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Abstract: The rock mass along the Jinsha River is relatively broken under complex geological action.
Many ancient landslides were distributed along the Jinsha River in Gongjue County, which is very
dangerous under the action of gravity, tectonic stress and river erosion. Efficient and accurate
identification and monitoring of landslides is important for disaster monitoring and early warning.
Interferometric synthetic aperture radar (InSAR) technology has been proved to be an effective
technology for landslide hazard identification and mapping. However, great uncertainty inevitably
exists due to the single deformation observation method, resulting in wrong judgment during the
process of landslide detection. Therefore, to address the uncertainties arising from single observations,
a cross-comparison method is put forward using SBAS-InSAR (small baseline subset InSAR) and PS-
InSAR (permanent scatterers InSAR) technology. Comparative analysis of the spatial complementarity
of interference points and temporal deformation refined the deformation characteristics and verified
the reliability of the InSAR results, aiding in the comprehensive identification and further mapping
of landslides. Landslides along the Jinsha River in Gongjue County were studied in this paper.
Firstly, 14 landslides with a total area of 20 km2 were identified by using two time-series InSAR
methods. Then, the deformation characteristics of these landslides were validated by UAV (unmanned
aerial vehicle) images, multiresource remote sensing data and field investigation. Further, the
precipitation data were introduced to analyze the temporal deformation characteristics of two large
landslides. Lastly, the influence of fault activity on landslide formation is further discussed. Our
results demonstrate that the cross-comparison of the time-series InSAR method can effectively verify
the accuracy of landslide identification.

Keywords: time-series deformation; InSAR; landslide detection; remote sensing; rainfall

1. Introduction

Owing to complex topography, intense river erosion and geological conditions in
the Jinsha River basin, landslide geological hazards occur frequently. In history, many
large disaster events have occurred on the upper Jinsha River, resulting in landslides and
flooding disasters, such as the landslide-dammed Temi Lake (about 1.8 ka BP) and the
ancient landslide Xuelongnang Lake (about 2.1 ka BP) [1–3]. In late 2018 (11 October and
3 November 2018), the Baige landslides occurred successively in Boro Town, Tibet, China,
which caused upstream inundation and downstream flooding. Additionally, the flood
formed after the Baige landslides revived ancient landslides downstream and accelerated
the destruction process of the landslides. Identification and monitoring of these landslides
is of great importance for the safety of downstream residents and major projects. Therefore,
there is an urgent need to carry out effective landslide identification and deformation
monitoring for disaster risk assessment and prevention [4]. As an economical and effective
monitoring method, InSAR technology has been widely used in landslide identification
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and deformation monitoring [5–9], and it is also of great significance for landslide-inducing
factors, failure-time prediction and risk assessment [10–14].

The installation of field monitoring stations is difficult due to the steep terrain and
underdeveloped traffic along the Jinsha River. In contrast, InSAR technology is more
popular because it can obtain large-scale deformation information based on SAR satellite
data [2]. At present, with the accumulation of free Sentinel-1 SAR data, time-series moni-
toring technology of landslides is further developed [15–18]. In particular, SBAS-InSAR
and PS-InSAR, based on different principles, are the mainstream time-series deformation
monitoring methods [19]. PS-InSAR uses highly coherent scattered points in cell resolution;
in contrast, SBAS aims at exploiting the coherence of spatial distribution in short baselines.
However, active landslides can be identified effectively only by obtaining accurate defor-
mation information [20]. Without verification of ground monitoring sites, the accuracy and
reliability of singular InSAR deformation monitoring are affected to a certain extent, and
the possibility of erroneous judgment in landslide identification increases.

