Using aerial photos of a region, we can gather information about how frequently

a roof style is used in a region. Based on the images in (a) and (b), we can conclude about

90% of the roofs are gable style, whereas hip and flat style roofs are equally used in the

remaining 10% of the buildings. In (c), an example residential region is shown, where this

statistical finding is used to design the roof of each building. The gable, hip and flat style

roofs are shown in yellow, blue and red respectively.
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(a) Gable roof. (b) Hip roof. (c) Flat roof.

Figure 6.8: Different types of generated roofs.

Figure 6.9: 3D render of a set of buildings combined into a single extruded layer

of the buildings have gable style roofs, 5% of them are hip style and the rest are flat roofs

(see Figure 6.7c). We then create roofs using these findings and design each roof accordingly

(Figure 6.8). To create gable and hip style roofs we extract straight skeletons.

6.3.2 Stencil Layers

To ease assembly of a large number of buildings, we combine all of the building models

into a single feature submesh, which results in another 3D element (Figure 6.9). The space

between buildings may contain other feature types (e.g. roads and grass fields). To include
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(a) (b) (c)

Figure 6.10: We overlay stencil layers on top of buildings to add missing and otherwise

fragile feature types.

these feature types, our system can generate extra layers to overlay atop the buildings layer

(see Figure 6.10). Some feature types like roads can be very delicate and complex to print and

overlay. In order to better handle these feature types, our system can combine their extruded

layers into a single layer called a stencil layer. As shown in Figure 6.10, these stencil layers

are created by excluding from the feature submesh those areas through which one should be

able to view the underlying extruded layers. In this way, we produce a final result which is

still easy to print and assemble, and is consistent with the real world (Figure 6.10c).

Our system is given a configuration file that describes all the features that should be

displayed using stencil layers atop a parent layer. In the first step, this parent layer is

created by blending a main feature (e.g. buildings) on a base feature layer (e.g. residential

area). This main feature is given extra extrusion before blending to compensate for the area

that stencil layers will cover. Afterward, each stencil layer is created by creating holes in

the base feature layer for the underlying features and blending the corresponding feature

details to the stencil layer. Due to the 3D printer’s lack of precision, these pieces will not fit

together if we print them directly afterwards. Our system applies an offset to the boundary

of each stencil layer to help with the fitting.
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6.4 Summary

In this chapter, we discussed various methods that our system uses to modify feature sub-

meshes in order to make them both more realistic and more recognizable. For pathways, we

have provided an offsetting mechanism to create printable 3D models out of a sequence of

points representing the pathways. For vegetation regions, a simulation is run to distribute

a large number of trees with varying sizes. Using a displacement map, we provide an easy

way to print and assemble massive amounts of trees. Finally, we discussed the creation of

stencil layers as a way of printing different features with complex interactions as in urban

areas. In the next chapter, we discuss our results along with their accuracy.
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Chapter 7

Results and Discussion

The expected output of our system is a physical model that respects the input GIS data. We

have tested our system on two regions: Lake Louise in Alberta, Canada and Lauterbrunnen

valley in Switzerland. In this chapter, we first discuss the accuracy of our results. We then

discuss each of our results in detail.

7.1 Discussion

We checked the accuracy of our physical model by first comparing the 3D model files’ dimen-

sions with their respective input GIS data. The error in the 3D model files was much smaller

than the 3D printer precision, and were the result of rounding-errors in the floating-point

calculations (e.g. intersection and union operations). Our system uses arbitrary-precision

arithmetic to vastly reduce these errors, reducing them to a maximum error of around

10−13m. Practically speaking, the final error for each 3D printed piece is dominated by

imprecisions introduced during 3D printing, which makes the assembly difficult.

One source of imprecisions is the 3D printer and the 3D printing settings used. When

using FDM process, support structures need to be printed to hold the parts of a model that

hang in the air (i.e. overhangs). These parts of the model suffer more inaccuracy due to

both the lack of a solid base in those regions and remnants of support structures on the

model. Another source of error while using FDM is warpage. As measured and analyzed

in [Armillotta et al., 2018], the maximum horizontal dimension of a model can increase this

warpage. Therefore, we may conclude that segmenting larger models into smaller pieces

could also decrease the imprecisions due to warpage.

