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Abstract: Landslides are serious and complex geological and natural disasters that threaten the
safety of people’s health and wealth worldwide. To face this challenge, a landslide displacement
prediction model based on time series analysis and modified long short-term memory (LSTM) model
is proposed in this paper. Considering that data from different time periods have different time
values, the weighted moving average (WMA) method is adopted to decompose the cumulative
landslide displacement into the displacement trend and periodic displacement. To predict the
displacement trend, we combined the displacement trend of landslides in the early stage with an
LSTM model. Considering the repeatability and periodicity of rainfall and reservoir water level
in every cycle, a long short-term memory fully connected (LSTM-FC) model was constructed by
adding a fully connected layer to the traditional LSTM model to predict periodic displacement.
The two predicted displacements were added to obtain the final landslide predicted displacement.
In this paper, under the same conditions, we used a polynomial function algorithm to compare and
predict the displacement trend with the LSTM model and used the LSTM-FC model to compare and
predict the displacement trend with eight other commonly used algorithms. Two prediction results
indicate that the modified prediction model is able to effectively predict landslide displacement.

Keywords: landslide displacement prediction; weighted moving average method; long short-term
memory fully connected; time series analysis

1. Introduction

Landslides are complex and common geological natural disasters [1] that cause harm
or damage to humans and their living environment [2]. Landslides in China have become
one of the most serious geological disasters due to their high frequency, wide range of
influence and long duration. Geological disasters due to landslides not only threaten the
safety of people’s health and wealth but also have a great impact on the economy, society
and natural environment. Development of countries is greatly hampered by disasters
such as landslides [3]. In China, the Three Gorges Reservoir area has many geological
problems, especially landslides, due to its complex and diverse geological environment,
different landforms and new tectonic movement, such as water storage. These problems
have brought many property losses and casualties to the reservoir area and even affected
the overall implementation of an irrigation project. According to China’s 2020 national
geological disaster report, a total of 7840 geological disasters occurred in China in 2020,
including 4810 landslides, accounting for the majority of geological disasters in China
at 61.3 percent of the total. Additionally, landslide is increasing year by year due to
more intense and frequent rainfall as a consequence of climate change [4]. Therefore, it is
urgent to strengthen the monitoring and prediction of landslide displacement to reduce
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landslide hazards [5]. However, due to the complexity of landslide formation mechanism
and inducing factors, landslide displacement prediction is still a difficult task. The study
of landslide displacement is an effective means to solve landslide problems and better
understand landslide movement [6].

Landslides can be regarded as nonlinear dynamic systems [7–11]. They can occur for a
variety of reasons, such as morphology, geology and human activities [12–16]. Reasonable
prediction of landslide displacement is still one of the key points in disaster research [17].
Recently, there have been many studies on landslide displacement prediction, although
scholars have not fully understood its principle. Existing landslide displacement prediction
models can be divided into two types: one is based on physical mechanism models, and the
other is based on data-driven models. In the realm of data-driven models, machine learning
(ML) methods have been diffusely used in landslide displacement prediction and have
obtained good results and performance. In recent years, landslide displacement data have
been decomposed into subsequences of different frequencies, and then all subsequences
are combined to get a final predicted landslide displacement [18–23]. Lian et al. [18] used
ensemble empirical mode decomposition (EEMD) method to decompose landslide displace-
ment. they trained neural network with particle swarm optimization and gravitational
search algorithm (PSOGSA) group algorithm, and proposed a CWC method as the loss
function of PSOGSA algorithm, which achieved good prediction effect. Du et al. [19] also
used EEMD method to decompose landslide displacement, and considered rainfall, reser-
voir water level and previous landslide displacement as three inputs of the training model.
Grey Relational Degree (GRD) was used to calculate the correlation between the inputs
and landslide displacement, and finally the PSO-ELM model was used to predict. Based
on the time series analysis theory of global navigation satellite system (GNSS), The com-
plete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method
was used to obtain multiple sub-sequences of landslide displacement. Then, attention
mechanism with long short time memory neural network (AMLSTM NN) was used to
realize the joint prediction of multiple influencing factors [20]. In order to improve the
accuracy of prediction, Zhou et al. [21] used 7 inputs and combined wavelet transform, PSO
and ELM method to construct a prediction model with excellent prediction performance.
Liu et al. [22] believed that rainfall, dam reservoir water level and landslide state were the
key factors affecting landslide displacement. LSTM, RF and GRU models were used to
predict landslide displacement, and Gini coefficient was used to quantify the prediction
ability of the model. In research [23], researchers split landslide displacement by using
variational mode decomposition (VMD) method, then they obtained several signals which
are different frequencies. Each signal was separately predicted by stack LSTM model.
The final displacement result was acquired by adding the results.