InSAR technology has been used to study ancient landslides in this area. Liu [9]
calculated a long-term deformation field in the Gongjue area using multiplatform SAR
images. The three-dimensional deformation field of active landslides was inverted, and
inducing factors were preliminarily analyzed. Yao [10] focused on an active landslide in
Gongjue County and studied the displacement characteristics in the most recent five years
through multitemporal remote sensing technology and dynamic failure-trend simulation.
In this area, there are many studies on landslide deformation characteristics based on
InSAR technology, but there are few comparative analyses among InSAR methods. In
terms of comparative analysis of time-series InSAR methods, the cross-comparison be-
tween SBAS and PS-InSAR shows that high accuracy deformation satisfies the monitoring
requirements and has great potential [21]. Biswas [22] cross-compared PS-InSAR and SBAS
methods using mean LOS velocity and time-series in Las Vegas, Nevada, USA, and InSAR
measurements showed similar patterns. Xu [23] evaluated the applicability of PS-InSAR
and SBAS methods for monitoring the Great Wall, demonstrating the potential of these
methods for the health diagnosis of heritage sites. Bui [24] evaluated the relationship
between groundwater depletion and surface subsidence using PS-InSAR and SBAS-InSAR
methods. Moghaddam [25] applied two InSAR methodologies above coal-seam gas (CSG)
mining sites. In general, the comparative analysis of two time-series InSAR methods is
effective to verify deformation information. However, this method lacks quantitative com-
parative analysis and external data verification in the landslide application, which is also a
deficiency of the current study on the quantitative deformation characteristics of landslides
in the study area.

Incorrect deformation results can lead to incorrect identification of the landslide [14],
and reliable deformation information is important for landslide disaster mapping. Us-
ing different InSAR methods for landslide identification and cross-validation can play
an important role in reducing false positives in landslide identification and disaster
mapping [9,26]. Therefore, this paper uses free Sentinel-1 SAR data as data sources and
considers ancient landslides in Gongjue County as the research focus; the main content of
this study was to propose a cross-complementary InSAR method to identify landslides.
External DEM data and multitemporal remote sensing data help verify the accuracy of
displacement information.

The following research is carried out in this paper: (1) time-series displacement moni-
toring in Gongjue County based on SBAS and PS-InSAR, (2) verification of landslide defor-
mation characteristics through UAV and field investigation, and (3) landslide mechanism
research. Based on two time-series InSAR methods, external UAV and field investigation,
an accurate deformation field of the landslide was obtained. Then, the relationship between
landslide movement and rainfall condition was analyzed based on the time-series displace-
ment and rainfall data. Moreover, the influence of Quaternary tectonic activity on landslide
formation is discussed. Our research will benefit landslide deformation characteristics
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and deformation mechanism research, thereby providing relevant references for the InSAR
reliability verification.

2. Study Area and Datasets
2.1. Study Area

The study area is located in Gongjue County, on the southeastern margin of the
Tibetan Plateau along the Jinsha River (Figure 1a). Maximum elevation difference in this
region is 2800 m, with an average elevation of about 3950 m. The NS Jinsha River flows
through this region and converges with the Yangtze River [27]. This region belongs to a
subtropical climate with annual precipitation of 500–800 mm, which has uneven distribution
throughout the year. The monthly precipitation peaks in the summer months when the
average rainfall is about 100 mm. The study area is characterized by strong erosion by the
Jinsha River and concentrated rainfall, which is very likely to trigger landslides in the rainy
season [10].
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Geologically, the study area mainly exposes Paleo-Mesoproterozoic strata (Figure 1b).
The lithology is dominated by mica-quartzose schist and gneiss. The NNW Jinsha River
fault trends across the study area, showing signs of recent tectonic activity. Under the
influence of tectonic movements, steep terrain, and hydrological conditions, a fragile
geological environment creates many local geological disasters. For example, in late 2018
(11 October and 3 November 2018), the Baige landslides occurred successively in Boro
Town, Tibet, China, which caused upstream inundation and downstream flooding [28–30].
The Temi ancient landslide blocked the Jinsha River (about 1.8 ka BP) [1]. Therefore, the
study area has a high susceptibility to geological hazards. With the continuously expansion
of human activities and the deterioration of the geological environment, geological hazards
in Gongjue County show an increasing trend, and the resurrection of multiple giant ancient
landslides poses a major threat to the lives, property and security of residents.

