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Abstract 1	

Spatial heterogeneity in ecological systems can result from animal-driven top-down processes, 2	

but despite some theoretical attention, the emergence of spatial heterogeneity from feedbacks 3	

caused by animals is not well understood empirically. Interactions between predators and prey 4	

influence animal movement and associated nutrient transport and release, generating spatial 5	

heterogeneity that cascades throughout ecological systems. In this review, we synthesize the 6	

existing literature to evaluate the mechanisms by which terrestrial predators can generate spatial 7	

heterogeneity in biogeochemical processes through consumptive and non-consumptive effects. 8	

Overall, we propose that predators increase heterogeneity in ecosystems whenever predation is 9	

intense and spatially variable, whereas predator-prey interactions homogenize ecosystems 10	

whenever predation is weak or diffuse in space. This leads to several testable hypotheses: (1) that 11	

predation and carcass deposition at high-predation risk sites stimulate positive feedbacks 12	

between predation risk and nutrient availability; (2) that prey generate nutrient hotspots when 13	

they concentrate activity in safe habitats, but instead generate nutrient subsidies when they 14	

migrate daily between safe and risky habitats; (3) that herbivore body size mediates risk effects, 15	

such that megaherbivores are more likely to homogenize ecosystems; and 4) that predator loss in 16	

general will tend to homogenize ecosystems. Testing these hypotheses will advance our 17	

understanding of whether predators amplify landscape heterogeneity in ecological systems. 18	

 19	
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Introduction 22	

 Ecosystems are complex and spatially heterogeneous, and spatial heterogeneity can have 23	

decided consequences for ecosystem functioning (Chapin et al. 2011, Hunter and Price 1992, 24	

Turner and Chapin 2005). The degree of heterogeneity at the landscape scale can influence 25	

community dynamics (Hastings 1977, Turner and Gardner 2015), species coexistence (Davies et 26	

al. 2021), and resilience to environmental change (van Nes and Scheffer 2005). Much effort, 27	

especially, has been devoted to characterizing how landscape-scale spatial heterogeneity impacts 28	

wildlife population persistence and community dynamics (Hutchings et al. 2000), with the goal 29	

of understanding how habitat should be protected to best support species of conservation concern 30	

(Lovett et al. 2005). However, far less work has explored how wildlife community dynamics 31	

may impact spatial heterogeneity, and hence the potential for wildlife conservation to become a 32	

key tool for preserving ecosystem functioning and resilience (Sinclair and Byrom 2006, Schmitz 33	

et al. 2010, Bakker et al. 2016). 34	

Variation in geomorphology, hydrology, microclimate, and microbial communities 35	

creates spatial heterogeneity in biogeochemistry from the bottom up, explaining variation in 36	

vegetation and animal communities within and among ecosystems (Turner and Chapin 2005, 37	

Chapin et al. 2011). However, animals can also have profound effects on ecosystems, reinforcing 38	

or countervailing bottom-up forces and potentially shaping spatial variation in biogeochemistry 39	

and vegetation from the top down (Pastor 2005). Animals roam widely across landscapes, all the 40	

while consuming and redistributing nutrients via egestion, excretion, and carcass deposition 41	

(Bauer and Hoye 2014, Schmitz et al. 2018, Subalusky and Post 2018, McInturf et al. 2019, 42	

Pausas and Bond 2020). Animal movement of nutrients can in turn result in knock-on feedbacks 43	

that either amplify or erode underlying spatial heterogeneity caused by geophysical setting, 44	
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hydrological regimes, or microbial processes (Pastor 2005, Chapin et al. 2011, Leroux and 45	

Loreau 2015). Predators in particular can have strong cascading effects on ecosystems through 46	

their consumptive and non-consumptive effects on herbivore prey, which can control the quality 47	

and fate of nutrients in ecosystems (Schmitz et al. 2010). Nevertheless, characterization of 48	

landscape-scale biogeochemical and vegetation patterning is still largely framed by our 49	

understanding of bottom-up controls. Recent examples (le Roux et al. 2018, 2020, Edwards and 50	

Konar 2020, Mackay et al. 2021) show why bottom-up conceptual frameworks alone are 51	

insufficient to explain landscape spatial patterning. 52	

Here we argue for a conceptual re-orientation to motivate new empirical analyses of top-53	

down controls over landscape heterogeneity. We begin with a synthetic review of the way 54	

predator-herbivore interactions cascade to shape spatial patterning in the distribution of nutrients 55	

in terrestrial ecosystems. We identify key traits of predators and prey that shape their impacts on 56	

landscape heterogeneity. We then use these insights to generate testable predictions of how 57	

changes in predator and herbivore populations and their movement should impact 58	

biogeochemical patterning at landscape scales. 59	

 60	

Predator impacts on ecosystem heterogeneity: review and mechanisms 61	

 Several key mechanisms by which predators can influence biogeochemical processes and 62	

vegetation have previously been identified (Schmitz et al. 2010). These mechanisms involve both 63	

consumption by predators (which determines prey carcass distribution) and non-consumptive 64	

effects of predators (which influence herbivore foraging patterns and effects on nutrient cycling). 65	

In this section, we extend this foundation to explore how consumptive and non-consumptive 66	

predator effects explicitly influence spatial processes and patterning. 67	
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  68	

Consumptive predator effects: carcass distribution 69	

 Animal carcass deposition is a natural consequence of a consumptive predator-prey 70	

interaction. Carcass decomposition, in turn, plays an important role in nutrient cycling by 71	

creating biogeochemical hotspots with higher soil nutrients, plant quality, and plant diversity 72	

than the surrounding landscape (Towne 2000, Danell et al. 2002, Moore et al. 2004, Carter et al. 73	