Wu et al. [24] provided a new idea and used a new gray prediction model to predict
landslide displacement. Because RNNs are more appropriate for presenting nonlinear
dynamic systems than FNNs, they have been used to predict landslide displacement [13].
A swarm intelligence algorithm combined with a machine learning algorithm uses the
advantages of the swarm intelligence algorithm to improve the accuracy of the machine
learning algorithm for landslide displacement prediction [21,25–28]. Guo et al. [25] utilized
the advantage of grey wolf optimizer (GWO) method to optimize the back-propagation neu-
ral network (BPNN) and achieve the goal of accurately predicting landslide displacement.
Ham et al. [26] proposed a hybrid machine learning displacement prediction model based
on support vector machines, which accurately predicted the displacement of Majiagou land-
slide by taking into account the hysteresis of groundwater level changes. Deng et al. [27]
constructed the last absolute shrinkage and selection operator—extreme learning machine
(LASSO-ELM) model based on rainfall and acoustic emission and used 4 evaluation indexes,
which achieved nice performance. Wang et al. [28] utilized the dynamic memory function
of Elman neural network and combined it with genetic algorithm to effectively improve
the prediction performance of neural network prediction model. The model provided an
example for landslide displacement and deformation warning.



Electronics 2022, 11, 1519 3 of 24

To better analyze landslide displacement, landslide displacement was divided into
trend terms and periodic terms, and a polynomial model was used to predict the displace-
ment trend of landslides, which achieved good performance [29–34]. In [35], researchers
combined Verhulst inverse function with stochastic forest algorithm and obtained a land-
slide displacement prediction model combining empirical method and numerical method.
Xie et al. [36] considered slope, rock mechanical properties, land use methods and other
aspects, and they used an LSTM model directly to predict landslide displacement. In addi-
tion, many researchers regard the periodic displacement of landslides as time series data
that are predicted by the original LSTM model, and good results are achieved [32,36]. Be-
cause there are many factors affecting landslide displacement, correlation degree methods
were used to select the data variables of the model and consider which environmental
factors are key and effective influencing factors, thus effectively improving the prediction
accuracy of the model [19,32,37,38]. For the complex situation of landslide displacement
prediction, some neural network models are improved and combined with the LUBE model.
The new model does not predict landslide displacement points but rather generates interval
predictions [9,18,39].

However, previous research achievements regarded landslide displacement or peri-
odic displacement, rather than the trend of landslide displacement, as typical time series
data. They did not consider that the value and meaning of the time series data and the
landslide displacement data at each time point were not the same. Therefore, how to
more scientifically and reasonably analyze original time series data and establish a highly
accurate prediction model is the difficulty of landslide displacement prediction. Moreover,
previous studies could not obtain long-term and short-term features at the same time and
could not simultaneously learn temporal and spatial features in a model.

To solve this multidimensional and multistep prediction problem and enhance the
prediction performance of landslide displacement, based on time series analysis and an
LSTM model, a dynamic data-driven landslide displacement prediction model is proposed
in this paper. Simulation results show that the dynamic model is effective and accurate in
predicting the landslide displacement of two landslides in China.

The main contributions of this paper are as follows:

1. We considered the recent displacement data are more valuable than older, and then the
recent data was given a larger weight. The landslide displacement data were decom-
posed into displacement trends and periodic displacements using the WMA method.

2. Considering that the displacement trend of landslide displacement is a kind of time
series data, we used the LSTM model to predict the displacement trend of landslides.

3. Because the periodic displacement in landslide displacement is easily affected by
external environmental factors, it cannot be accurately predicted. Therefore, this
study combined an LSTM model and a fully connected layer to construct an LSTM-FC
model that allows the new model to receive previous and future information during
training to predict the periodic displacement. The final total predicted displacement
is the sum of the trend term and periodic term.

The other part of this article is organized as follows: In part 2, we introduce the
WMA method and the basic principle and training method of the dynamic hybrid LSTM
prediction model. The third part introduces two real cases to verify the proposed modified
model in this paper. The feasibility and validity of the modified model are confirmed
by simulation with other models. In part 4, the proposed model is evaluated, and its
applicability and limitations are discussed. The last part provides the conclusion.