2.2. Datasets

Time-series InSAR process along the line-of-sight (LOS) was calculated based on
119 Sentinel-1 ascending SAR images acquired from October 2017 to December 2021
(Figure 1 and Table 1). Elevation data with a resolution of 30 m acquired from the USGS
were used to remove the terrain phase during the InSAR process. GAMMA software
was used for the IPTA (interferometric point target analysis) process, which is a kind of
PS-InSAR (permanent scatterer InSAR) technique, and the SARscape software was used
to perform SBAS-InSAR in this study; detailed principles and procedures are provided in
Section 3. The available maps and data layers required for the geological analysis were
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prepared, including landslides, geological maps and topographical maps. A total of 10 UAV
images covering all the landslides in the study area help verify the landslide information;
the range of UAV images with a resolution of 0.5 m is shown in Figure 2. Four optical
images were collected to observe the changes in landslides and daily time-series rainfall
data with a 10 km resolution were obtained from NASA.

Table 1. Datasets used in this study.

Data Resolution Date Number Source

Sentinel-1 Range 2.3 m,
azimuth 14 m

8 October 2017–22
December 2021 119 https://search.asf.alaska.edu accessed on

1 January 2022

Elevation 30 m - 1 United States Geological Survey SRTM
accessed on 1 January 2022

UAV images cm 1 May 2021–1 June 2021 10 -

Precipitation 10 km 1 October 2017–22
December 2021 daily NASA. https://pmm.nasa.gov accessed

on 2 January 2022

Sentinel-2 10 m 1 October 2016\1
March 2020 2 https://search.asf.alaska.edu accessed on

2 January 2022

Landsat 8 15 m 1 February 2013/1
February 2019 2 https://earthexplorer.usgs.gov accessed

on 3 January 2022
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3. Method

Figure 3 shows the workflow of this study. We applied two time-series InSAR methods
(SBAS and PS-InSAR) for the displacement calculation. A cross-comparison between their
results was conducted to verify the reliability, and the deformation areas were further
verified by UAV images and field investigation. The cross-comparison approach consists
mainly of complementary spatial time-series interferometric points and the comparative
analysis of temporal deformation sequences. By coupling the interferometric points ob-
tained from the two time-series InSAR methods noted above, the spatial density of the
interferometric points is increased and the deformation characteristics can become more
refined. The comparative analysis of deformation sequences is used to determine the relia-
bility of the results by comparing the temporal deformation of neighboring interference
points and analyzing whether the deformation magnitudes and trends are consistent. The
deformation characteristics of two giant landslides were analyzed emphatically. Detailed
principles and processes are introduced in the following three sections.

https://search.asf.alaska.edu
https://pmm.nasa.gov
https://search.asf.alaska.edu
https://earthexplorer.usgs.gov
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3.1. SBAS-InSAR

SBAS technology can better overcome the effects of spatiotemporal decoherence and
extract useful information based on multimaster images [19]. The principle of this method
is to use the coherence of spatial distribution to restore the time-series deformation by
connecting multiple interferogram pairs with short spatial–temporal baselines. In this
paper, 119 Sentinel-1 SAR images were processed, and the detailed parameters are shown
in Table 1. Precise orbit files were downloaded and preprocessed to reduce orbital errors.
To improve computational efficiency, SAR images were cropped to the study area.

The SBAS process follows (Figure 4a):
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(1) The generation of differential interferograms: Temporal and spatial baselines were
set at 36 days and 250 m (Figure 5a), respectively. Multilooks of the SBAS process were set
to 10:2, and all possible interferogram pairs interfere after co-registration.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 4. Workflow of (a) SBAS-InSAR and (b) PS-InSAR. 

 

 

Figure 5. The spatiotemporal baselines of (a) SBASInSAR and (b) PSInSAR. 

3.2. PS-InSAR 

PS-InSAR technology is usually implemented by computing differential interfero-

grams of all the acquisitions with respect to the same reference image [15]. Based on time-

series intensity and phase information, PS-InSAR selects relatively stable scattering points 

for deformation analysis without multilooks processing, which can maintain high coher-

ence for a long time. The function relation between deformation and phase difference is 

established by PS points, and the topographic and atmospheric errors are removed by 

external data or related filtering methods, so the surface deformation information on PS 

points can be obtained. 