2007, Parmenter and MacMahon 2009, Barton et al. 2013a, Keenan et al. 2018). Of course, all 74	

animals die, and carcasses are therefore continually deposited regardless of predator activity. But 75	

predators influence rates of prey mortality and where prey die on the landscape, thereby 76	

determining the quantity and spatial distribution of decomposing carcasses in ecosystems (Bump 77	

et al. 2009a). Predation can thus increase small-scale heterogeneity by concentrating nutrients 78	

and physical disturbance at kill sites, altering local biogeochemistry and community composition 79	

of plants and soil organisms (Holtgrieve et al. 2009, Barton et al. 2013a, 2013b, Risch et al. 80	

2020).  81	

 While carcasses themselves are temporary, their effects may linger in landscapes for 82	

years, maintaining variation in soil conditions and plant diversity at decomposition sites (Bump 83	

et al. 2009b, Macdonald et al. 2014, Barton et al. 2016). When predation concentrates these 84	

carrion inputs in areas with high predator activity and hunting success, this process may 85	

redistribute and concentrate nutrients in patches within predator home ranges (Macek et al. 2009, 86	

Schmitz et al. 2010), e.g., at predator den and nest sites, where carnivores transport small 87	

carcasses for storage or to feed their young (Fedriani et al. 2015, Gharajehdaghipour et al. 2016). 88	

At arctic fox dens, carcasses increased plant productivity to such an extent that den sites were 89	

identifiable via remote sensing (Gharajehdaghipour et al. 2016). Predator bodies, urine, and feces 90	
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also contribute to nutrient cycling, and these can also be concentrated at key sites within predator 91	

home ranges.  92	

 The extent to which predators determine the spatial effects of carcasses depends on how 93	

other drivers of mortality distribute carcasses throughout the landscape. Some non-predation 94	

mortality events may also be clustered and have large, pulsed effects on ecosystems; for 95	

example, mass drownings of migrating wildebeest substantially alter nutrient budgets of the 96	

Mara River in Kenya (Subalusky et al. 2017). Nevertheless, predation often differs in spatial 97	

distribution from other causes of death. On Isle Royale, Michigan, wolf-killed moose carcasses 98	

were spatially clustered in areas distinct from starvation-killed carcasses (Bump et al. 2009a), 99	

increasing soil nutrients, microbial activity, and foliar nitrogen in areas of high wolf hunting 100	

success, with knock-on effects on seedling recruitment (Bump et al. 2009b). Furthermore, 101	

predators facilitate the transport of nutrients across ecosystem boundaries and generate nutrient 102	

subsidies by moving carcasses between habitats (Schmitz et al. 2010, Subalusky and Post 2018). 103	

These nutrient subsidies could contribute further to spatial heterogeneity in recipient ecosystems. 104	

For example, bears create biogeochemical hotspots with increased nitrogen by catching salmon 105	

in streams and littering their remains in surrounding forests (Helfield and Naiman 2006, 106	

Holtgrieve et al. 2009). These predator-driven nutrient subsidies cascade to influence plant 107	

diversity and quality along salmon-filled streams (Hilderbrand et al. 1999, Helfield and Naiman 108	

2001, Hocking and Reynolds 2011, 2012).  109	

 110	

Non-consumptive predator effects: the spatial distribution of herbivory 111	

 Trophic interactions in heterogeneous landscapes lie at the center of the concept of the 112	

‘landscape of fear’, in which spatial variation in perceived predation risk drives prey behavior 113	
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and habitat use as prey trade-off foraging needs against avoiding predation (Brown et al. 1999, 114	

Laundré et al. 2001, 2010, Gaynor et al. 2019). When non-consumptive predator effects play out 115	

in a heterogeneous landscape of fear, they can further influence spatial patterns of herbivory 116	

(Ripple and Beschta 2004, Acebes et al. 2013, Ford et al. 2014, Donadio and Buskirk 2016, 117	

Atkins et al. 2019). Predators induce behaviorally-mediated trophic cascades when prey alter 118	

their habitat selection and behavior in response to predation risk, shifting the intensity and spatial 119	

distribution of herbivory (Abrams 1984, Schmitz et al. 1997, 2004, Creel and Christianson 120	

2008). Variation in habitat structure coupled with predator and prey behavior creates a gradient 121	

of predation risk across the landscape (e.g. areas with denser tree cover may provide refuge 122	

[Fortin et al. 2005], or alternately may increase risk by reducing visibility for prey [Riginos 123	

2015]; rocky outcroppings with brush provide greater cover for ambush predators [Donadio & 124	

Buskirk 2016]). In such landscapes of fear, herbivorous prey may attempt to remain in ‘safe’ 125	

areas or may reduce feeding rates in risky areas as they increase vigilance (Sih 1980, Brown et 126	

al. 1999, Hernández and Laundré 2005, Laundré et al. 2010). Regardless, predation risk should 127	

reinforce heterogeneity as prey navigate risk by reducing grazing and browsing pressure in risky 128	

habitats and increasing herbivory in safe habitats.  129	

 These non-consumptive effects of predators have not been documented in all predator-130	

prey systems, nor are they the only determinants of herbivory patterns in ecosystems (Middleton 131	

et al. 2013b, Kohl et al. 2018, Cusack et al. 2019, Say-Sallaz et al. 2019). The role of risk effects 132	

in determining herbivory patterns – and thus shaping landscape heterogeneity – are context-133	

dependent (Schmitz et al. 2004, 2017b), varying with resource availability and predator and prey 134	

functional traits. Yet when risk effects do drive herbivory, they can be profound. For example, in 135	

African savannas, grazing lawns – or patches of heavily grazed, nutrient-rich, fast-growing 136	
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grasses – are maintained by herbivores that concentrate in areas with high visibility as a 137	

collective antipredator strategy (McNaughton 1983, McNaughton et al. 1989, Young et al. 1995, 138	