By employing vertical extrusion, we prevented overhang imprecisions on the boundary
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of our pieces. For our first physical model, the Lake Louise model, we managed to fit most

of the pieces without any post-processing. However, fitting some parts proved to be difficult

and required some sanding. To overcome this issue, after doing several tests, we realized an

offset of 0.4 millimeters for the boundary of each piece would make it possible to fit them

with no difficulties. Assembling our second physical model, confirmed this offsetting solves

the fitting problem.

Based on our experience, the maximum horizontal error for our pieces was about 0.2

millimeters. However, the average vertical error was about 0.5 millimeters, reaching to a

maximum of 1 millimeter. The main reason for this increased error, as discussed above,

is the need to print support structures to hold the model, while another reason would be

warpage of larger pieces. The following sections discuss each of our results in more detail.

7.2 Lake Louise

In our first attempt, we used our algorithm to print the area around Lake Louise. The final

physical model is 80× 66cm2, and consists of 25 pieces for the base model, 23 pieces for the

vegetation area and 3 pieces for the lake. Other feature types required no segmentation. The

whole model contains 61 pieces that were printed over 55 printing sessions (we achieved 10%

reduction in the number of sessions due to packing). A translucent blue was used to print

the lake pieces. We used an appropriate color for each of other feature types, for example a

green material for the vegetation area. To enhance the aesthetics of the base material, which

was printed separately before assembling the model, we applied a textured spray. These

separate layers allow us to perform different kinds of post-processing for each piece without

affecting the other pieces. The final result can be seen in Figure 7.1.
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(a)

(b)

Figure 7.1: The resulting physical model of Lake Louise area. For more images, please refer

to supplementary material.
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(c)

Figure 7.1: The resulting physical model of Lake Louise area. For more images, please refer

to supplementary material.

7.3 Lauterbrunnen

After evaluating the Lake Louise physical model, we realized the available data sets were not

diverse enough, as it mostly contained vegetation areas. Therefore, we decided to test our

algorithm with datasets representing more complex features. Lauterbrunnen valley contains

many different feature types with a very interesting elevation model that makes it one of the

deepest valleys in the Alpine chain, where the mountains rise to more than 700 meters on

either side. We used a scale of 1:2000 for the Lauterbrunnen model, resulting in a dimension
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(a) Pillars. (b) Pillars with surface attached.

Figure 7.2: We use pillars to reduce printing time and material use.

of 96× 57cm2 for this region.

Lauterbrunnen has a very high frequency of large elevation changes (reaching about 38cm

of elevation change in our model), making it wasteful to print the entire base naively. Such

an approach would take about about 20 days and more than 10 Kg of filament for the base

pieces, even when using a very low amount of printing infill (such as 5%). Some parts also

have a height beyond the printable volume of our 3D printer. In an attempt to solve these

issues, we used small pillars to hold the surface of the model (Figure 7.2). The visible part

of the base is created as a thin layer (i.e. 0.5 millimeters thick) and attached to the pillars.

Printing time for these pillars is far more reasonable, and several pillars can be printed in

one printing session.

The total number of separate pieces for this model was about 125 pieces, which were

printed over 88 printing sessions with a total printing duration of 29.5 days (we achieved a

30% reduction in the number of sessions due to packing). About 9% of these sessions failed

due to the following issues:

• Filament getting stuck in 3D printer nozzle.

• Running out of filament in the middle of a printing session.

• Imprecise leveling of 3D printer’s bed leading to weak adhesion of model and
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failing the print later.

• Printing over USB and failure of the connection.

As we faced these issues, we tried to reduce them by keeping a precise record of material

usage, leveling the 3D printer’s bed frequently, and printing directly on the 3D printer using

an SD card.