The processing procedure includes the following three steps (Figure 4b): 

(1) Initial selection of the PS points and baselines: According to the spectral and 

backscattering intensity of SAR images, the permanent scatterer points were selected us-

ing thresholds of 0.7 and 2.1, respectively [15,20]. A total of 48,069 high qualify PS points 

were selected for subsequent deformation analysis. The temporal and spatial baselines are 

shown in Figure 5b. 

Figure 5. The spatiotemporal baselines of (a) SBASInSAR and (b) PSInSAR.

(2) Phase unwrapping: An adaptive filtering function was used to smooth the inter-
ference phase [31], and the minimum cost flow (MCF) algorithm was used to unwrap the
filtered interference phase. Elevation data acquired from the USGS was used to remove the
topographic phase.

(3) Inversion of deformation rate: Estimate the elevation error based on the unwrapped
phase, and remove the atmospheric error by spatial filtering and temporal high-pass
filtering; select high-quality distributed scatterers, and the deformation rates and time-
series deformation through the singular value decomposition (SVD).

3.2. PS-InSAR

PS-InSAR technology is usually implemented by computing differential interfero-
grams of all the acquisitions with respect to the same reference image [15]. Based on
time-series intensity and phase information, PS-InSAR selects relatively stable scattering
points for deformation analysis without multilooks processing, which can maintain high
coherence for a long time. The function relation between deformation and phase difference
is established by PS points, and the topographic and atmospheric errors are removed by
external data or related filtering methods, so the surface deformation information on PS
points can be obtained.

The processing procedure includes the following three steps (Figure 4b):
(1) Initial selection of the PS points and baselines: According to the spectral and

backscattering intensity of SAR images, the permanent scatterer points were selected using
thresholds of 0.7 and 2.1, respectively [15,20]. A total of 48,069 high qualify PS points
were selected for subsequent deformation analysis. The temporal and spatial baselines are
shown in Figure 5b.

(2) Estimation of velocity and DEM errors: The stable village area was selected as the
reference point, and the deformation regression analysis based on relative phase observa-
tions between nearby PS was carried out with the coherence of 0.7 as the threshold. The
elevation error was estimated and corrected by three iterations of regression analysis.

(3) Time-series deformation: The atmospheric phase was removed by applying time-
domain and spatial filtering techniques, and the time-series deformation phase and dis-
placement velocity were finally calculated.
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3.3. Validation and Deformation Characteristics Analysis

In this paper, we used the DJI M300 RTK UAV for aerial data collection, which has a
longer endurance than other small UAVs. It carries a PTZ (pan tile zoom) camera with a
CMOS-based sensor (20 megapixel). Pix4D is professional UAV data processing software,
which we used to plan the flight route and process the aerial data. In terms of flight pa-
rameter setting, forward overlap and lateral overlap were set to 85% and 80%, respectively.
Depending on the terrain conditions of the landslides, the relative flight altitude was set to
100–200 m to obtain cm ground resolution images. In addition to recording the location and
elevation data of the UAV ground station, at least eight residential corners were selected as
ground control points (GCPs) in each aerial photography mission, and the spatial location
and elevation data of the GCPS were recorded using Trimble GPS to ensure the accuracy of
the results. Finally, the aerial images were stitched and calibrated using the ground station
and GCP data.

In terms of deformation characteristics analysis, we used the traditional geological
survey method to verify the ground failure characteristics. The elevation difference in
the DEM obtained by SRTM and UAV and multisource remote sensing data were used to
verify the vertical and horizontal deformation of landslides. COSI-Corr is change detection
software based on optical images, which can identify the horizontal changes in two images
with long time intervals [32]. Origin and MATLAB software were used to analyze the
correlation between landslide deformation information and rainfall.