Sinclair et al. 2003, Cromsigt and Olff 2008, le Roux et al. 2020). Concentrated grazing helps 139	

generate heterogeneity in these grasslands, as high herbivory in safe habitats selects for highly 140	

productive grasses and increases rates of nutrient cycling (McNaughton 1979; McNaughton et al. 141	

1997). Similarly, in the central Andes vicuñas grazed less and were more vigilant in wet meadow 142	

and canyon habitats where puma predation was more frequent (Donadio and Buskirk 2016). 143	

Consequently, herbivory was significantly higher in “safe” habitats (dry, sparsely vegetated 144	

grasslands with high visibility), thereby reducing standing green biomass to 15% of that in 145	

fenced plots that excluded vicuñas. In this arid ecosystem, vicuña behavioral responses to 146	

predation risk reinforce extant heterogeneity on the landscape by reducing grass biomass in 147	

unproductive sites and relieving herbivory pressure in productive ones. Similar patterns were 148	

observed in guanacos avoiding predation during the breeding season at lower elevations (Acebes 149	

et al. 2013). 150	

 When the distribution of high-quality forage shifts over time, as in highly seasonal 151	

environments or along elevational gradients, herbivores may migrate to follow green-up and 152	

access new growth – a phenomenon known as “green-wave surfing” (Fryxell et al. 1988, van der 153	

Graaf et al. 2006, Bischof et al. 2012, Merkle et al. 2016). This phenomenon is driven by 154	

spatiotemporal heterogeneity of high-quality resources (Fryxell et al. 1988). Predators may 155	

intervene and reinforce this heterogeneity at landscape scales by impeding migratory behavior 156	

and confining migration, and herbivory, to safe corridors (Middleton et al. 2013a). For example, 157	

reindeer were constrained from following the flush of peak forage during green-up in areas with 158	

high bear densities (Rivrud et al. 2018). Consequently, reindeer herbivory was intensified in 159	
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lower-quality habitats, exacerbating differences in plant composition and nutrient content 160	

between high risk, high productivity and low risk, low productivity habitats.  161	

  162	

Non-consumptive predator effects: herbivore-mediated nutrient cycling 163	

 Herbivores mediate nutrient cycling when they alter plant nutrient content through 164	

selective foraging (Pastor et al. 1993, Augustine and Frank 2001, Wardle et al. 2002, Bai et al. 165	

2012), process and transport nutrients through egestion and excretion (Day and Detling 1990, 166	

Seagle 2003, Abbas et al. 2012, Barthelemy et al. 2017), and physically disturb plants and the 167	

soil (Huntly and Inouye 1988, Fleming et al. 2013, Veldhuis et al. 2014, Pellegrini et al. 2016). 168	

When predators regulate prey foraging behavior and movement, they in turn can have strong, 169	

landscape-scale effects on spatial patterning due to herbivore-mediated nutrient cycling. 170	

 Any predator avoidance behavior that concentrates herbivory in safe locations can in turn 171	

create heterogeneity in biogeochemical cycling. Intensive foraging in safe habitats can generate 172	

biogeochemical hotspots wherever herbivore egestion and excretion increases plant-available 173	

nutrients by hastening rates of nutrient cycling – so-called fast cycling (McNaughton et al. 1989, 174	

Bardgett and Wardle 2003). Grazing lawns and glades in savannas provide classic examples. In 175	

these savanna hotspots, intensive localized herbivory is driven by both top-down (predator 176	

avoidance) and bottom-up (high-quality forage) controls (Anderson et al. 2010). However, these 177	

nutrient hotspots seem to be maintained, and in some cases formed, by fertilization from 178	

herbivore egestion and excretion coupled with selection for fast-growing plants with high 179	

nutrient concentrations under high grazing pressure (McNaughton 1985, McNaughton et al. 180	

1997, Winnie et al. 2008, Anderson et al. 2008). Additionally, hotspots are formed by human 181	

predator avoidance (safeguarding of livestock in paddocks known as kraals and bomas), and 182	
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wild herbivores often maintain these legacy hotspots, further increasing plant and soil 183	

heterogeneity in savannas (Augustine 2003, Augustine et al. 2003, van der Waal et al. 2011). In 184	

contrast, foraging under high predation risk may alter herbivore and plant stoichiometry as 185	

physiologically stressed prey select for carbohydrate-rich over nitrogen-rich plants, slowing 186	

decomposition and nutrient cycling (Hawlena and Schmitz 2010, Hawlena et al. 2012). 187	

 Predation risk does not just restrict prey to safe sites with high rates of herbivore-188	

mediated nutrient cycling. Predators also influence prey movement throughout the landscape, 189	

shaping the pattern of nutrient transport as herbivores consume resources in one area and excrete 190	

and egest them elsewhere. For example, anti-predatory daily migrations (Lima and Dill 1990) 191	

may drive the redistribution of nutrients between risky and safe sites. In wooded savannahs, 192	

zebras forage in nutritious open grasslands near watering holes during the day, when lions are 193	

largely inactive, but retreat away from watering holes when lions are more active and predation 194	

risk is high (Valeix et al. 2009, Courbin et al. 2018). Similarly, elk in the Greater Yellowstone 195	

Ecosystem appear to use high-risk, forage-rich areas when wolves are resting, but avoid these 196	

areas during the morning and evening hours when the crepuscular predators tend to hunt (Kohl et 197	

al. 2018). The same pattern was observed in vicuñas avoiding puma predation at essential 198	

foraging sites in the central Andes (Smith et al. 2019b). As yet, little research has traced the 199	

importance of nutrient transport between habitats as large mammalian herbivores track risk and 200	

forage quality across the landscape (but see le Roux et al. 2018). However, diel migrations made 201	

by other herbivores have been shown to have substantial effects, e.g. geese driving large nutrient 202	

outfluxes from fertile feeding grounds (Kitchell et al. 1999). Thus, predation risk may be an 203	

important factor driving nutrient subsidies between high and low productivity habitats.  204	

