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Abstract: In landslide displacement prediction, random factors that would affect the performance of
prediction are usually ignored by using a time series analysis method. In order to solve this problem,
in this paper, a landslide displacement prediction model, the local mean decomposition-bidirectional
long short-term memory (LMD-BiLSTM), is proposed based on the time-frequency analysis method.
The model uses the local mean decomposition (LMD) algorithm to decompose landslide displacement
and obtains several subsequences of landslide displacement with different frequencies. This paper
analyzes the internal relationship between the landslide displacement and rainfall, reservoir water
level, and landslide state. The maximum information coefficient (MIC) algorithm is used to calculate
the intrinsic correlation between each subsequence of landslide displacement and rainfall, reservoir
water level, and landslide state. Subsequences of influential factors with high correlation are selected
as input variables of the bidirectional long short-term memory (BiLSTM) model to predict each
subsequence. Finally, the predicted results of each of the subsequences are added to obtain the
final predicted displacement. The proposed LMD-BiLSTM model effectiveness is verified based on
the Baishuihe landslide. The prediction results and evaluation indexes show that the model can
accurately predict landslide displacement.

Keywords: landslide displacement prediction; local mean decomposition; bidirectional long short-
term memory; maximal information coefficient

MSC: 68T07

1. Introduction

Landslide geological disasters are a serious type of geological disaster that occur
worldwide, inducing serious threats and losses to the development of human society.
In recent years, under the influence of extreme global climate change, seismic activities,
coupled with the rapid development of human engineering activities, have become more
intense interferences to the natural environment, directly leading to geological disasters
with greater intensity and higher frequency [1,2]. This increases the difficulty of developing
landslide disaster reduction strategies [3]. Combined with land use change, population
growth, uncontrolled urbanization, and so on in vulnerable areas, the landslide risk level
continues to rise [4]. The Three Gorges Reservoir Area is one of the areas with a high
incidence of landslide disasters in China [5,6]. Every year, landslides cause very large
losses to local lives and property, so it is necessary to prevent and control such landslide
disasters [7].

Landslide displacement refers to the distance that the soil or rock mass on the slope
slides along the slope as a whole or separately under the influence of gravity under the
influence of river erosion, groundwater activity, rain immersion, earthquakes, and artificial
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slope cutting [8]. The generation of landslide displacement is influenced by both the in-
ternal geological conditions (geological structure, landform, lithology, etc.) and external
influencing factors (rainfall, reservoir water level, etc.) of a given landslide location [9–11].
Landslide displacement prediction is a frontier problem in the international landslide
research field [12]. Landslide displacement prediction is an important part of landslide
disaster loss reduction [13]. It can be used to summarize the historical displacement of
landslides and environmental conditions and also to analyze the potential relationship
between geological and meteorological environmental changes and disasters. The com-
bination of an accurate landslide displacement prediction model and landslide warning
model can effectively improve people’s ability to determine landslides in daily life, help
decision-makers make more accurate decisions [14], and take active disaster reduction
actions in advance [15] to achieve adaptive risk avoidance [16] and protect people’s lives
and health, and to achieve the purpose of improving people’s livelihood [14]. In the Three
Gorges Reservoir area, affected by rainfall and reservoir water level, landslide displacement
usually shows the characteristic of a “step shape” that represents accelerated activity in
the rainy season and remains almost steady in the dry season [17]. Therefore, defining
methods for predicting the increase in landslide displacement has become the focus of
scholars. However, landslides are very complex systems, and their deformation is affected
by their own engineering geological conditions and externally induced factors [14]. The
displacement curve is often highly nonlinear, which makes it difficult to accurately predict
the landslide displacement [8].

At present, landslide displacement prediction models are mainly divided into physics-
based and data-based models [18]. Although both models can predict landslide displace-
ment, physics-based models are complex, time-consuming, expensive [19], difficult to
establish [5], and have strict application conditions [11], which can only be used in limited
cases [20]. However, the data-based model has a simple process, accurate prediction, and
low cost [19], and it is good at dealing with nonlinear relations [21]. Therefore, physics-
based models are not as popular as data-based models [10]. Thus, most of the landslide
displacement prediction models in recent years are based on data models. The key factors
for the occurrence of landslides can be roughly divided into two categories: the slope,
lithology, and soil type are internal factors affecting landslides, while the rainfall, reservoir
water level, and snowfall are external factors affecting landslides [22].