2. Materials and Methods
2.1. Weighted Moving Average Method

The surface of the Earth is an extremely complex and open system in which factors
continuously interact in ways that are not fully recognized. It is of great significance to
analyze the effect of trigger factors on landslide prediction and landslide development [40].
In recent years, many papers on landslide displacement analysis and decomposition have
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achieved preliminary results, and the actual measured cumulative displacement data
are decomposed into three parts: trend displacement, periodic displacement and ran-
dom displacement [30,38,41]. Trend displacement is controlled by topography, geological
structure, soil moisture and other internal geological factors and is a linear part of land-
slide cumulative displacement. Periodic displacement is affected by sudden changes in
nonlinear external action, such as precipitation, reservoir water level change, and snow
and ice melting and is one of the nonlinear parts of landslide cumulative displacement.
Random displacement is affected by random factors, such as sensor equipment failure
and man-made or animal-induced landslides, and it is also one of the nonlinear parts
of landslide displacement. Due to the existing technology and research conditions, it is
difficult to make an accurate prediction of random displacement and is ignored in many
studies [9,32,38,41,42]. Therefore, random displacement is not considered in the landslide
displacement prediction study in this paper, and the nonlinear part of landslide cumula-
tive displacement is regarded as periodic displacement only. The landslide cumulative
displacement can be assumed as follows:

D = T + P (1)

where D is the cumulative displacement of the landslide, T is the trend term of displacement,
and P is the periodic term of displecement.

The displacement trend in landslide displacement represents the long-term develop-
ment trend of landslide displacement; therefore, it is necessary to weaken or eliminate the
influence of seasonal and irregular periodic changes in time series and obtain the linear part
of landslide displacement. The trend displacement can be calculated by moving average
(MA) method [30–32]. However, the value and significance of landslide displacement
data at each time point are not fully considered in the ordinary MA method, so it is not
reasonable to treat the data at each time point equally in an MA method. In this paper,
considering that recent data relative to the forward displacement are more valuable and
meaningful, to give the recent data greater weight, a relatively small weight is given to the
forward data, resulting in an improved weighted MA method for landslide displacement
data decomposition. The computation formula is as follows:

Tt =
w1nt−1 + w2nt−2+, . . . ,+wmnt−m

w1 + w2+, . . . ,+wm
(2)

where t represents the time, Tt represents the displacement trend, nt represents the landslide
displacement data, and wt is the weight of nt, reflecting the importance of the corresponding
nt in the weighted average. In this paper, considering that the data frequency collected is
once a month and the time cycle is affected by external influences, m is set to 12, indicating
that the displacement trend is decomposed according to the landslide displacement over
the 12 months of the previous year. w1, w2, . . . , wm are set to 12, 11, . . . , 1, which indicates
that the more recent the data are, the more important its weight is.

2.2. Long Short-Term Memory Model

Deep learning methods can learn from large amounts of data and solve problems
that are difficult to work with by traditional machine learning algorithms, such as high
dimensionality, jumbling issues and high noise in data. Therefore, deep learning has been
successfully applied to many fields in recent years, including speech recognition, autopilot,
medical treatment, network security, image processing, autopilot, retail, natural language
processing, text processing, power prediction, and pattern recognition. An RNN, as a typical
deep learning model, is often used in time series data processing. The advantage of an RNN
is that it can connect previous data information to the current data. For example, it can infer
the meaning of the current statement from the previous text and infer the stock price of the
next day from the previous stock price and fluctuation. However, when the information
data reach a certain length, an RNN experiences the question about gradient disappearance
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or gradient explosion. The reason is that the influence of the input to an RNN’s hidden and
output nodes disappear rapidly with each round of network expansion so that the network
cannot remember an earlier input of the time series data. Therefore, RNNs have difficulty
learning distant information. To better process long-sequence information data, Hochreiter
and Schmidhuber proposed the LSTM neural network model [43]. The LSTM model is an
improvement based on an RNN model, which can solve the flaws of gradient explosion
and gradient disappearance. An LSTM model uses a memory unit with the state as the
“memory” in the network instead of the simple hidden node in an RNN and introduces
the “gate” mechanism to control the memory update. As a result, an LSTM model has
the ability to “remember” input information, as shown in Figure 1. The basic unit of an
LSTM hidden layer is a memory cell, which contains an input gate, forget gate and output
gate. In an LSTM’s three gated units, the forget gate can control how much information
can be transmitted to the unit state at time t-1; the input gate can control how much input
information can be saved into the unit state at time t and can adjust the effect of the old
prediction on the new prediction; and the output gate determines how much information
about the cell state can be transmitted to the output of the LSTM, and it can control the
influence of past trends on the new prediction results. The LSTM variables are as follows:

ft = σ
(

w f ·[ht−1, xt] + b f

)
(3)

it = σ(wi·[ht−1, xt] + bi) (4)

ot = σ(wo·[ht−1, xt] + bo) (5)

Ct = ft·Ct−1 + it·C̃t (6)

ht = ot·tan h(Ct) (7)

C̃t = tan h(Wc·[ht−1, xt] + bc) (8)

where t represents time; xt represents the input data; ft denotes the forget gate; it denotes
the input gate; ot denotes the output gate; ht denotes the final output data; w f represents
the weight of the forget gate; wo represents the weight of the output gate; wi represents
the input of the forget gate; wc represents the temporary weight; b f represents the bias
value corresponding to forget gate; bi represents the bias value corresponding to input gate;
bo represents bias value corresponding to output gate; bc represents temporary bias; Ct
represents the unit state; C̃t represents the unit temporary state; · represents the product
of matrices; σ represents a sigmod activation function; tanh represents a activation tanh
function, and [] represents two vectors are joined together [38].
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2.3. Long Short-Term Memory Fully Connected Model

To improve the prediction performance of the model, a fully connected layer is added
to the model after the hidden layer of the LSTM. The periodic displacement of the Baishuihe
landslide and Bazimen landslide is mainly influenced by rainfall and reservoir water levels,
which are periodic and repetitive. Therefore, the function of adding a fully connected layer
is to receive information from each node of the LSTM and synthesize the characteristic
information of each node in the LSTM. Therefore, each node in the fully connected layer
will not ignore the rainfall and reservoir water level information before and after predicting
the final result. Then, a correction linear unit (ReLU) activation function is used to avoid the
effect of the neural network vanishing gradient [44,45]. Finally, the model uses an output
unit to calculate predicted landslide displacement data. At present, a lot of applications use
the LSTM-FC model, including biomedical engineering [45], photovoltaic power generation
forecasting [46], PM2.5 concentration prediction [47], medical treatment [44], and human
action recognition [48]. The structure of the LSTM model after adding a fully connected
layer is shown as Figure 2:

y = relu
(
wyz + by

)
(9)
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2.4. Landslide Displacement Prediction Process

Figure 3 expresses the whole specific process of landslide prediction, which is as follows.
Step 1: Because landslides are always affected by their own geological attributes and

external factors over time, many studies regard landslide displacement as time series data
analysis. However, the previous studies ignored the time series data in the analysis. For
the current situation, data at different times should have different weights. Therefore,
considering that the data closer to the present is more valuable, this paper proposes
the WMA method to decompose the historical cumulative displacement and obtain the
displacement trend and periodic displacement of the cumulative displacement.

Step 2: The trend displacement of landslide is mainly affected by landslide itself, so
we consider the trend displacement data has time series property. Previous research treated
trend displacement as general information data. This will ignore the development rule of
time series data. Therefore, this paper would use the trend displacement to train the LSTM
model, and then predict the trend displacement.

Step 3: The periodic displacement is primarily impacted by environmental influences
and the variation of periodic term is not as stable as trend displacement. Baishuihe landslide
and Bazimen landslide are both located in the Yangtze River basin and they are mainly
affected by rainfall and reservoir water level. The periodic displacement changes with
seasonal rainfall and the changes in reservoir water level each year. Because periodic
term has similar changes in each period, we need to make full use of all similar changes
information during training and predicting. Therefore, a fully connected layer is connected
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after the LSTM model in this paper, so that every node has information within all periods.
Then, the LSTM-FC model predicts periodic displacement.

Step 4: On the basis of Formula 1, the predicted landslide displacement can be pre-
dicted by summing the trend displacement obtained in Step 2 to the periodic displacement
obtained in Step 3.