4. Results
4.1. Detection and Identification of Active Landslides

Figure 6 shows the average deformation velocity along the LOS in the study area
acquired by SBAS and PS-InSAR from October 2017 to December 2021. A total of 14 active
landslides are densely distributed within an area of 90 km2, and their continuous defor-
mation was completely detected. Combined, all of the detected landslides cover a total
area of about 20 km2. The spatial distribution characteristics show that the landslide in
the study area is mostly distributed on the right bank of Jinsha River, moving toward
the WE direction. Therefore, the ascending orbit Sentinel-1 SAR images can effectively
detect the movement on the east-facing slopes [9,10]. According to the final deformation
rate results, although the density and distribution of deformation points in the landslide
area are different, there are few differences between the deformation rates obtained by
the two time-series methods. In the study area, largest deformation rate in the landslide
area was more than +50 mm/y and the maximum deformation rate reached −240 mm/y,
indicating that these landslides are in the slow creep stage. A detailed comparison of the
rates obtained by the two methods is discussed in Section 5.

4.2. Validation of UAV Images and Field Investigation

InSAR deformation results can effectively show the location of the deformation zone.
However, the accuracy of the deformation information needs to be verified by remote
sensing images and field investigation. Most landslides in the study area are located along
the Jinsha River, and the high and steep slopes and complex terrain conditions make it
challenging to verify these landslides. As a countermeasure, we employed optical remote
sensing and UAV images to show morphological and microtopographic features of the
landslide, and verified the deformation results through field investigation. Combining
morphological and microtopography features (fissures, color tones and terrain form),
we identified and verified the landslide boundaries. Figure 7 shows the deformation
rate and UAV images of two typical landslides. The deformation areas of the landslides
corresponded well with the failure areas in the UAV images. Moreover, we observed the
large deformation and failure characteristics of landslides through UAV and remote sensing
images, such as rock fragmentation, fracture development and multistage dislocation
(Figure 8). These failure regions are consistent with the location of large deformation
regions obtained by InSAR methods.
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Figure 8. Fracture and local failure characteristics of landslides.

In addition, the elevation difference between SRTM and UAV-based DEM was used to
qualitatively validate the vertical deformation characteristics of landslides (Figure 8). Since
the SRTM DEM data were acquired in 2000, the elevation difference cannot be quantitatively
compared with the temporal deformation information from the past five years (Figure 9).
However, the spatial distribution of elevation differences shows that the elevation changes
in the landslide area are significantly greater and are likely to be the result of long-term
deformation of the landslide by gravity. The maximum cumulative elevation difference in
the landslide area is 6 m, and the maximum annual settlement is about 30 cm/y, which is
roughly the same as the result obtained by the time-series InSAR method.
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The Xiongsong landslide was taken as an example for change detection, and the
changes detected by the COSI-Corr method based on four optical images are shown in
Figure 10. Only deformations in the east–west direction were calculated because it is the
main movement direction. The results show that the movement of the landslide caused
spectral changes; red or blue indicates continuous tensile cracks at the scarp, and the
position of the red–blue change area is consistent with the position of the rapid deformation
area in Figure 7(a1,b1).
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Figure 10. Changes in the Xiongsong landslide revealed by COSI-Corr method. The red and blue
regions represent the eastward and westward movement. (a) Changes detected using Landsat
8 images; (b) Changes detected using Sentinel-2 images.

4.3. Deformation Characteristics of Two Giant Landslides

The deformation of two giant landslides (Sela landslide and Wadui landslide) was
analyzed, which are potential landslides that can block the Jinsha River and destroy nearby
villages. Both landslides are distributed on the left bank of the Jinsha River, and time-series
deformation monitoring can effectively help analyze the development characteristics and
influencing factors of landslides. Figure 11 shows the Sela landslide in Gongjue County,
which is about 1.9 km long and 1.7 km wide, covering an area of about 2.9 km2. The average
slope is about 30 degrees, and the elevation difference is 1 km. The maximum deforma-
tion area of the landslide is at the front edge, and the deformation reaches −240 mm/y
(Figure 11(1)). Moreover, there is relatively slow deformation on the back and middle sides
of the landslide with an average deformation rate of−70 mm/y. The Sela landslide belongs
to retrogressive landslide, the thickness of the sliding body is about 50 m; the lower part of
the landslide slides faster under river erosion. Figure 11(3,4) show enlarged images derived
from UAV for the large deformation area. The collapse areas shown by the UAV images
agree well with the deformation area; they are the severely deformed area at the front edge
of the landslide with an area of about 0.5 km2. The exposed bedrock is visible in this area,
and the broken rock mass has clear traces of tension cracks (black dotted lines) caused by
material movement. Some loose debris above remains in the most unstable region, and the
black arrows show the direction of movement of the broken rock mass.