Of the aforementioned printing duration, approximately 14 days were spent on printing

the base surface layers and pillars, which shaved a week off of the naive approach and

prevented the increased failure rate that accompanies longer printing sessions. Overall, the

final physical model used 10.9 Kg of filaments, costing about 327 CAD. The final physical

model can be seen in Figure 7.3. One issue we discovered after assembling the final model

was a slight vertical misalignment of several adjacent sections (see Figure 7.3b). This is due

to stacking several stencil layers. Small imprecisions in each stencil layer accumulate and

result in some perceivable misalignments. This issue can be easily addressed in our system

by increasing the depth of indentation in the offsetting stage. Figure 7.4 shows a reprint of

a small region in the physical model of Lauterbrunnen valley after adjusting this parameter

in our system.

7.4 Summary

In this Chapter, we discussed the accuracy of our results and the sources of imprecisions.

We also discussed our design decisions for reducing such inaccuracies. We gave a detailed

explanation of our results along with the challenges faced when creating them. In the next

Chapter, we discuss the implementation of our system and a detailed explanation of the

components created.
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(a)

(b)

Figure 7.3: The resulting physical model of Lauterbrunnen valley.
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(c)

(d)

Figure 7.3: The resulting physical model of Lauterbrunnen valley.
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(e)

(f)

Figure 7.3: The resulting physical model of Lauterbrunnen valley.
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Figure 7.4: Using more indentation, our system can account for accumulated imprecision of

stencil layers.
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Chapter 8

Implementation

We implemented our system in C++ using the CGAL [The CGAL Project, 2018] and Boost

libraries [Boost, 2018]. Our system reads an input configuration file and, using the CGAL

library, creates an initial CDT. This initial CDT is then processed using different classes

responsible for segmentation, adding details to features and exporting 3D models, to cre-

ate the final printable 3D model files. To avoid loss of precision, we use fixed-precision

floating-point arithmetic provided by the MPFR library [MPFR, 2018] through the Boost

Multiprecision library. Figure 8.1 shows the class diagram of our system. In our implemen-

tation, the Landscape class is responsible for reading an input configuration file in JSON

format [JSON, 2018]. This file uses a collection of name and value pairs to describe the ex-

tents of the desired region to be printed, the required scale of the physical model, the desired

features and their properties and the 3D printer maximum printable volume. An example

input file can be seen in Listing 8.1. A detailed explanation of this input is explained in

Appendix A.

1 {

2 "name": "lauterbrunnen",

3 "bounds": [7.8954 ,7.9205 , 46.5902 ,46.6003] ,

4 "features": {

5 "meadow": {

6 "type": "polygon",

7 "filter": "[ landuse=meadow]",

8 "thickness": 0.5

9 },

10 "rock": {

11 "type": "polygon",
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12 "filter": "[ natural=bare_rock]",

13 "thickness": 0.5

14 },

15 "forest": {

16 "type": "vegetation",

17 "filter": "[ landuse=forest]",

18 "refine_levels": 2,

19 "thickness": 0.5,

20 "design": "forest",

21 "density": 1,

22 "shape": {

23 "type": "soft_object",

24 "scale": 4,

25 "max_diameter": 0.096 ,

26 "max_height": 1.2

27 }

28 },

29 "building": {

30 "type": "polygon",

31 "design": "building",

32 "filter": "[ building=yes]",

33 "z-index": 1,

34 "attachment": "combined -layer",

35 "order": 1,

36 "parent": "residential",

37 "orphans": "discard",

38 "floor_height": 0.15,

39 "floors": [1,3],

40 "roofs": {

41 "gable": 0.8,

42 "hip": 0.1,

43 "flat": 0.1
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44 },

45 "roof_angles": [30, 45],

46 "thickness": 0.2

47 },

48 "residential": {

49 "type": "polygon",

50 "filter": "[ landuse=residential ]",

51 "fill": {

52 "design": "meadow",

53 "thickness": 0.3,

54 "offset": 0.1

55 },

56 "thickness": 0.5

57 },

58 "roads": {

59 "type": "union",

60 "features": ["highway -secondary","highway -residential ","highway -

service","highway -unclassified "],

61 "z-index": 1,

62 "parent": "residential",

63 "design": "extrusion",

64 "attachment": "combined -layer",

65 "orphans": "discard",

66 "height": 0.1

67 },

68 "highway -secondary": {

69 "type": "offset_path",

70 "filter": "[ highway=secondary]",

71 "offset": 1.5

72 },

73 "highway -residential": {

74 "type": "offset_path",
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75 "filter": "[ highway=residential ]",