Based on the principle of time series analysis, many studies have decomposed land-
slide displacement into trend displacement and periodic displacement [5,8,10,14,15,23],
which has well separated the nonlinear characteristics of landslide displacement. There
have also been studies on the decomposition of landslide displacement data into several
subsequences of different frequencies based on the time-frequency analysis method. Guo
et al. [24] combined the variational modal decomposition (VMD) method with the WA-
GWA-BP model, and Liu et al. [6] combined the VMD method with the periodic neural
network (PNN) model to predict landslide displacement. The empirical mode decom-
position (EMD) method was combined with the LSTM model, and a linear interpolation
technique was used to increase the size of the training dataset to accurately predict land-
slide displacement [25]. According to the wavelet transform, multiscale analysis can be
carried out on landslide displacement data through the operation functions of stretching
and shifting [26–28]. To solve the problems of modal aliasing in EMD, the Ensemble Empir-
ical Mode Decomposition (EEMD) algorithm was used to decompose the landslide data
series, further improving the prediction ability of the model [29–31]. Taking into consid-
eration the fact that EMD and EEMD have randomness and uncontrollability built in the
decomposition times of landslide displacement, Xing et al. [32] used VMD to decompose
landslide displacement.

Taking into consideration the lag fluctuation of the groundwater level, the SVC-PSO-
SVR model was proposed to predict landslide displacement by Han et al. [33]. Deng
et al. [34] used acoustic emission sound generation and rainfall as data inputs, and the
equivalent reservoir water level function model was combined with Lasso-ELM to improve
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the accuracy of landslide displacement prediction. Based on the traditional gray prediction
model, L et al. improved and proposed a new gray prediction model [13]. SVR and
the Hausdorff derivative operator were used to determine model parameters with the
improved SALP group algorithm, further improving the prediction performance of the
traditional gray model [35]. Based on the optimal weight allocation method, Li et al. [36]
assigned different weights to the verhulst model and GM(1,1) model, and combined the
advantages of the two models to form a new prediction model. Considering the importance
of past experience, Hu et al. [37] used the verhulst inverse function to describe the motion
characteristics of landslides, and constructed a displacement prediction model combined
with a random forest algorithm. To predict the displacement more accurately, two new
concepts, the trend sequence and sensitivity state, were proposed, and a new model was
obtained by integrating the trend sequence and sensitivity state [38]. The cost function
and the penalty mechanism were proposed in order to force the underestimated landslide
displacement to be transferred to a higher estimate, and the ability of the model to avoid
landslide risk is taken into full consideration while predicting landslide displacement [16].

Researchers considered that it is normal that the landslide displacement will fluctuate
within the normal range in the future, and the prediction interval method was adopted
instead of point prediction; this method can obtain clear data, and the resulting model
was presented as an interval [15,29,39,40]. Interval prediction can not only predict the
future variation trend of data but also obtain the variation range of landslide displacement,
providing an important basis for decision-making regarding landslide disaster prevention
and mitigation [21]. In recent years, with the development of technology, the local mean
decomposition (LMD) algorithm has been increasingly applied, and an increasing number
of studies have begun to use the LMD algorithm to address nonlinear problems in various
fields [41–45]. Inspired by previous studies, this paper presents a new theory that intends
to apply the LMD algorithm to process typical nonlinear landslide displacement data
on the basis of previous research results and time-frequency analysis methods and to
propose a new local mean decomposition-bidirectional long short-term memory (LMD-
BiLSTM) model.

The LMD-BiLSTM model can decompose nonlinear and nonstationary data series well,
it can solve the problem of ignoring random displacement in time series analysis, and the
LMD algorithm is used to decompose the original displacement data and influencing factors
into several sub-time-series data of different frequencies. Due to the complex relationship
between influencing displacement factors and landslide displacement, the correlation
between them cannot be well quantified. Therefore, to improve the accuracy of prediction,
the maximum information coefficient (MIC) algorithm is introduced in this paper.