 205	



	 11	

Toward conceptual integration of predator-prey dynamics and spatial biogeochemistry 206	

 Given known predator effects on biogeochemical cycling (Hawlena et al. 2012, 207	

Strickland et al. 2013, Leroux and Schmitz 2015, Schmitz et al. 2017a), it seems clear that both 208	

predation and perceived predation risk can drive spatial patterns of nutrient transport and 209	

accumulation. Yet despite this logical link between predator effects and nutrient distributions 210	

(Abrams 2000, Schmitz et al. 2010), the varied roles of predators as top-down drivers of 211	

landscape heterogeneity remain largely unexplored (Anderson et al. 2008). Synthesis of the 212	

evidence for predator control of nutrient distribution suggests a broad generalization about how 213	

predators structure ecosystems: direct predation and predator non-consumptive effects tend to 214	

increase patchiness and landscape-level heterogeneity in ecosystems by directing and 215	

concentrating the flow of nutrients processed by herbivorous prey. Of course, there are 216	

exceptions, and these offer opportunities to test mechanistic predictions and develop a more 217	

nuanced, context-dependent theory of the role of predators in spatial biogeochemistry. Several 218	

key principles emerge from our examination of the literature. Rigorous empirical testing of the 219	

hypotheses drawn from these principles should allow for improved prediction of predator 220	

impacts in diverse landscapes and changing environments.  221	

 222	

Risk-resource feedback loops 223	

 We repeatedly found studies that showed that sites with high predation were often 224	

characterized by high resource availability and forage quality (Schmidt and Kuijper 2015, 225	

Donadio and Buskirk 2016, Courbin et al. 2018, Kohl et al. 2018, Atkins et al. 2019). We 226	

hypothesize that where there is strong spatial variation in risk—as in the case of sit-and-wait 227	

predators whose hunting success is facilitated by habitat structure and cover—a positive 228	
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feedback between productivity, predation, and decomposition amplifies spatial heterogeneity in 229	

both predation risk and nutrient availability (Figure 1). Herbivores are often drawn to sites with 230	

abundant or nutrient-rich forage (Hopcraft et al. 2010). Where herbivores reliably forage, 231	

predators may also congregate, creating sites with high risk and high reward for herbivores. 232	

Where predation is concentrated at high-risk sites, carcass decomposition will likely generate a 233	

cluster of nutrient hotspots (Bump et al. 2009a). These nutrient hotspots may increase both the 234	

abundance and quality of plants in risky areas (Danell et al. 2002, Moore et al. 2004, Carter et al. 235	

2007, Bump et al. 2009b, Barton et al. 2016). As a result, prey in great need of nutritious, 236	

abundant forage may be further drawn to these habitats despite high predation risk (Abrams 237	

1992, Sih 2005, Gharajehdaghipour and Roth 2018, Smith et al. 2019a, Smith et al. 2021). 238	

Meanwhile, healthy prey may avoid such sites, allowing plant biomass to accumulate despite its 239	

high palatability. This elevated biomass could provide increased visual cover for predators, 240	

further increasing predation risk and completing the positive feedback loop (Hopcraft et al. 2010, 241	

Figure 1). 242	

 The extent to which prey avoid or are drawn to these nutrient-rich, high-risk sites likely 243	

depends upon a) prey body condition and b) the availability of resources on the landscape 244	

(McNamara and Houston 1990, Sinclair and Arcese 1995, Montgomery et al. 2014, Riginos 245	

2015, Schmidt and Kuijper 2015, Oates et al. 2019). Optimal foraging theory and the predation-246	

sensitive foraging hypothesis would suggest that body condition determines the threshold at 247	

which prey deprioritize predator avoidance in favor of resource acquisition (Sinclair and Arcese 248	

1995). When prey are healthy and able to access sufficient forage in refuge habitats, they will 249	

avoid risky areas. Via this mechanism, predation risk could increase landscape heterogeneity by 250	

concentrating plant consumption in safe areas with lower plant biomass and quality – thus 251	
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reinforcing differences between safe and risky sites. However, some level of herbivore activity at 252	

risky sites will be maintained by bold individuals or those in greater need of high-quality 253	

resources during periods of deprivation – enabling continued predator success and carcass 254	

decomposition in nutrient-rich, high-risk habitats (Sinclair and Arcese 1995, Hopcraft et al. 255	

2005, Hay et al. 2008, Riginos 2015, Bonnot et al. 2018).  256	

 Additionally, prey forage in high-risk, high-reward sites more often if risky habitat 257	

contains essential resources that cannot be found elsewhere on the landscape. Thus, the positive 258	

feedback linking risk to resource quality should be strongest in nutrient- or water-limited 259	

conditions, when these essential resources are both rare and spatially concentrated (e.g., during 260	

drought). Under such conditions, prey are more likely to ignore predation risk continually or 261	

periodically to forage for resources, and enough prey activity at high-quality, risky sites will 262	

continue to fuel the positive biogeochemical feedback. This tradeoff can be observed at savanna 263	

watering holes, where lion predation succeeds due to high vegetative cover and consistent prey 264	

presence when ungulates are confined to areas with water during the dry season (Hopcraft et al. 265	

2005). Risk was also disregarded in favor of abundant forage during times of extreme drought in 266	

savannas, whereas herbivores avoided these low-visibility settings with high grass biomass when 267	

rainfall was plentiful (Riginos 2015). Similarly, elevated plant growth and nutritional quality at 268	

arctic fox dens attract lemming prey in the nutrient-limited arctic tundra (Gharajehdaghipour and 269	