76 "offset": 0.8

77 },

78 "highway -service": {

79 "type": "offset_path",

80 "filter": "[ highway=service]",

81 "offset": 0.5

82 },

83 "highway -unclassified": {

84 "type": "offset_path",

85 "filter": "[ highway=unclassified ]",

86 "offset": 0.5

87 },

88 "river": {

89 "type": "polygon",

90 "filter": "[ waterway=riverbank]",

91 "thickness": 0.4,

92 "z-index": 2

93 }

94 },

95 "print": {

96 "scale" : 0.05,

97 "search_steps": [5,5],

98 "printer_size": [18,18],

99 "base_height": 1.2,

100 "layer_offset": 0.04,

101 "region_offset": 0.005 ,

102 "base_layer_thickness": 1,

103 "use_base": true ,

104 "use_elevation": true ,

105 "decompose_base": false

106 }
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107 }

Listing 8.1: An example configuration file for our system.

8.1 Class Roles

In the following sections, we explain the role of each class in our system. Here, we only

discuss the most important classes that have a major role.

8.1.1 Landscape Class

This class is responsible for reading the input configuration file and creating feature sub-

meshes with the help of the Triangulation class. After creating a mesh, this class will also

retrieve elevation data and modify the mesh using it. Other classes can access all feature

meshes through this class. Other information such as the region boundaries is also accessible

in this class. The region information is saved in a class that provides methods to convert

between the real-world sizes and the model sizes.

8.1.2 Triangulation Class

After reading this file, the Landscape class will first create a triangulated mesh using this

class. A Constrained Delaunay Triangulation is used to create an initial mesh for the desired

region. Each input feature is converted into a set of directed segments and added to this trian-

gulation as constraints. Another constraint on this triangulation is the edge lengths, so that

the created mesh will exhibit a high enough resolution for the elevation data. After creating

the initial triangulation, using the mark() method, we apply our region growing algorithm

to find the hierarchy of each feature. This class provides an iterate_constraint_faces()

method to traverse the faces of each feature.
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8.1.3 MeshExporter Class

After creating an instance of the Landscape class, we can create an instance of MeshExporter

to save STL files for every feature that we need. This class has a path to which the created

files will be saved. To export each feature, this class performs two operations: a) extrude the

feature and modify its model with a specific design, and b) if the extruded layer does not fit

inside the 3D printer, apply segmentation to create smaller pieces. The first task is handled

by our FeatureDesigner class, and the second is handled using our Fragmentation class.

This class is also responsible for creating Stencil layers.

8.1.4 FeatureDesigner Class

This class modifies the 3D model for each feature based on its type and properties in the con-

figuration file. The simplest design is created using the create_extrusion() method, which

creates only a simple extrusion with no modification to the surface. The create_building()

and create_forest() methods will modify the surface of a layer to add buildings and vege-

tation features. Creating vegetation is done with the help of a Forest class that is responsible

for running a simulation and creating a displacement map.

8.1.5 Fragmentation Class

For each feature that is larger than the printable area of 3D printer, this class provides

get_best_fragmentation_mesh_list() method to obtain a list of meshes that have the

minimum value of our cost function. Our cost function evaluation is computed in the

rate_configuration() method.

8.2 3D Printing

We used a MakerGear M2 as our 3D printer, with a printable volume of 20cm×25cm×20cm.

Our printer had only one extruder, limiting us to only one material per printing session. For
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Figure 8.1: Class diagram for our system.
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Figure 8.2: Regions shown in red circles show overlapping regions.

slicing and printing, we used Simplify3D with medium quality settings, and for the printing

material we used PLA.

8.3 Technical Challenges

In the following sections, we discuss the technical challenges we faced and how we overcame

them. Some of these problems were the result of input data problems, while others resulted

from their complexity.

8.3.1 Overlaps

In some cases, feature vector data had overlaps for a single feature. An example can be

seen in Figure 8.2. These regions will create unnecessary cuts in our models which become

a problem when offsetting. To merge these regions, we check all the input segments for a
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(a) A side view of a face of an example base mesh. (b) The resulting triangulation.