Step 5: After the above steps, the final landslide predicted displacement is obtained.
In order to check the prediction performance of the modified model, we applied the model
to two actual landslides, and the predicted cumulative displacement was compared with
other prediction models and measured displacement. The final comparison results verified
the accuracy of the proposed model.
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3. Results

In this research, the practical performance of the modified model for landslide displace-
ment prediction is verified by using the Baishuihe and Bazimen landslides. The specific
geographical locations of two landslides are shown in Figure 4.

3.1. Baishuihe Landslide

The Baishuihe landslide is located in Baishuihe village, Shazhenxi town, 56 km from
the site of the Three Gorges Dam. The geographical coordinates are 110◦32′09′′ longitude
and 31◦01′34′′ latitude. The slope is low in the north and high in the south. The elevation of
the trailing edge is 410 m, with the leading edge reaching the Yangtze River and bounded
by a bedrock ridge on the east and west sides, with an overall slope of approximately 30◦.
The volume of Baishuihe landslide is 1260 × 104 m3, and the average thickness is about
30 m. The length from south to north is 600 m and the length from east to west is 700 m. It
is an accumulation landslide, and the slope body is a straight slope.

Based on the topography, geological conditions, deformation characteristics and ob-
servation requirement of Baishuihe landslide, it is determined that the main monitoring
contents of the landslide are surface displacement monitoring, borehole inclination monitor-
ing and underground water level monitoring. At the beginning of monitoring, there were
seven GPS devices distributed on three longitudinal sections, with three GPS monitoring
points on the middle section and two on both sides. After that, four GPS monitoring
points were successively established in the landslide warning area. The ZG118 station is
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installed at the center of the landslide, which can reflect the entire variation in landslide
development, and the data of ZG118 is complete and the time is relatively long, which
is suitable for experimental simulation modeling. Therefore, this study uses the ZG118
data to simulate the displacement of the Baishuihe landslide. The topographic map of the
Baishuihe landslide is shown in Figure 5.
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This study uses 100 groups of data of Baishuihe landslide. Each group contains
landslide displacement, rainfall and reservoir level data. The data begin in September 2004
and end in December 2012, and its collection frequency is once a month. This data set can be
acquired for academic research by the National Cryosphere Desert Data Center/National
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Service Center for Speciality Environmental Observation Stations. These data are shown in
Figure 6. The capacity and availability of the modified model we designed can be verified
by modeling and simulation of these data.
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Figure 6. Relationship between the displacement of Baishuihe landslide and external environmental
factors.

The cumulative displacement of the Baishuihe landslide is decomposed by the WMA
method, and then the actual displacement trend and the detached periodic displacement
can be worked out. The curves of cumulative displacement, displacement trend and
periodic displacement are shown in Figure 7.
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3.2. Bazimen Landslide

The Bazimen landslide is located on the right bank of the Xiangxi River, a tributary of
the north bank of the Yangtze River, in Guizhou town of Zigui County, Hubei Province,
31 km from the Three Gorges Dam. The Xiangxi River is north–south, almost crossing
the Yangtze River, and the Three Gorges Reservoir submerged landslide front has 55 m to
135 m elevation sections.
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The landslide is located on the right bank of the Xiangxi River, and the slope is north–
south. The landslide is an accumulation layer landslide and is arranged in the shape
of a dustpan at the foot of the bank slope. The geographical coordinates are longitude
110◦45′30′′ and latitude 30◦58′16′′.

The elevation of the landslide is 139 m to 280 m, high in the west and low in the east,
with an inclination to the east. The slope of the landslide surface is 10◦ to 30◦, showing step
undulation. There are still two platforms: the leading-edge platform and the back edge
platform, with elevations of 139 m to 165 m and 220 m to 230 m, respectively. The back wall
of the landslide is a steep slope with a slope foot of approximately 40◦ to 60◦, and the front
face is the Xiangxi River. The length of the landslide is 350 m, the width is 350 m to 500 m,
the average thickness is 30 m, and the volume is approximately 4 million m3.

There are three GPS deformation monitoring points (ZG111, ZG110, ZG112) within the
landslide area. In this research, the ZG111 location is selected as the monitoring point for
the Bazimen landslide because it has the longest available monitoring data series and the
largest landslide deformation. The topographic map of the Baishuihe landslide is shown in
Figure 8.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 8. The topographic map of the Bazimen landslide. 