Roth 2018), and vicuñas migrate daily between lush, high-risk wet meadows and arid plains 270	

refuge habitat in the alpine deserts of central Argentina (Smith et al. 2019b).  271	

 Prey may mitigate risk by engaging in vigilance, grouping, or avoidance of risky habitats 272	

at the times of day when predators are most active (Valeix et al. 2009, Makin et al. 2018, Smith 273	

et al. 2019b). However, in resource-limited ecosystems where prey must eventually spend time 274	
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in high-risk, high-reward areas, predation rates at risky sites should be high enough to maintain 275	

the positive biogeochemical feedback loop. Indeed, we contend that this correlation between 276	

predation risk, nutrient availability, and forage availability is necessary for ambush predation to 277	

remain a viable strategy. For ambush predators to utilize easily avoidable areas with high cover 278	

and maintain relatively predictable sites of high predation risk, the draw of these sites must at 279	

least occasionally outweigh the risk for prey – thus, risky habitats should logically contain 280	

resources in greater abundance or of greater quality than the surrounding landscape (Sih 1980, 281	

2005, Luttbeg et al. 2020). Accordingly, we predict that the landscape of fear – or strong spatial 282	

patterning in non-consumptive predator effects – and its associated biogeochemical legacy 283	

should be most apparent in aridlands and other ecosystems with overall low primary 284	

productivity. In ecosystems where resources are more abundant or productivity is higher, risk 285	

may be more uniform across the landscape – either because actively hunting predators dominate, 286	

or because ample structure (such as trees in a forest) exists to support ambush predation – thus 287	

rendering the correlation between risk and nutrient availability weaker.  288	

 289	

Predator hunting mode and prey behavioral traits 290	

 The nature of predator effects on herbivore-mediated nutrient cycling and transport 291	

depends upon both predator and prey behavioral traits. Predator hunting mode (i.e., active 292	

hunting vs. ambush predation) mediates the spatial response of prey to predation risk (Schmitz 293	

2008, Thaker et al. 2011, Vanak et al. 2013, Gervasi et al. 2013, Miller et al. 2014, Makin et al. 294	

2018, Owen-Smith 2019). We expect stronger spatial heterogeneity due to predation in systems 295	

dominated by ambush predators (predators who hide and rapidly attack prey in opportune areas, 296	

e.g. pumas, rather than actively chasing them down, e.g., wolves), as an ambush hunting mode 297	
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more firmly establishes the predictable spatial patterns of risk that define the ‘landscape of fear’ 298	

(Brown et al. 1999, Schmitz 2008, Laundré et al. 2010, Kauffman et al. 2010, Creel 2018, 299	

Gaynor et al. 2019). Stronger site-specific fear effects should elicit greater spatial variation in 300	

prey habitat use and behavior, amplifying the effects of predators on landscape heterogeneity. 301	

Developing better methods to quantify the strength of predator non-consumptive effects will be a 302	

key step in testing this hypothesis and testing the effects of predation risk on spatial 303	

biogeochemistry in the landscape of fear (Moll et al. 2017, Peers et al. 2018, Wirsing et al. 304	

2021).  305	

 Additionally, herbivore antipredator strategies likely play an important role in nutrient 306	

redistribution. Prey species employ a wide variety of antipredator behaviors. Nevertheless, 307	

predator avoidance traits can be roughly aggregated into two main categories: habitat shifts and 308	

time budget shifts (Schmitz et al. 2017b). When a prey animal’s habitat domain (or the spatial 309	

area an individual occupies relevant to predator-prey interactions; Schmitz et al. 2004) ranges 310	

beyond the spatial extent of its predator’s habitat domain, individuals can shift habitat use and 311	

concentrate their activity in refuge habitats (Figure 2). In such cases, habitat shifts may lead to 312	

the creation and maintenance of nutrient hotspots as herbivores forage, excrete, and egest in 313	

spatially constrained “safe” habitats (Figure 2).  314	

 However, herbivore diet can also moderate the effectiveness of habitat shifts in 315	

maintaining nutrient hotspots in refuge habitats. Grazing lawns in savannas are maintained when 316	

high levels of herbivory and herbivore-mediated nutrient cycling select for fast-growing, 317	

nutrient-rich grasses (McNaughton 1979, 1985). These lawns are in turn kept short by these high 318	

levels of herbivory, maintaining visibility and openness and thus protecting herbivores from the 319	

predators who hunt best under some degree of cover (Riginos and Grace 2008). However, in 320	
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savannas, this same openness can also reduce grass competition with tree seedlings, allowing 321	

trees to encroach into formerly grassy areas (Riginos 2009). Accordingly, herbivory by grazers 322	

can generate nutrient hotspots in refuge habitats, but continued grazing can also act as a negative 323	

feedback that converts refuge sites to high-risk sites by allowing tree encroachment. Conversely, 324	

if browsers are also present to consume seedlings at the edges of grazing lawns, nutrient hotspots 325	

in refuge habitats can be maintained by herbivores over longer time periods (Staver and Bond 326	

2014). Thus, the distribution of refuge habitats and safe habitats does not always remain static, 327	

but can continually shift when different forms of herbivory modulate plant community dynamics, 328	

with herbivores engineering their own refuges but also inadvertently generating the habitat 329	

structure that leads to their demise. 330	

 When predators successfully hunt throughout a prey animal’s home range, prey cannot 331	

easily seek out refuge habitats. In this case, predation may instead induce time budget shifts as  332	

prey reduce foraging time due to increased vigilance or alter daily activity patterns to minimize 333	

encounter risk (Figure 2). This antipredator strategy should have little influence on the spatial 334	

distribution of nutrients, particularly if time budget shifts are uniform across the prey habitat 335	

domain. In reality, however, herbivore antipredator strategies often comprise a mixture of habitat 336	

shifts and time budget shifts. Prey may spend more time being vigilant in risky locations than in 337	

safe habitats (Blanchard et al. 2018), and may structure their daily habitat use to forage in risky 338	

locations at safer times when predators are less active (Dröge et al. 2017, Courbin et al. 2018, 339	