Figure 8.3: The different indentation of features requires a proper triangulation. A side view

of a face of an example base mesh is shown in (a). The resulting triangulation in our system

is shown in (b). The direction of the z-axis is upward in the images.

feature and check if there are two segments with identical endpoints but with a reversed

direction. By removing both of these segments, we solve this issue.

8.3.2 Base Layer Triangulation

As different features can have different thicknesses, the base feature needs a proper triangu-

lation to create a valid mesh with connected faces. In Figure 8.3a, a side view of an example

base mesh is shown. Each color in this figure shows the corresponding indentation for each

feature. The challenge here is to produce correct triangulation of the side faces, such as

the gray rectangular face shown in Figure 8.3a, to keep the connectivity of this face with

the neighbor faces. To triangulate this face, we find all the intersecting indentations from

neighbor faces. The result will be the red dots in Figure 8.3b, which includes the top two

points of the face as well. After finding these intersections, we sort them based on their z

value for both sides of this face. We start the triangulation by traversing one intersection

point of each side, starting from the highest points. Using these two points and the previous
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two points (set to the topmost points of the face for the first iteration), we come up with a

quadrilateral that can be triangulated by connecting two of the opposite points. When one of

the sides runs out of points to traverse, we can triangulate the remaining points by creating

fan triangles. There is no need for ear clipping, as the remaining face will be quadrilateral,

which is a convex shape. The final result of the example discussed can be seen in Figure 8.3b.

8.3.3 Floating-Point Problems

The most common way to represent a decimal number in a computer is by using a floating

point representation. When performing a lot of mathematical calculations, the imprecision

of these numbers accumulates and can create problems such as catastrophic cancellation.

There are several parts of our system in which these errors can create a problem. Offsetting

curves and meshes and clipping feature vectors are examples of algorithms that can fail if we

use floating point representation. We use the MPFR library, which provides fixed-precision

floating-point arithmetic, in order to solve this. We used 50 bits for the precision of our

variables.

8.4 Summary

In this Chapter, we explained how our system was implemented. We provided an overview of

the classes implemented and how they work together to create the final printable 3D model

files. We also discussed several technical challenges we faced during implementation and how

we devised solutions to them. In the next Chapter, we summarize the thesis and discuss

possible future works.
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Chapter 9

Conclusions and Future Work

We presented a system that can print physical models of landscapes using an affordable 3D

printer, and provided solutions for two main challenges that must be faced when printing with

these printers. The size limitation of 3D printing is addressed by using a grid segmentation

algorithm that is applied locally to each feature submesh. Using separate models for different

feature types and creating stencil layers both provides a way to use any number of materials

and to incorporate complex feature interactions without producing very delicate feature

layers.

Using a square global grid for segmentation makes our method efficient and easy to

implement. However, it may result in some undesirable pieces. We apply a simple post-

processing step that will merge some of these undesirable pieces. Using non-square grids or

more sophisticated post-processing can help to generate more appropriate pieces.

We have provided a method to print vegetation areas using a displacement map. This

method can be extended to create different types of vegetation areas with different types of

trees and more realistic distributions based on density information from GIS sources. These

designs can also be extended to create appropriate textures for other types of features, like

mountains, deserts and water bodies.

By creating stencil layers, we provided a way to print several feature types in a region with

complex interactions. Even though we used very thin underlying base layers for blending

features, the material usage can be further reduced by carefully removing unnecessary unseen

parts of these layers.

As our system is designed for the scale of landscape models, fine details of the features,

such as windows for buildings or power lines, can not be created with our system. Another
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limitation of our work is the cost function we have used does not consider all the aspects

of undesirable pieces and may produce parts with shapes that are not strong enough (e.g. a

narrow region in a piece).

To expand this work, a user study will be helpful to compare the results of our system with

other visualizations and find the important aspects of the visualization that can be improved.