MIC correlation calculations are carried out between the subsequence of influencing
displacement factors and each of the subsequences of landslide displacement, and the data
with high correlation are selected as the input variable of each subsequence prediction,
which improves the validity and reliability of the input data. Considering that the rainfall
and reservoir water level of landslides have a similar change trend in each time period, the
bidirectional long short-term memory (BiLSTM) model is used to predict each sub-series
and the final predicted displacement of the landslide is obtained by adding the predicted
results. The case of a Baishuihe landslide in the Three Gorges region of China is taken to
verify the prediction performance and advantages of the model.

The main contributions of this study are as follows.

1. In order to solve the problem where the time series analysis method ignores the
random factors, which would affect the accuracy of prediction, based on the time-
frequency analysis method, the LMD algorithm is used for the first time to decompose
landslide displacement data and factors affecting displacement into multiple instan-
taneous frequency subsequences with physical significance. The disadvantages of
EMD or EEMD mode aliasing and endpoint effects are solved, and the integrity of the
signal is better preserved.
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2. The internal relationship between landslide displacement, rainfall, and reservoir water
level are analyzed after obtaining the landslide displacement and the subsequences of
the influencing displacement factors through the LMD algorithm. The MIC method is
used to calculate the correlation between each subsequence of landslide displacement
and each of the subsequences of the influencing displacement factors. The MIC
method can improve the reliability and validity of data, it discards less correlated
data, and it selects more correlated data as the input variables of each subsequence.

3. Considering that the rainfall and reservoir water level of the Baishuihe landslide have
the same change trend in each time period, the BiLSTM model is used to predict each
subsequence of landslide displacement. Finally, the displacement obtained by adding
the subsequence data is the predicted displacement of the landslide.

2. Materials and Methods
2.1. Local Mean Decomposition

The LMD algorithm was first proposed by Jonathan S. Smith [46], and its advantages
over EMD in EEG signal processing were discussed. In recent years, the LMD algorithm, a
decomposition method for nonlinear nonstationary signals, has been applied to tool chatter
areas [41], solar radiation prediction [42], underwater acoustic signal processing [43], daily
natural gas load forecasting [44], time series compressor stall processes [45], and many
other fields.

The core idea of the LMD algorithm is to adaptively decompose a complex nonstation-
ary multicomponent signal into the sum of several product functions (PF) with the physical
significance of instantaneous frequency, for which each PF component is directly calculated
by an envelope signal and a pure frequency modulation (FM) signal. The envelope signal
is the instantaneous amplitude of the PF component, and the instantaneous frequency of
the PF component can be directly calculated from the pure frequency modulation signal.
Furthermore, by combining the instantaneous amplitude and instantaneous frequency of
all PF components, the complete time-frequency distribution of the original signal can
be obtained. The LMD algorithm can decompose complex nonlinear landslide displace-
ment data into several PFs with physical significance, and its decomposition steps are as
follows [43,46]:

mi =
ni + ni+1

2
(1)

αi =
|ni − ni+1|

2
(2)

where mi is the i-th average value of two consecutive extreme values ni; ni+1αi is the local
magnitude of each halfwave oscillation; i = 1, 2, . . . , m − 1 (where m is the number of
extrema). The mean mi of all continuous extreme values must form a straight line. The
moving average method is used to smooth the mean mi and αi, and the local mean function
m11(t) and the envelope estimation function α11(t) are obtained. Then, m11(t) is separated
from the original signal X(t) to obtain the residual signal h11(t):

h11 = X(t)−m11(t) (3)

Then, h11(t) is divided by α11(t) to conduct amplitude modulation and yield:

s11(t) =
h11(t)

α11
(4)

where s11(t) is a pure frequency modulation signal, and the process is repeated q times
until a pure FM signal s1q(t) whose envelope function meets α1(q+1)(t) = 1 is obtained. The
corresponding envelope α1(t) is shown in the formula:

α1(t) = α11(t)α12(t) · · · α1n(t) =
n

∏
q−1

α1q(t) (5)
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where q is the number of iterations and the first component PF1(t) is:

PF1(t) = s1q(t)× α1(t) (6)

The PF1(t) is subtracted from the original signal X(t) to obtain the new signal. The
above steps are repeated to obtain PF2(t). These steps are repeated until the last signal
becomes a constant or contains no more oscillations, and then the residual signal uk(t) can
be obtained. Therefore, the original signal X(t) can be decomposed into the sum of the PF
component and uk(t), as shown in the formula below:

X(t) =
k

∑
p−1

PFp(t) + uk(t) (7)

2.2. Maximal Information Coefficient

Reshef et al. [47] proposed the MIC concept that can be used to measure the nonlinear
correlation between two variables based on mutual information theory in information
theory. The main idea is as follows: if there is some correlation between the two variables,
then after some sort of meshing on the scatter plot of the two variables, the mutual infor-
mation of these two variables can be calculated according to the approximate probability
density distribution of the variables in the grid. After regularization, this value can be
used to measure the correlation between the two variables. When the MIC is 0, it indicates
that the pairs of variables are completely independent; when the MIC is 1, it indicates
that there is some functional relationship between the pairs of variables. The larger the
MIC is, the stronger the correlation between variables is. For a set of ordered pair datasets
D = {(xi, yi), i = 1, 2, . . . , n}, if the X-axis is divided into X cells and the Y-axis into Y cells,
the result is an x× y grid G. The points in the dataset D land on G based on the proportion
of approximate D|G, representing its probability distribution. Therefore, the maximum
mutual information can be defined as follows:

I∗(D, x, y) = max I(D|G) (8)

where the maximum value in the above formula is the maximum value of mutual informa-
tion on G of all possible networks in which D divides the X-axis into X grids and the Y-axis
into Y grids. I(D|G ) indicates mutual information in the case of probability distribution
D|G. The elements of the x-th row and y-th column of the eigenmatrix M(D) on the ordered
pair dataset D are shown in the formula:

M(D)x,y =
I∗(D, x, y)

log(min{x, y}) (9)

Then, the ordered pair dataset D divided by data scale n and the number of grids is
less than or equal to B(n). Then, the MIC of dataset D is defined as follows:

MIC(D) = max
xy<B(n)

{
M(D)x,y

}
(10)

According to the actual application [47–49], B(n) = n0.6 is recommended, so this paper
also chooses this value.

2.3. Bidirectional Long Short-Term Memory Model

Landslide displacement is affected by external factors such as rainfall and reservoir
level, and the collected data series have certain fluctuations and periodicities. To analyze
and predict the time series data of landslide displacement, this paper uses an improved
recurrent neural network (RNN) model to predict landslide displacement. A long short-
term memory network (LSTM) was proposed by Hochreiter et al. [50]; it is a special RNN



Mathematics 2022, 10, 2203 6 of 19

that, because of the added gate mechanism that is added, can solve the RNN gradient
explosion and gradient disappearance problems to a certain extent.

On the basis of a traditional RNN, the LSTM model introduces ct to store long-term
memory. The model can be made to selectively update the memory unit so that the current
node learns the characteristics of the input data from a long time ago. There are three
control gates in each LSTM unit, namely the input gate it, forget gate ft, and output gate ot.
The structure of the LSTM model is shown in Figure 1.
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Assuming the input sequence x = {x1, x2, . . . xt}, xt = {xt1, xt2, . . . xtk} represents the
real vector data of the k-dimension under time step t, the LSTM model is used to construct
landslide displacement data, and the updating formula of each internal unit is as follows.

The forget gate ft is used to forget the information of the state ct−1 of the upper
memory unit, and its formula is

ft = σ
(

W f xt + U f ht−1 + b f

)
(11)

where W f is the weight matrix of the forget gate, b f is the bias of the forget gate, and σ is
the sigmoid function.

The calculation of the candidate state of memory unit c̃t is shown in the formula, and
the input gate it determines the reserved information of the candidate state in the current
unit.

c̃t = tanh(Wcxt + Ucht−1 + bc) (12)

it = σ(Wixt + Uiht−1 + bi) (13)

where Wi and Wc represent the weight matrices of the input gate it and candidate state
c̃t, respectively; bi and bc represent the corresponding bias quantities of it and c̃t. it and ft
combine with the previous memory state ct−1 and the current candidate state c̃t to update
the current memory unit state ct.

ct = ft � ct−1 + it � c̃t (14)

where � indicates multiplication. The input gate ot is mainly used to control the output of
the memory unit state value.

ot = σ(Woxt + Uoht−1 + bo) (15)
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The weight and bias of each unit in the above types are dynamic and can be updated
through data training to predict landslide displacement in time series. In traditional LSTM
models, the information is one-way, and the model can use past information but not
future information. To adapt to the variation characteristics of landslide displacement,
precipitation, and reservoir water level, the BiLSTM model was selected to construct the
prediction model.