This study uses 60 groups of data of Bazimen landslide. Each group contains 
landslide displacement, rainfall and reservoir level data. The data begin in January 2008 
and end in December 2012, and its collection frequency is once a month. This data set can 
be acquired for academic research by the National Cryosphere Desert Data 
Center/National Service Center for Speciality Environmental Observation Stations. The 
data are collected once a month and shown in Figure 9. The capacity and availability of 
the modified model we designed can be verified by modeling and simulating these data. 

 
Figure 9. Relationship between the displacement of Bazimen landslide and external environmental 
factors. 

The cumulative displacement of the Bazimen landslide is decomposed by the WMA 
method, and then the actual displacement trend and actual periodic displacement are 
obtained. The curves of cumulative displacement, displacement trend and periodic 
displacement are shown in Figure 10. 

Figure 8. The topographic map of the Bazimen landslide.

This study uses 60 groups of data of Bazimen landslide. Each group contains landslide
displacement, rainfall and reservoir level data. The data begin in January 2008 and end in
December 2012, and its collection frequency is once a month. This data set can be acquired
for academic research by the National Cryosphere Desert Data Center/National Service
Center for Speciality Environmental Observation Stations. The data are collected once a
month and shown in Figure 9. The capacity and availability of the modified model we
designed can be verified by modeling and simulating these data.

The cumulative displacement of the Bazimen landslide is decomposed by the WMA
method, and then the actual displacement trend and actual periodic displacement are
obtained. The curves of cumulative displacement, displacement trend and periodic dis-
placement are shown in Figure 10.
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After time series analysis and decomposition by WMA method, trend displacement
and periodic displacement are obtained. As can be seen from Figures 7 and 10, the trend dis-
placement is a steady and gradually rising curve that changes slowly over time. The trend
displacement is due to the slow generation of landslide structure under the action of gravity,
and will not change with the change in external factors. Periodic displacement is different
from trend displacement. The periodic displacement changes periodically. When the
rainfall is very little or the reservoir water level is high, the periodic displacement is close
to 0, and when the rainfall is large or the reservoir water level drops rapidly, the peri-
odic displacement rises fastest. This shows that the change in periodic displacement is
accompanied by the change in external factors, and the more severe the change in external
factors, the faster the rise of periodic displacement. After time series analysis of landslide
displacement and decomposition by WMA method, we can predict trend displacement
and periodic displacement, respectively.

3.3. Trend Displacement Prediction

Because the displacement trend represents the intrinsic displacement change inside a
landslide, it is less affected by external influences. In addition, the displacement trend of a
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landslide can represent the current state of the landslide, so this study uses the displace-
ment trend of the first 12 months of a landslide to indirectly represent the state of landslide
as the input variable to the LSTM model to predict the trend term of displacement and
the predicted trend displacement as the output sequence. In this paper, the displacement
trend data of the Baishuihe landslide in the first 76 months and of the Bazimen landslide in
the first 48 months are used as the training data of the model to predict the trend displace-
ments of Baishuihe landslide after 24 months and of Bazimen landslide after 12 months.
The comparison between the prediction and actual results is shown in Figures 11 and 12.
It is obvious the modified model can precisely fit and predict the trend displacement of
both landslides.
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Figure 12. Fitting and predicting results of trend displacement of ZG1113.4. Periodic displacement
prediction.

It can be seen from Figures 6 and 9 that the cumulative displacement of the Baishuihe
and Bazimen landslides began to increase rapidly in the first few months of the rainy
season and when the reservoir water level decreased. After the rainy season and when the
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reservoir water level was stable, the change in landslide displacement basically ended. It
can be concluded that the changes in rainfall and reservoir water level have a profound
influence on the changes in the displacement of the Baishuihe and Bazimen landslides and
are the inducing factors of the changes in the displacement of the two landslides. Therefore,
the rainfall and reservoir water level are used as input variables to the LSTM-FC model
to predict periodic landslide displacement, and the predicted periodic displacement is
the output sequence. The periodic displacement data of Baishuihe landslide in the first
76 months and of Bazimen landslide in the first 48 months are used as the training data of
the model to predict the periodic displacements of the Baishuihe landslide after 24 months
and of the Bazimen landslide after 12 months. The comparison between the prediction
and actual results is shown in Figures 13 and 14. The modified model we proposed can
precisely predict the periodic displacement of both landslides.
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3.4. Total Displacement Prediction