Two points (P1 and P2) marked in Figure 11(1) were selected for correlation deforma-
tion analysis, and the rainfall data came from NASA. According to the rainfall data recorded
at the landslide, the peak period of rainfall is from June to September, accounting for 60% of
the whole year. Time-series displacement was found to be related to concentrated rainfall;
landslide deformation was significantly accelerated during the rainy seasons of 2018 and
2021 (marked in red arrows), while the deformation rate remained stable during the rest of
the period. However, the landslide did not show a significant acceleration of deformation
between January 2019 and March 2021. Moreover, there was no significant acceleration
even during heavy rainfall in August 2020, which indicated that rainfall conditions were
probably not the only factor influencing the failure of the Sela landslide.
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Figure 11. The Sela landslide in Gongjue County and its deformation characteristics: (1) average
velocity of the landslide acquired from SBAS-InSAR; (2) Google Earth image; (3) local collapse at
the toe of the landslide; (4) front part of the landslide has the largest deformation and has already
begun to fail (black arrows indicate the direction of movement); (5) relationship between monthly
precipitation and points P1 and P2 time-series deformation. The black arrows in the figures represent
the direction of movement.

As shown in Figure 12, the Wadui landslide is another landslide with large defor-
mation, which is located downstream from the Sela landslide and has an area of about
2.5 km2. Two large deformation regions are located at altitudes of 2800 and 3260 m, with
maximum annual average deformation rates of −30 and −40 cm/y, respectively. Specifi-
cally, Figure 12(2) shows fractures caused by tensile stress and gravity on the edge of the
landslide, which is about 2–5 m wide and 10–20 m deep. These fractures and some small
eroded grooves resulting from rain wash on the surface are visible in the Google Earth im-
age, and this area is the most damaged at the Wadui landslide. We plotted the deformation
rate profile (A–A’) along the slope, which more intuitively shows the settlement rates of
the two large deformation zones in the landslide. The deformation profile shows that the
deformation in the middle part of the landslide was small. In contrast, the deformation in
the front and rear was large, which indicates that the landslide is a discontinuous defor-
mation. The Wadui landslide is a shallow landslide with a thickness of about 25 m, and
is susceptible to slippage due to rainfall. We selected two deformation feature points (P1
and P2 in Figure 12(1)) in two large deformation regions and analyzed their correlation
by combining the time-series deformation and rainfall data (Figure 12(4)). Two feature
points exhibit distinct responses to rainfall; the cumulative deformation of point P1 in the
past five years has reached 80 cm, located in the most rapidly damaged area. Neverthe-
less, its deformation rate did not change greatly, and there is no obvious relationship to
the change in rainfall conditions. In contrast, Point P2, located on the front edge of the
landslide, showed a strong response to rainfall. In the annual rainy season (June–August),
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Point P2 has an obvious accelerated deformation phenomenon (red arrow), and the time
of accelerated deformation also has a significant lag relationship with the time of heavy
rainfall. The time-series curves of the two points show that the landslide has been affected
by different factors in multiple areas, which induces a series of deformation phenomena.
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Figure 12. The Wadui landslide in Gongjue County and its deformation characteristics: (1) average
velocity of the landslide acquired from SBAS-InSAR; (2) local Google Earth image; (3) deformation
profile along A-A’ in (1) shows two large deformation regions; (4) relationship between monthly
precipitation and points P1 and P2 time-series deformation.