The BiLSTM model is formed by the combination of positive and reverse LSTM [51],
and its structure is shown in Figure 2. Forward LSTM can obtain the past data information
of the input sequence, and backward LSTM can obtain the future data information of the
input sequence [52]. The forward and backward LSTM training processes of time series
data can further improve the global integrity of feature extraction. At time t, the output

value Ht of the hidden layer of BiLSTM is composed of forward
→
h t and backward

←
h t:

→
h t =

−−−−→
LSTM (ht−1, xt, ct−1), t ∈ [1, T] (16)

←
h t =

←−−−−
LSTM (ht+1, xt, ct+1), t ∈ [T, 1] (17)

Ht =

[→
h t,

←
h t

]
(18)
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After obtaining Ht, the landslide displacement is obtained by a fully connected layer
as the prediction output of the model.

3. Results
3.1. A Real Case

The Baishuihe landslide is located on the south bank of the main trunk road of the
Yangtze River between Zigui County and Badong County, 56 km away from the three
Gorges Dam sites, with a longitude of 110′32′′09′′ and latitude of 31′01′′34′′. The specific
geographical location of the Baishuihe landslide is shown in Figure 3.
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Figure 3. The geographical location of Baishuihe landslide.

The overall topography of the landslide area is high in the south and low in the north.
The relative elevation difference of the terrain in the landslide area is approximately 300 m,
the frontal elevation is approximately 70 m, the north–south length is 600 m, the east–west
width is 700 m, and the average thickness of the slide body is approximately 30 m [6,10].
The longitudinal sliding surface of the Baishuihe landslide area is a folded line, which is
steep at the back and shallow at the front, and the middle slide surface is between the two
sliding surfaces. The Baishuihe landslide area has two slip zone layers, the shallow slide
zone is the interface of gravel soil and cataclasite, the thickness is approximately 0.9~3.13 m,
and the buried depth is 12.4~20.3 m [19,27]. The deep slide zone is the contact surface
between cataclastic rock and carbonaceous silt mudstone, with a thickness of 0.6~1.5 m
and burial depth of 18.9~34.1 m [31]. According to the classification of Hungr et al. [53],
the Baishuihe landslide belongs to the clay/silt planar slide. Its deformation is slow. A
topographical map of the Baishuihe landslide area is shown in Figure 4.
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Eleven global positioning system (GPS) monitoring sites have been installed in the
Baishuihe landslide area. The GPSs are installed by the National Cryosphere Desert Data
Center. The purpose is to observe the impact of the Three Gorges Dam on landslides
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in this area. The ZG118 monitoring station is located in the center of the landslide area,
and it can well reflect the whole situation of the Baishuihe landslide. It is used by most
research institutes [11,19,54], so the data from the ZG118 monitoring station are also used
as representatives of Baishuihe landslide data in this study. In this study, the displacement
data of the Baishuihe landslide area for 108 months are used, and the variations in rainfall
and reservoir water level within the landslide range in the same period are monitored. The
data-collection time period was from January 2004 to December 2012, and one data point
was collected every month, as shown in Figure 5. This dataset and the topographical map
are provided by the National Cryosphere Desert Data Center/National Service Center for
Speciality Environmental Observation Stations.
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3.2. Analysis of Influencing Factors

Figure 5 shows that from April to August every year, the rainy season of the Baishuihe
landslide area occurs, and the amount of rainfall continues to rise. Every year, Baishuihe’s
landslide displacement increases most rapidly during the height of the rainy season, and
the largest increase in landslide displacement occurred during the rainy season in 2007.
The dry season in the Baishuihe landslide area is from January to March. There is less
rainfall in these months, and the landslide displacement hardly increases. As rainfall
increases, the amount of water entering the slope increases, making the overall weight
of the slope rise, thus increasing the speed of the landslide. After rainwater enters the
slope, the interior of the slope becomes wet, reducing the friction force and increasing the
landslide probability. Rainfall is usually used as one of the inputs to predict landslide
displacement models [55–58].