Adding more feature types is a possible future work. Examples include 3D printing trains,

railways, aerial lifts and bridges. By increasing the target scale of our physical models, we

can introduce more details to each of the features, such as buildings and vegetation. In this

case, more care should be given to overhangs. We can also expand the stencil layers to create

more complex features such as flowers in a botanical garden. For example, by combining

one green layer as stems with a red layer as flowers, it is possible to create a garden full

of flowers. To enable dynamic visualization through a physical model, another interesting

future work could focus on introducing internal pipes to route electricity to different parts of

the physical model. For example in [Savage et al., 2014], an animated neon sign is created by

adding internal pipes to a 3D print. Adding such functionality can help to visualize changing

information, such as weather and traffic information. Integrating 3D modeling tools into our

system could also prove beneficial, as it enables the modification of features based on the

specific needs of each physical model.
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Appendix A

User Manual

To operate our system, a configuration file is needed as input. This file is created in JSON

format, and should have at least the following keys:

Key Value Example

name A string representing the region that

is processed

lauterbrunnen

bounds The boundary of the region, shown as

an array of [min longitude, max longi-

tude, min latitude, max latitude]

[7.8954,7.9205, 46.5902,46.6003]

Table A.1: Minimum required keys for configuration file.

A.1 Basic Feature Configuration

To add features, a "features" key should be added with an object as its value. The keys

to this object are identifiers for each feature, and their respective values list that feature’s

specific properties. In the following example we have added a feature called "meadow":

1 "features": {

2 "meadow": {

3 "type": "polygon",

4 "filter": "[ landuse=meadow]",

5 "thickness": 0.5,

6 "z-index": 1

7 }
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8 }

Every feature has a "type" property which explains how the input GIS data should be

processed. Here you can see a list of possible types:

Type Description

polygon The input should be used as it is, e.g. a polygon or multipolygon

offset_path The system should treat the input as a path and offset it using offset

property

union This feature is created by merging the output of other features

Table A.2: Types of Features

Another property which is shared among the features is "thickness" which sets how

much the final layer for this feature should be extruded in centimeters. For handling partial

coverings, a "z-index" key can be set. In case of such conflicts, a region will be resolved to

a feature with a higher "z-index".

A.2 Querying Features

To query a specific feature for an identifier, we use the "filter" property. The syntax

for the value of this property is derived from filter definitions for Overpass QL, which is a

language to query Overpass API from OpenStreetMap. Here in Table A.3, we list the basic

queries that are common. For a more detailed listing of what is possible, please refer to

OpenStreetMap documents.

A.3 3D Print Configurations

There are two types of configurations for 3D printing; one is for the 3D printers, and the

other is general 3D model generation configurations. Detailed information can be found in
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Filter Description

[name="featurename "] Finds feature by name, e.g. featurename="Lake Louise"

[landuse=meadow] Finds meadows in the selected region

[landuse=forest] Searches for forest features

[landuse=residential] Finds residential regions

[building=yes] Finds all the buildings

[highway] Finds all the highways.

[highway=type ] Finds all the highways of a specific type. Examples of type:

secondary, residential, service and unclassified.

[waterway=riverbank] Finds rivers specified by their riverbank.

[natural=bare_rock] Finds rocks and cliffs.

Table A.3: Common Filters

Table A.4.

A.4 Buildings

To create buildings, we set an array that describes the minimum and maximum number of

floors of buildings, the height of each floor, and a probability object that specifies how often

different types of roofs occur in this region. We also set an array of roof angles to randomly

assign to buildings. Detailed information on these properties is listed in Table A.5.

A.5 Vegetation

For vegetation, we set the "type" key to "vegetation". Creating vegetation requires a high

resolution mesh, as we need to apply a displacement map to it. To specify how many times

we need to refine the mesh for this feature, we can set the "refine_levels" key to any
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Key Description

scale The ratio of the model sizes in centimeters to real world sizes

in meters.

search_steps The resolution of local grid segmentation as an array of

[steps_x, steps_y], e.g. [5, 5].

printer_size The maximum printable dimensions of the printer in 2D in

centimeters as [max_x, max_y], e.g. [20, 20].

base_height How much extra height should be added to the base mesh in

centimeters.

layer_offset How much offset should be applied to extruded layers in cen-

timeters.

region_offset How much offset should be applied to input GIS data to pre-

vent overlaps, in centimeters in model scale.

decompose_base A boolean to set if we should decompose base parts to layers

and surfaces for further post-processing, e.g. creating pillars.

base_layer_thickness If decomposing the base, specifies how thick the base layers

should be in centimeters.

use_base A boolean to set if we should separate base models. If set

to false, features layers are extruded more, so they can stand

alone.

use_elevation A debug boolean to enable/disable elevation data retrieval.