5. Discussion
5.1. Comparison between SBAS and PS-InSAR

SBAS and PS-InSAR were cross-compared to prove the accuracy and precision of
deformation results. We compared these two methods from three aspects: scatterer point
density, deformation rate distribution and time-series deformation. Figure 13 shows the
spatial distribution range of time-series points and the histogram of deformation rate
distribution. The zoom-in subsets of two landslides shown in Figure 13b–e reveal that
compared with PS-InSAR, the SBAS method can obtain more time-series deformation
points. For the SBAS method, a total of 28,964 time-series points within the landslide area
of 12 km2 with a density of 2400 points/km2, while the PS-InSAR method only extracted
16,124 valid permanent scatterer points. Owing to the spatial multilook process in the SBAS
method, relatively uniform time-series points (Figure 13b,d) can be obtained, which have
good coverage for deformation calculation in the whole landslide region. However, this
method sacrifices pixel resolution and it is easy to lose high-quality scatterer signals. The PS
method performs time-series deformation analysis on the highly time-coherent and stable
strong reflector information at the pixel resolution. However, in the region of large gradient
deformation, PS points are rare, and it is difficult to capture much deformation information
(Figure 13c,e). Figure 13f,g plots two histograms of the annual deformation velocity
(positive and negative values represent the surface movement toward and away from the
SAR satellite, respectively), indicating a normal distribution with the average deformation
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values of −37.33 and −33.70 mm/y, respectively. Moreover, the median values of the
deformation rate obtained by the two methods are −25.649 and 18.886 mm/y, respectively,
which indicate that these two methods have consistency in the spatial distribution of the
deformation rate.
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(a) spatial position of landslides; (b–e) time-series points of two large landslides; (f,g) histogram of
deformation rate, the normal density function is fit by red dotted lines.

To test the accuracy of deformation results under different time-series methods, four
feature points (black cross curve in Figure 13a) were selected for comparative analysis; the
distance between comparison points of PS and SBAS is less than 10 m. Figure 14 shows the
time-series deformation of the four feature points. In general, the overall deformation trend
of SBAS and PS-InSAR results is consistent, and the deformation rate of feature points
increases gradually during the four years. Although their cumulative deformation and
velocity are roughly the same, the deformation curves of PS-InSAR results are more discrete
than those of SBAS, and SBAS results are more stable and conform to the linear deformation
model (Figure 14). Discrete deformation points of the PS-InSAR method are probably from
the long-time baseline. This deformation error is common in PS-InSAR processing [18], but
it is difficult to reduce effectively. However, the SBAS method uses short-time and spatial
baseline interferogram pairs, which can effectively reduce deformation errors and help
analyze the correlation between time-series deformation and external factors.
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Figure 14. Comparison between SBAS and PS-InSAR deformation in the LOS direction at four larger
deformation points. (a–d) show the displacement data of four points marked in Figure 13a. Red
and green lines indicate the PS-InSAR and SBAS deformation time-series, respectively. The relative
spatial positions of PS and SBAS points are shown in the circle diagram.

In some studies, ascending and descending SAR images were utilized to compare and
verify the surface deformation results, and the three-dimensional deformation field can
be retrieved from multiple observation measurements [9,10]. However, this method is not
applicable in this study area—most of the landslides studied are oriented to the east, and
the observation direction of descending images is nearly perpendicular to the direction
of movement of the landslides, making it difficult to effectively observe the deformation
of the landslides (Figure 15b). Therefore, this method was not used for the comparative
analysis and validation of the deformation results.

5.2. Influence of Quaternary Tectonic Activity on Landslides

Many scholars have analyzed the relationship between the development character-
istics of landslides, topography and rainfall factors [9]. However, the landslide hazard
developed in the study area is not only related to the high and steep terrain, rainfall and
river erosion, it is also easily affected by fault movement. Landslides in the study area
are located in the Jinsha River suture zone, and the tectonic activity affects the structural
evolution of the slope, which is an important factor for landslide development. Under the
influence of multistage tectonic movement, slope joints and fissures develop, weathering
and water events accelerate the evolution of slope structure, increasing the degree of rock
fragmentation and reducing the mechanical strength of rock. Several NNS direction faults
(Xiongsong–Suwalong fault) and dense small faults [33] are distributed in the study area.
These faults are located near the landslide or directly pass through the landslide body,
causing changes in the stress field within the slope and reducing slope stability.
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Figure 15. Comparison of deformation results in the ascending and descending measurement
directions. (a) LOS deformation acquired from Sentinel-1 ascending images; (b) LOS deformation
acquired from Sentinel-1 descending images.