Kohl et al. 2018, Smith et al. 2019b). If this combined antipredator strategy increases herbivore 340	

movement between risky habitats and safe habitats, predation risk could drive an herbivore-341	

mediated nutrient subsidy along a gradient of high to low risk (Figure 2). This mixed habitat-342	
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time budget shift strategy and potential associated subsidy are particularly likely if risky sites are 343	

of higher forage quality or contain essential limited resources, as discussed above.  344	

 345	

Herbivore body size 346	

 Predation risk decreases with increasing herbivore body size (Sinclair et al. 2003, 347	

Hopcraft et al. 2012, Owen-Smith 2019), and so prey body size may mediate the potential for 348	

spatial cascades from predation. We predict that medium-sized herbivores should be most likely 349	

to increase spatial heterogeneity as they evade predators, because they are large enough to 350	

transport and concentrate high nutrient loads over large distances, but susceptible enough to 351	

predators that predation may change their space use. In contrast, megafauna are more free to 352	

move and may instead homogenize landscapes (Sinclair et al. 2003, Riginos and Grace 2008, 353	

Hopcraft et al. 2012, Riginos 2015, Bakker et al. 2016, le Roux et al. 2018) as their impacts are 354	

widely distributed. For example, buffalo, which are less susceptible to predation than smaller 355	

herbivores (Hopcraft et al. 2010), were able to range widely to find and graze down nutrient-rich 356	

grass in refugia during times of drought in African savannas – taking advantage of and 357	

effectively homogenizing an otherwise patchy landscape (Abraham et al. 2019, Staver et al. 358	

2019). 359	

 Because of this variation in vulnerability to predation, the presence of multiple herbivore 360	

species of varying body size could dampen the effects of predators on nutrient distributions 361	

(Owen-Smith 2015, Atkins et al. 2019, Owen-Smith 2019). This is exemplified by the diverse 362	

prey and predators found in African savannas. As discussed above, smaller mammalian 363	

herbivores in savannas tend to concentrate herbivory pressure, excretion, and egestion in open 364	

areas with high visibility, often generating nutrient-rich hotspots in their attempts to maintain 365	
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safety from predators. Megaherbivores may similarly create and maintain these patches; in fact, 366	

white rhinos were more effective than mesoherbivores at maintaining grazing lawns in mesic 367	

regions of South Africa (Waldram et al. 2008). However, le Roux et al. (2018) found that 368	

megaherbivores (elephants, white rhinos, and giraffe) counteracted mesoherbivore effects on 369	

nutrient distributions by feeding in open glades but defecating uniformly across the landscape, 370	

transporting nutrients against the nutrient gradient.  371	

 Thus, predators may exert stronger effects on landscape heterogeneity in ecosystems 372	

dominated by mesoherbivores and lacking megafauna. Examples of such ecosystems are 373	

plentiful – in fact, megaherbivores are increasingly restricted to sub-Saharan African and 374	

southeast Asian fragments within their historical ranges (Owen-Smith 1988). However, prior to 375	

the Pleistocene megafauna extinctions, megaherbivores roamed every continent, and we are only 376	

beginning to understand what a world dominated by megafauna might have looked like (Owen-377	

Smith 1988, Gill et al. 2009, Doughty et al. 2013, Bakker et al. 2016, Doughty et al. 2016b). 378	

Because megaherbivores tend to distribute nutrients more uniformly across the landscape, 379	

ecosystems may have been more spatially homogenous when megafauna were dominant (Wolf et 380	

al. 2013, Bakker et al. 2016, Doughty et al. 2016a, le Roux et al. 2018). Thus, we hypothesize 381	

that megaherbivore extinctions triggered what we term “heterogeneity cascades”, allowing top-382	

down predator control of nutrient cycling and transport to play a greater role in the configuration 383	

of modern landscape heterogeneity (Figure 3). Understanding and predicting such heterogeneity 384	

cascades, if they exist, is more than a thought exercise: large carnivore populations are in global 385	

decline, and the extirpation or functional extinction of top predators is an imminent reality in 386	

many ecosystems (Estes et al. 2011, Ripple et al. 2014). If these declines persist, we predict a 387	

fundamental change in landscape biogeochemical patterning, trending towards the 388	
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homogenization of the ecosystems where these predators were once present (Figure 3). Without 389	

the spatial restrictions imposed by predation and risk, mesoherbivores may consume and 390	

transport resources more uniformly. Indeed, such restructuring of landscapes via herbivory after 391	

predator extirpation has been observed in Gorongosa National Park, Mozambique, where 392	

mesoherbivores grazed down plants in formerly risky habitats, restricting their herbivory and 393	

movement on the landscape only when predator cues were experimentally reintroduced to 394	

simulate risk (Atkins et al. 2019). As evidence of altered prey behavior in predator-free 395	

landscapes mounts (Bonnot et al. 2016, Leempoel et al. 2019, Cunningham et al. 2019), such 396	

homogenization may become more apparent, and understanding the ecosystem-wide impacts of 397	

predators on landscapes an ever more urgent necessity. 398	

 399	

Moving Forward 400	

 The landscape of fear is a useful framework for understanding predator non-consumptive 401	

effects across space, and the concept can be extended to predator effects on biogeochemical 402	

processes. Of course, not all herbivore species will exhibit spatial responses to predators; for 403	

example, as detailed above, body size modulates herbivore sensitivity to predation risk (Figure 404	