Table A.4: 3D Printing Configurations

number. A good number that does not require a lot of memory is 2. A detailed description

of these properties is listed in Table A.6.
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Key Value

design Set to "building" to enable building creation for this feature.

floors The minimum and maximum number of floors as an array, e.g. [1, 3].

floor_height The height of each floor in centimeters.

roof_angles An array listing all the possible roof angles in degrees, e.g. [15, 30, 45].

roofs An object describing ratio of roof styles, with keys showing roof style and

their value their probability. For example, {"gable": 0.8, "hip":

0.1, "flat": 0.1}.

Table A.5: Building Creation Configurations

Key Value

type Set to "vegetation" to enable vegetation creation for this feature.

refine_levels Number of times to refine mesh faces.

density How dense this feature should be. Setting to 1 will fully populate the

region.

shape An object describing the shape of each tree. To set the function for

creating the tree, use "type" key. Currently, only the "soft_object"

function is supported in the configuration file. Other functions need to

be added programmatically. Other keys include "scale" to scale the

function output, "max_diameter" to set the maximum diameter of each

tree and "max_height" to set the maximum height for trees.

Table A.6: Creating Vegetation
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A.6 Union

If we want to combine a set of different features into a single feature, we can use "union"

type. This type helps one design each feature separately, but merge the resulting features

into a single mesh in the end. An example usage is creating roads with different thickness

based on their real width and then combining them. To set the features we want to union

we set the "features" key to an array of feature identifiers. The features listed in a union

type will be discarded themselves and will not create 3D models. See the full example for

roads in the following listing:

1 "roads": {

2 "type": "union",

3 "features": ["highway -secondary","highway -residential ","highway -

service","highway -unclassified "],

4 "thickness": 0.1

5 },

6 "highway -secondary": {

7 "type": "offset_path",

8 "filter": "[ highway=secondary]",

9 "offset": 1.5

10 },

11 "highway -residential": {

12 "type": "offset_path",

13 "filter": "[ highway=residential ]",

14 "offset": 0.8

15 },

16 "highway -service": {

17 "type": "offset_path",

18 "filter": "[ highway=service]",

19 "offset": 0.5

20 },

21 "highway -unclassified": {
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22 "type": "offset_path",

23 "filter": "[ highway=unclassified ]",

24 "offset": 0.5

25 }

A.7 Stencil Layers

To create stencil layers, we should set a base layer. For example, we can set a residential

region as this base layer. To add stencil layers, a "parent" key can be added to a feature

with a value of the base layer feature identifier. When setting a parent, there are two ways to

attach them to the base layer. We can combine them by creating stencil layers, or just blend

them with the surface of the base layer, similar to vegetation layers. To account for these two

cases, the "attachment" key should be set to one of "combined-layer" or "fixed-to-top".

To create stencil layers, we use the "combined-layer" value.

To set the height of each stencil layer, the "height" key can be set, which is similar to

the thickness of layers. If the sum of the height of the stencil layers does not completely

fill the base layer thickness, a special key can be used to fill the remaining space with a

different design. The "fill" key with an object value can add this function. The current

implementation does not completely handle different fill designs. However, this object can

have a specific "design" key with a value to supported feature designs. Currently, a simple

extrusion will be used for all values of this object.

If a stencil layer has some regions outside the base layer region, there are two ways to

handle them. We can create the outside regions as normal extruded layers, or we may discard

all those features. The normal behavior is to include all the features. If we want to discard

such regions, we can add an "orphans" key with a "discard" value. This key is useful when

dealing with features that are not appropriate for printing individually, such as buildings

that individually will take a lot of time to attach.
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We can change the order of stencil layers by using the "order" key with a number value.

Stencil layers with a smaller order value will be created first and larger values will be created

on top of them.
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