The Xiongsong–Suwalong reverse fault (Figure 16 (F1 and F2)) crosses through the
middle and rear part of the Xiongsong landslide, which may be one of the inducing factors
for the large deformation. Therefore, we take the Xiongsong landslide as an example
to analyze the influence of fault-zone activity on the development of landslides. The
engineering geological map of the Xiongsong landslide is shown in Figure 16. Two NNS
reverse faults (F1 and F2) cross the middle and rear of the landslide [33], which are branch
faults of the Jinsha River fault. Influenced by the Jinsha River fault, there has been strong
tectonic activity since the Early–Middle Pleistocene.

We carried out the field investigation near the fault zone and found that the devel-
opment characteristics of reverse faults are obvious. Figure 17 shows four outcrops with
reverse faults and geological engineering profiles of the Xiongsong landslide (the positions
of outcrops are marked in Figure 16 (P1–P4)). Figure 17a shows a quartz vein under the
fault dislocation, with a dislocation distance of about 15 cm. Figure 17b,c shows two reverse
faults; the upper wall of the faults clearly shows the directional compression deformation of
quartz schist under the compression environment. The S-shaped quartz vein also indicates
a complex stress environment within the slope (Figure 17d). Figure 17 shows the geological
profile of the Xiongsong landslide; the slope is dominated by gneiss and quartz schist, and
its occurrence is about 250◦~260◦∠10◦~20◦, which is a reverse slope. Literature and drilling
data [33,34] indicate that the potential slip-surface of the Xiongsong landslide is located
in the vicinity of the F1 fault, which extends from the depth of the slope to the surface.
Through detailed ground geological investigations, we have found many signs of fault
activity, large and small, which are directly observable at the surface. This suggests that
the active faults in the landslide area have created a stress–extrusion environment beneath
the landslide. The rock mass is more susceptible to breakage by gravitational compres-
sion, reducing slope stability. Long-term fracture activity contributes to the development
of landslides.
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6. Conclusions

InSAR technology has been widely used in landslide identification, but the single
deformation observation method may have great uncertainty, resulting in wrong judgment
during the process of landslide detection [24,35]. Effective verification methods are signifi-
cant to disaster identification, risk assessment and mechanism analysis [36–38]. Therefore,
in this study, a cross-comparison method between SBAS and PS-InSAR technology was
applied to identify landslides comprehensively, and UAV images and field investigation
were used to validate the deformation characteristics of InSAR. Many ancient landslides
are distributed along the Jinsha River in Gongjue County, so we conducted the deformation
characteristics research in this area and obtained the following conclusions.

(1) Both PS and SBAS methods can effectively provide deformation information for
landslides in the study area. A total of 14 landslides were identified by using two kinds of
time-series InSAR technology. Comparative analysis shows that the deformation results
obtained by the two time-series methods are consistent in terms of cumulative deformation
and deformation trend. However, the PS method can give relatively little deformation
information in the large deformation area. In contrast, the SBAS method can provide more
comprehensive signal coverage because of the shorter time and space baseline.

(2) UAV images and field investigation results validate the accuracy of InSAR in iden-
tifying landslides. Elevation data and the COSI-Corr method based on multisource remote
sensing data were used to verify the horizontal and vertical deformation. Additionally, the
severe damage areas visible on the remote image also show large deformation in InSAR
results, and the damage areas in InSAR correspond well with the large deformation areas.

(3) Based on the study of two large landslides in the study area, we analyzed the
correlation between landslide deformation and monthly precipitation. Results show that
the deformation of the Sela landslide is related to concentrated rainfall. Deformation of
the Sela landslide was significantly accelerated in the rainy season of 2018 and 2021. The
Wadui landslide is located in the lower reaches of Sela landslide, and the area in front of
the landslide is strongly responsive to rainfall. In the rainy season of each year, there is an
obvious phenomenon of accelerated deformation, and the time of accelerated deformation
and the time of heavy rainfall have a significant lag relationship.
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