After calculating the predicted displacement trend and periodic displacement, accord-
ing to the displacement time series data decomposition principle (Equation (1)), the trend
and periodic displacement of corresponding time are directly added to acquire the final
predicted displacement of two landslides. The predicted final landslide displacements are
shown in Figures 15 and 16.
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As shown in Figures 15 and 16, when the amount of data is small, the performance
of the model training for actual cumulative displacement is not very good, and there are
certain fluctuations around the actual displacement data. However, as the amount of
training data increases, the fitting performance of the model after training also improves.
The total displacement predicted by using the training set is in good agreement with the
actual total displacement. In general, the proposed model in this paper can accurately
predict the total displacement of both landslides.
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4. Discussion

To accurately estimate the prediction capacity of the model, performance indexes were
used to evaluate the performance and accuracy [49–52]. This study uses three evaluation
indicators: the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE). The MAE is a basic evaluation index, reflecting the
overall gap between the predicted value and actual data. The RMSE is sensitive to outliers.
If a prediction point is unreasonable, the RMSE value will be greatly affected. The MAPE
evaluation index not only considers the error between the predicted value and true value
but also considers the relationship between the error and true value. The three evaluation
indexes are calculated as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (11)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (12)

R2 = 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(13)

where n denotes the number of data points, y = {y1, y2, . . . , yn} denotes the average
measured values; ŷ = {ŷ1, ŷ2, . . . , ŷn} denotes the predicted value, and y = {y1, y2, . . . , yn}
denotes the measured value. The smaller the value of the three evaluation indexes, the better
the performance and accuracy of the model.

To demonstrate the superiority of the proposed algorithm over traditional methods, we
compare the prediction performance of the displacement trend and periodic displacement
with other algorithms. After comparison, each algorithm is evaluated and further discussed
by using the evaluation index to evaluate the prediction performance. We first compare
the displacement trends of the two landslides. Since the displacement trend of a landslide
is mainly affected by the geological conditions of the landslide itself rather than external
factors, the model discussed in this paper is used to directly predict the displacement
trend, and the results are compared with a polynomial model [29–32]. The experimental
simulation results of the two algorithms are compared with the actual displacement trend,
and the calculated comparison results are shown in Figures 17 and 18.

After several experiments and simulations, the construction of the LSTM model is
set as follows. Considering that each year is a prediction cycle, the time step is set to 12,
the learning rate is set to 0.01, and the amount of hidden layer nodes is set to 50. In this
paper, the polynomial parameters in [29–32] are adopted, and the power of the polynomial
is set to 3. Figures 17 and 18 show that the prediction results of the LSTM model discussed
in this paper are closer to the actual displacement trend. Table 1 reports the predictive
performance of the two algorithms.

It can be seen from Table 1 that the LSTM model is more excellent than the Polynomial
model in predicting trend displacement. The prediction result of Baishuihe landslide is
better than Bazimen landslide. We believe that because the LSTM model is an artificial
intelligence algorithm. As there are more data in Baishuihe landslide, the LSTM model gets
more training opportunities, so the prediction performance will improve with the increase
in data.
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Table 1. Evaluation index results of each model for trend displacement prediction.

Landslide Model MAE RMSE MAPE (%) R2 (%)

Baishuihe
LSTM 4.32 5.55 2.1 99.55

Polynomial 7.36 8.33 3.4 97.98

Bazimen
LSTM 4.26 4..86 2.7 99.38

Polynomial 5.84 6.89 3.7 98.87

After the simulation verification of the displacement trend of the two landslides, the
next step is to verify the periodic displacement performance of the two landslides predicted
by the LSTM-FC model. Because the periodic displacements of the Baishuihe and Bazimen
landslides are more affected by rainfall and reservoir water level, the influence is periodic
and repetitive, so this study adds a fully connected layer after the LSTM so that each node
in the fully connected layer can completely receive periodic displacement information at
all time points. The comparison of the periodic displacements is shown in Figures 19–26.
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We set the time step of the LSTM-FC model to 12, the learning rate is 0.01, and the
amount of hidden layer nodes is 50. For LSTM, BPNN, ELM, RNN, GRU, BiLSTM and
BiGRU models, the parameter settings are the same as the LSTM-FC model. For the
SVR model, the gamma parameter is 0.01 and the kernel parameter is ‘rbf’. We compare
the LSTM-FC model with eight other models, the LSTM, BPNN, SVR, ELM, RNN, GRU,
BiLSTM and BiGRU models, to prove its excellent predictive performance. All algorithms
are used to predict the periodic displacement of the two landslides independently but are
not combined with the displacement trend prediction algorithm.