3). The context-dependency of herbivore effects on ecosystems – and, similarly, of cascading 405	

predator effects – has been emphasized in many studies (e.g. Anderson et al. 2008; Bai et al. 406	

2012; Young et al. 2015; Haswell et al. 2017; Goheen et al. 2018; Forbes et al. 2019). Further 407	

progress will depend on making sense of this context-dependency based on predator and 408	

herbivore functional traits and on ecosystem characteristics. As a starting point, we offer a 409	

simple synthetic hypothesis (Figure 4): in systems with strong predator-prey trophic links and 410	

high spatial variation in predator effects, predators should be heterogenizing forces in 411	
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ecosystems, whereas where trophic links are weaker and predator effects are not restricted in 412	

space, predator-prey interactions should be neutral or homogenizing forces on landscapes. 413	

 Our synthetic hypothesis can be broken down into components for testing. First, we 414	

hypothesize that where there is strong spatial variation in predation, biogeochemical hotspots at 415	

carcasses will fuel a positive feedback between nutrient availability and predation risk (Figure 1). 416	

Evaluations will need to test spatially explicit hypotheses by directly linking ecosystem 417	

measurements with animal movement data (Ellis-Soto, Ferraro et al. 2021). Specifically, the 418	

hypothesis could be tested by comparing soil and plant nutrient data at carcasses (sensu Bump et 419	

al. 2009a; Keenan et al. 2018) vs. at non-carcass sites. These biogeochemical data can be 420	

compared with spatially explicit measures of risk (sensu Kauffman et al. 2007, Smith et al. 421	

2019a, b) to test for spatial correlation between risk, carcass hotspots, and nutrient-rich patches 422	

across the landscape.  423	

 Second, we hypothesized that, when prey employ a combination of habitat and time 424	

budget shifts as part of their antipredator strategy, this cyclic movement between high- and low-425	

quality sites will drive nutrient subsidies from risky to safe habitats (Figure 2). Stable isotopes or 426	

environmental DNA offer an opportunity to test this by evaluating whether nutrients in prey 427	

feces deposited in safe habitats originated in risky areas, thereby representing a nutrient subsidy. 428	

Where there is variation in risk, or where some herbivore populations exhibit cyclic migrations 429	

and others do not, animal movements and patterns of egestion and excretion can be compared 430	

across a gradient of risk to determine the full impacts of predator avoidance strategies on nutrient 431	

transport.  432	

Finally, we hypothesized that megaherbivores potentially homogenize landscapes by 433	

evenly distributing nutrients over large distances (le Roux et al. 2018), whereas predators should 434	
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increase heterogeneity in systems dominated by susceptible mesoherbivores. Thus, in systems 435	

dominated by mesoherbivores, the loss of apex predators should initiate heterogeneity cascades, 436	

homogenizing landscapes as mesoherbivores are released from the spatial restrictions imposed 437	

by predator avoidance (Figure 3). Large-scale exclosure experiments, such as the KLEE, 438	

GLADE, and UHURU exclosure projects in Laikipia, Kenya (Goheen et al. 2018) or the dingo 439	

fence in New South Wales, Australia (Morris and Letnic 2017), provide the ideal settings in 440	

which to test such a hypothesis.  441	

 The fields of animal movement ecology and biogeochemistry are both experiencing a 442	

methodological renaissance. Portable, affordable technology facilitating rapid data collection has 443	

proliferated, allowing for large-scale GPS tagging of animals of all sizes (Kays et al. 2015, 444	

Wilmers et al. 2016) and quick, in-field assessment of biogeochemical conditions (e.g. Kane et 445	

al. 2019). Furthermore, remote sensing techniques are becoming ever more sophisticated, 446	

enabling real-time tracking of animal movement (Wilmers et al. 2016, Harvey et al. 2016, 447	

Steenweg et al. 2017) and hyperspectral analysis of plant and soil properties (Asner and Vitousek 448	

2005, Wang et al. 2009). These new tools can and should be combined to conduct research on 449	

the relationship between animal movement and biogeochemical cycling (Ellis-Soto, Ferraro et al. 450	

2021). By combining experimental studies with large-scale, landscape-level observations, 451	

researchers should be able to uncover how interactions between predators and prey can play a 452	

role in shaping the spatial heterogeneity of the ecosystems they inhabit. 453	

 454	

Conclusion 455	

 Ecologists have long recognized the importance of bottom-up factors, such as 456	

geophysical variation and climate, in determining the biogeochemical and vegetational diversity 457	
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of earth’s ecosystems. However, the top-down effects of biotic interactions also have profound 458	

impacts on ecosystems, and consideration of these factors can improve our understanding of the 459	

generation and maintenance of landscape heterogeneity and diversity (Pausas and Bond 2019). 460	

Indeed, recognizing the ways in which organisms alter and construct their environments can help 461	

explain variation that cannot be attributed to climatic and other abiotic differences (e.g., the 462	

coexistence of savanna and forest ecosystems within the same climatic zone [Staver et al. 2009, 463	