Although the largest increase in landslide displacement occurred during the rainy
season of 2007, there were three years with more rainfall than that in 2007, suggesting that
rainfall is not the only factor affecting landslide displacement. Because of the complexity of
the internal geological structure of a landslide, landslides usually contain several different
states, and landslide stability differs between such states. When a landslide is relatively
stable, it is difficult to produce a large displacement when strong external factors are
encountered. When a landslide is in an unstable state, a large displacement may occur
even if external factors of general strength are encountered. Therefore, the maximum
rainfall is not the factor that corresponds to the maximum landslide displacement; this is
consistent with the actual displacement in the Baishuihe landslide area. To some extent,
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the displacement before the landslide can represent the state of the landslide at that time
and the stability of the landslide [14,17,28,59]. Therefore, we take the displacement of the
landslide in the previous month as the state of the landslide as one of the inputs of the
prediction model.

Since 2003, the Three Gorges Dam has released water during the rainy season to ensure
that the dam is safe; subsequently, the reservoir level of the dam has dropped significantly.
It can be observed from Figure 5 that the rate of landslide displacement increases at the
end of the decrease in the reservoir water level every year, indicating that the decrease
in the reservoir water level has a certain lag effect on landslide displacement. When the
water level of the reservoir decreases for a certain period of time, the resistance of the
landslide surface will be reduced. When the reservoir releases more water, the impact
force of the landslide also increases with the increase in water flow, making the structure of
the landslide more easily affected such that a landslide is more likely to occur. Therefore,
the reservoir water level is also considered one of the influencing factors of landslide
displacement [60–63].

In this paper, it is speculated that landslide displacement is the result of the compre-
hensive action of rainfall, reservoir level, and landslide state. Therefore, rainfall, reservoir
water level, and landslide state are selected as the input for the prediction model in this
paper.

3.3. Decomposition Data Using the LMD Algorithm

In this experiment, we used 108 months of data for simulation verification. The
data of the first 96 months were used as a training set for the training model, and the
data from the last 12 months were used as a test set for model prediction to verify the
performance of the landslide displacement prediction model. According to the time-
frequency analysis method, the LMD algorithm was used to decompose the landslide
displacement, precipitation, reservoir water level, and landslide state from high frequency
to low frequency into six subsequences, as shown in Figure 6.

The landslide displacement, rainfall, reservoir water level, and landslide state were
decomposed by the LMD algorithm, and five PFs with different frequencies and one uk
residual component were obtained.

3.4. Calculating the Correlation between Landslide Displacement and Influencing Factors

Due to the complexity of the landslide attributes, there are many factors affecting
landslides, and different landslide states cause different landslide consequences when the
same influence conditions are met. After the landslide displacement and influencing factor
data are decomposed into subsequence data of different frequencies by the LMD algorithm,
the subsequences of landslide displacement for each frequency correspond to multiple
influencing factors of different frequencies. However, any influencing factors with too little
correlation reduce the prediction performance of the model; additionally, using too many
irrelevant factors for prediction leads to an increasing number of deviations in the results.
Therefore, the MIC algorithm is adopted in this paper to calculate the correlation degree
between each of the subsequences of the landslide displacement and the different frequency
subsequences of the various influencing factors. Table 1 shows the MIC correlation results
for each set of landslide displacement subsequence with other subsequences.

The selection of an appropriate MIC value is particularly critical for the selection of
influencing factors and the final prediction results of the model. MIC values that are too
small result in factors with low correlation participating in the training and prediction of
the prediction model. A large range of MIC values leads to fewer datasets for the model to
use. According to the results of the study [17] and several experiments, this paper selects
the influential factors with MIC > 0.3 as the input of the prediction model. The final results
show that there are 16, 13, 16, 17, 14, and 17 input variables for PF1, PF2, PF3, PF4, PF5, and
uk in the landslide displacement subsequences, respectively.
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Table 1. MIC results for each landslide displacement subsequence with other subsequences.