Figures 19–26 also show that the simulation results of the LSTM-FC model in this
paper are closer to the measured periodic displacement. Table 2 reports the predictive
performance of the five algorithms.
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The evaluation index data in the table show that the LSTM-FC model has obvious
advantages over the other algorithms in terms of prediction ability, whether from the
perspective of overall prediction or from the perspective of error between individual
predicted and actual data. Table 2 shows that compared with other eight models, the LSTM-
FC and other time series models are more suitable for processing time series data such as
cyclic landslide displacement. However, the LSTM-FC model considers the repeatability
and periodicity of changes in the rainfall and reservoir water level in every cycle. After
adding the fully connected layer, the model considers changes in external environmental
factors before and after the cycle during training, which improves the prediction ability of
the model.
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It can be seen from the results that the prediction effect of time series models is
generally better than the general machine learning models, and the prediction effect of
Baishuihe landslide is better than Bazimen landslide. It should be that the deep learning
model is more suitable for the case of large amount of data, especially the BiLSTM model.
We believe that this may be because BiLSTM is also a model that considers periodic changes
in data, and takes the repetition and periodicity of external environmental factors changes
in each cycle into account in the training process, so its prediction performance is also
excellent. Although the modified model has achieved excellent performance in landslide
displacement prediction, it still has two shortcomings. As an improved and more com-
plex deep learning method, the model proposed in this paper has more parameters than
a traditional LSTM model, which makes it more difficult to tune the model parameters
and obtain the optimal solution of all parameters. The second disadvantage is that the
model proposed in this paper has certain requirements on the quantity and size of the data
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sets. When the number of training sets is small, the modified model cannot fully train the
parameters to reach the optimal value, which affects the prediction performance of the
model and leads to some errors. In the future, this model will be used as a part of landslide
warning system to improve the warning performance of landslide warning system. We
will also adjust the structure and parameters of the modified model for different landslides,
so that the model can better adapt to different landslides. We will continue to improve
the prediction model by using the data augmentation method to achieve better prediction
performance in the case of a small amount of data.
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Table 2. Evaluation index results of each model for periodic displacement prediction.

Landslide Model MAE RMSE MAPE (%) R2(%)

Baishuihe

LSTM-FC 1.98 2.54 2.58 99.17

LSTM 3.45 5.85 3.45 98.32

BPNN 5.19 6.37 12.82 95.81

SVR 5.16 5.84 19.65 96.49

ELM 7.32 5.52 23.99 93.15

RNN 4.73 5.22 17.36 97.19

GRU 3.34 4.26 12.37 98.12

BiLSTM 2.60 3.05 6.64 99.04

BiGRU 3.50 3.91 11.60 98.42

Bazimen

LSTM-FC 2.36 2.97 3.03 99.70

LSTM 3.65 6.58 3.83 98.55

BPNN 6.22 7.31 11.41 98.21

SVR 8.09 8.63 11.49 97.51

ELM 5.61 6.33 7.30 98.66

RNN 6.03 6.93 9.99 98.39

GRU 5.28 5.97 9.00 98.80

BiLSTM 4.64 5.14 7.04 99.11

BiGRU 4.68 5.34 7.32 99.04

5. Conclusions

Landslides are serious and complex geological and natural disasters that threaten
the safety of people’s lives and property worldwide. To face this challenge, a landslide
displacement prediction model based on time series analysis and modified LSTM model is
proposed in this paper. Considering that data from different time periods have different
time values, the WMA method is adopted to decompose the cumulative landslide displace-
ment into the displacement trend and periodic displacement. To predict the displacement
trend, we combined the displacement trend of landslides in the early stage with an LSTM
model. Considering the repeatability and periodicity of external environmental factors in
every cycle, the LSTM-FC model was constructed by adding a fully connected layer to the
traditional LSTM model. Then, the modified model directly predicted periodic displace-
ment. The two predicted displacements were added to acquire the landslide predicted
displacement. In this paper, under the same conditions, we used a polynomial function
algorithm to compare and predict the displacement trend with the LSTM model and used
the LSTM-FC model to compare and predict the displacement trend with eight other com-
monly used algorithms. The prediction results indicate that the proposed prediction model
is able to effectively predict landslide displacement.
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