2011; Staver & Bond 2014; Pausas & Bond 2019]). The evidence presented here enhances the 464	

call for new empirical analysis of animal-driven, spatially explicit biogeochemistry, aka 465	

zoogeochemistry (Pastor 2005, Turner and Chapin 2005, Schmitz et al. 2018). This call is not 466	

just academic, but will also deepen our understanding of the conservation value of predator and 467	

large herbivore species beyond their charisma. Predators may have pivotal roles in regulating 468	

ecosystem functioning and merit attention even when conservation strategies are geared towards 469	

a whole-ecosystem perspective (Sinclair and Byrom 2006, Schmitz et al. 2010). 470	
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Figure 1. Theorized positive feedback loop between predation risk and nutrient availability 854	

in the biogeochemical landscape of fear. Where there is strong spatial variation in predation 855	

risk on the landscape, high carcass density in risky habitats where predation success is high may 856	

generate nutrient hotspots as carcasses decompose. In turn, nutrient accumulation after 857	

decomposition could stimulate plant growth and quality, resulting in abundant, nutrient-rich 858	

vegetation in risky habitats. Finally, this increased plant quantity and quality simultaneously 859	

provides cover for ambush predators and forage for herbivores, increasing the probability of 860	

predator-prey interactions and reinforcing the risky nature of these sites. The dashed line 861	

indicates an indirect positive feedback between predation risk and vegetation abundance, 862	

mediated by herbivory. While the attraction of herbivores to nutrient-rich forage at nutrient 863	

hotspots could potentially initiate a negative feedback if herbivores graze or browse down 864	

vegetation (thus denuding risky sites and rendering them less advantageous hiding spots for 865	

predators), if the perceived risk of predation is sufficiently high, herbivores with access to other 866	

resources may avoid even these high-quality sites or may remain highly vigilant, reducing their 867	

foraging rates. If the former, nutrient hotspots may act as an attractant only in times of scarcity or 868	

for undernourished individuals. In either case, herbivory remains lower than the quantity and 869	

quality of forage would predict, but high enough to sustain a prey base for the predator 870	

population at risky sites.  871	
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Figure 2. A framework for the spatial biogeochemical consequences of antipredator 874	

behavior. When prey habitat domain, or the spatial extent of the area used for foraging, extends 875	

beyond that of its predator, antipredator behavior often takes the form of a habitat shift away 876	

from risky areas to safer areas with low predator activity (Schmitz et al. 2004, 2017). This 877	

habitat shift can concentrate foraging and nutrient recycling in safe habitats, generating and 878	

maintaining nutrient hotspots, as in grazing lawns in African savannas. When prey habitat 879	

domain largely overlaps with that of its predator, providing few spatial refugia from risk, 880	

antipredator behaviors generally take the form of time budget shifts (e.g. altered diel activity 881	

patterns) or other non-spatial behaviors such as increased vigilance. These behaviors largely do 882	

not alter the spatial distribution of nutrients or their rates of cycling on the landscape. However, 883	

antipredator strategies often combine these different behavioral approaches. When prey are 884	

obligated to enter their predator’s habitat domain because it contains some essential resource 885	

(such as high-quality forage or water), they may mitigate risk through a combined habitat and 886	

time budget shift, traveling between safe and risky habitats while attempting to track periods of 887	

low predator activity. This combined habitat and time budget shift can drive nutrient subsidies as 888	

prey consume high-quality forage in risky habitats and egest and excrete nutrients in safe habitats 889	

as they move across the landscape to avoid predators. 890	
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Figure 3. Shifting body size structure in animal communities generates heterogeneity 893	

cascades in ecosystems. In a world dominated by highly mobile megafauna with low 894	

vulnerability to predation (A), these megaherbivores may have homogenized ecosystems by 895	

consuming, processing, transporting, and depositing nutrients evenly across their large home 896	

ranges (Doughty et al. 2016). In the wake of the Pleistocene extinctions and more modern 897	

suppression of remaining megaherbivore species by humans, even the most faunally diverse 898	

ecosystems are largely dominated by mesoherbivores – mammalian herbivores large enough to 899	

range widely and consume large quantities of forage, but small enough to be highly susceptible 900	

to predation by large carnivores. In these contemporary mesoherbivore ecosystems (B), predators 901	

reinforce and steepen underling abiotic gradients in resource availability by discouraging 902	

herbivory in more nutrient-rich sites with high risk, while occasionally also driving the 903	

generation of isolated, productive patches in safe habitats via the creation of grazing lawns and 904	

sites with high levels of herbivore-mediated nutrient cycling. In some of these ecosystems, 905	

megaherbivores can still transport nutrients across the risk gradient and act as homogenizing 906	

forces (see le Roux et al. 2018); nevertheless, the non-consumptive effects of predators on 907	

herbivore behavior also reinforces heterogeneity in predator-dominated ecosystems. However, as 908	

predators are extirpated from diverse landscapes due to human persecution and habitat 909	

fragmentation (C), mesoherbivores will be released from predation risk and may abandon their 910	

traditional antipredator behaviors, foraging more uniformly on the landscape and homogenizing 911	

ecosystems as their megaherbivore predecessors once did. 912	
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Figure 4. A simple framework for predicting contexts in which predator-prey interactions 915	

should act as heterogenizing vs. neutral or homogenizing forces. The synthesized research 916	

and novel hypotheses presented in this paper can be summarized into the following broad 917	

predictions: predator-prey interactions should increase landscape heterogeneity in ecosystems 918	

where trophic links are strong and there is high spatial variation in predator consumptive and 919	

non-consumptive effects. Strong predator-prey trophic links often occur in simple systems where 920	

there is one apex predator specialized on just one or a few large herbivore species. High spatial 921	

variation in predator consumptive and non-consumptive effects is most likely in systems 922	

dominated by ambush predators, who hide and rapidly attack prey in opportune habitats with 923	

sufficient cover – maintaining predictable sites with higher perceived risk on the landscape, 924	

where kills are often clustered. In contrast, predator-prey interactions should decrease landscape 925	

heterogeneity in ecosystems where trophic links are weak (e.g. diverse systems with multiple 926	

predators and prey, or systems with large herbivores who are less susceptible to predation) or 927	

where there is low spatial variation in top-down predator effects (e.g. systems dominated by 928	

actively hunting predators who track prey across the landscape, or when prey mitigate risk by 929	

altering their daily activity patterns rather than their space use). 930	
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