Landslide
Displacement
Subsequences

Influence Factor Types
Influence Factor Subsequences

PF1 PF2 PF3 PF4 PF5 uk

PF1

Precipitation 0.317 0.375 0.418 0.331 0.479 0.404
Reservoir water level 0.267 0.255 0.403 0.351 0.424 0.521

State of landslide 0.477 0.526 0.521 0.422 0.386 0.521

PF2

Precipitation 0.245 0.231 0.289 0.287 0.568 0.508
Reservoir water level 0.241 0.364 0.396 0.419 0.383 0.678

State of landslide 0.413 0.616 0.569 0.423 0.546 0.681

PF3

Precipitation 0.208 0.317 0.521 0.403 0.486 0.697
Reservoir water level 0.281 0.419 0.353 0.448 0.528 0.915

State of landslide 0.529 0.471 0.525 0.545 0.579 0.955

PF4

Precipitation 0.237 0.345 0.573 0.512 0.523 0.901
Reservoir water level 0.366 0.454 0.448 0.566 0.646 0.897

State of landslide 0.541 0.813 0.591 0.978 0.517 0.923

PF5

Precipitation 0.228 0.246 0.697 0.524 0.591 0.891
Reservoir water level 0.258 0.278 0.325 0.615 0.525 0.971

State of landslide 0.448 0.652 0.679 0.601 0.379 0.982

uk

Precipitation 0.251 0.348 0.472 0.423 0.684 0.793
Reservoir water level 0.636 0.442 0.433 0.565 0.888 0.879

State of landslide 0.402 0.909 0.704 0.861 0.602 0.972

3.5. Prediction Using the BiLSTM Model

After the MIC algorithm calculation, the input variables of each subsequence of
landslide displacement are obtained. The forecasting process of the BiLSTM model is
introduced with PF1 as an example. PF1 has 16 input variables, which are combined into
two 16-dimensional vectors. A vector of the model’s training set contains data for the
first 96 months, and the other vector contains data for the next 12 months as a test set for
the model. Training sets are used to train the BiLSTM model, and the model adjusts the
parameters adaptively in the training process. After the training, the test set is input into
the trained BiLSTM model to obtain the prediction results. The process of PF1 prediction
is similar to those of the other five subsequences, and the prediction results obtained are
shown in Figure 7.

After the six components of landslide displacement are predicted, they are summed to
obtain the final prediction result, as shown in Figure 8.
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4. Discussion

Landslide displacement prediction is a typical regression problem, so to describe the
prediction performance of the LMD-BiLSTM model more accurately, this study selects four
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performance indicators to evaluate the prediction effects of various models. The mean
absolute percentage error (MAPE), mean absolute error (MAE), root-mean-square error
(RMSE), and determination coefficient R-squared (R2) are calculated. Each evaluation index
is defined as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (19)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (20)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (21)

R2 = 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(22)

where n indicates the number of landslide data points, ŷ = {ŷ1, ŷ2, . . . , ŷn} is the predicted
value of the model, y = {y1, y2, . . . yn} is the actual value of the Baishuihe landslide,
and y = {y1, y2, . . . yn} is the average value of the actual Baishuihe landslide. The three
evaluation indexes MAE, RMSE, and MAPE all indicate that the smaller the value is, the
better the performance and accuracy of the model. R2 also evaluates the model according
to the numerical value, and the higher the evaluation value is, the better the performance
and accuracy of the model.

To further verify the effectiveness and predictive performance of the LMD-BiLSTM
model, this study uses the LMD-BiLSTM without MIC and the LMD-LSTM model to
simulate 108 data points of the Baishuihe landslide simultaneously. Four models are used
to simultaneously predict five PF components and uk components, and the prediction
results are shown in Figure 9.

After obtaining five PF components and uk components, the final prediction result
is obtained by adding the subsequence prediction results of these models. To make a
better comparison, the BiLSTM model is added to compare the final landslide displacement
prediction results. The comparison of the final landslide displacement prediction results is
shown in Figure 10.

We can see from Figures 9 and 10 that the BiLSTM model can also be used to predict
landslide displacement without the processing of the LMD algorithm and MIC method, but
it can only roughly predict the overall trend, and the predicted fluctuations are large. The
prediction result of the LMD-BiLSTM model is similar to the curve of the LMD-BiLSTM
without the MIC model, but it can be observed that the prediction deviation of some points
is too large, which is the result of selecting too many input factors with low correlation
without the MIC algorithm. The prediction results of the LMD-LSTM model are not as
accurate as those of the LMD-BiLSTM model either on the whole or at a certain point, due
to the lack of information about the future during model training and prediction. The
experimental results also verify this idea.

To intuitively compare the performance of these prediction models, this paper uses
MAE, MAPE, RMSE, and R2 to evaluate the models. The results are shown in Table 2.
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Table 2. Comparison of four models for landslide displacement prediction.

Models MAE MAPE RMSE R2

LMD-BiLSTM 7.276 0.322 8.511 0.976

LMD-BiLSTM
without MIC 17.061 0.749 21.156 0.853

LMD-LSTM 15.147 0.670 18.215 0.891

BiLSTM 24.501 1.074 29.524 0.713

In addition to using the model prediction performance evaluation index to evaluate
the prediction results of these models, this paper also uses the minimum error, maximum
error, relative error, and mean absolute error to intuitively judge the prediction performance
of the model, and the results are shown in Table 3.

Table 3. Accuracy of the predicted landslide displacement based on the four models.

Models Minimum Error Maximum Error Relative Error Mean Absolute
Error

LMD-BiLSTM 0.518 16.544 3.784 7.109

LMD-BiLSTM
without MIC 1.386 39.061 9.016 17.062

LMD-LSTM 1.680 30.583 7.983 15.168

BiLSTM 1.987 49.078 12.861 24.489

Tables 2 and 3 show that the model processed by the LMD algorithm and MIC algo-
rithm is superior to the pure neural network BiLSTM model in terms of the comprehensive
prediction level at all time points, the stability of the whole prediction, and the fluctuation
change at a single time point. This superiority is because the hybrid model exploits the
advantages of the LMD algorithm, which is good at analyzing the characteristics of data
signals and reasonably reflecting the time and frequency distribution of data in various
spaces and scales, which are advantages of the use of the MIC algorithm, which can calcu-
late the degree of nonlinear association between two variables and also use the advantages
of the BiLSTM model, which is good at processing time series data. Therefore, the hybrid
model has the advantages of these algorithms and models. Because LMD-BiLSTM without
the MIC model does not have the MIC algorithm to calculate the correlation of influencing
factors, its prediction performance is between the LMD-BiLSTM model and BiLSTM model.
Although the BiLSTM model takes the information sharing each cycle into account in the
prediction, its prediction performance degrades because it does not remove redundant
influencing factors, with the final prediction result being inferior to LMD-LSTM.

5. Conclusions

Landslide displacement prediction has been studied for a long time but is still a chal-
lenging research topic. In order to solve the disadvantage of ignoring random displacement
in most time analysis methods, this paper proposes an LMD-BiLSTM model based on the
time-frequency analysis method for landslide displacement prediction. The LMD algo-
rithm is used for the first time to deconstruct the nonlinear and nonstationary data series
of landslide displacement and influencing factors into multiple subseries. To improve
the prediction accuracy, the MIC algorithm is used to quantify the correlation between
the subsequences of landslide displacement and the subsequences of factors affecting
the displacement; moreover, the factors with greater correlation are selected as the input
variables of the model. According to the constantly changing characteristics of landslide
displacement, precipitation, and reservoir water level in multiple time periods, the BiLSTM
model is used to predict the subsequence components of landslide displacement, and the
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final landslide predicted displacement is obtained by adding the predicted results. The real
landslide dataset of the Baishuihe landslide in the Three Gorges Reservoir area of China
is used in the experiment, and excellent results are obtained. The final results show that
the new LMD-BiLSTM model proposed in this study can predict landslide displacement
smoothly and accurately. In the future, the LMD-BiLSTM model will be improved accord-
ing to the different characteristics of each landslide and then popularized and applied to
the displacement prediction of other landslides. In addition, the LMD-BiLSTM model could
also be applied to other forecasting fields, such as rainfall prediction and power generation
prediction, to assist decision-makers in continuously improving the process of making
reasonable judgments. The decision makers can add the landslide displacement prediction
results into the landslide warning system to make their own judgment according to the
landslide displacement, and the scientific community can build on these findings and apply
these methods to other areas of prediction. The results presented in this paper may not be
applicable to the early warning of landslides, because prediction models require a certain
amount of monitoring data, which is not suitable for early warning.
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