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Abstract: The Dadu River travels in the mountainous areas of southwestern China, one of re-
gions with the most hazards that has long suffered from frequent geohazards. The early identifica-
tion of landslides in this region is urgently needed, especially after the recent Luding earthquake
(MS 6.8). While conventional ground-based monitoring techniques are limited by the complex terrain
conditions in these alpine valley regions, space interferometric synthetic aperture radar (InSAR)
provides an incomparable advantage in obtaining surface deformation with high precision and over
a wide area, which is very useful for long-term and slow geohazard monitoring. In this study, more
than 500 Sentinel-1 SAR images with four frames acquired during 2017~2022 were collected to detect
the hidden landslide regions from the Jinchuan to Ebian Section along the Dadu River, based on
joint-scatterer InSAR (JS-InSAR) and small baseline subset (SBAS) techniques. The results showed
that our method could be successfully applied for landslide monitoring in complex mountainous
regions. Furthermore, 143 potential landslide regions spreading over an 800 km area along the
Dadu River were extracted by integrating the deformation measurements and optical images. Our
study can provide a reference for large-scale geological hazard surveys in mountainous areas, and
the InSAR technique will be encouraged for the local government in future long-term monitoring
applications in the Dadu River Basin.
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1. Introduction

The Dadu River is located in the transition zone between the Western Sichuan Plateau
and the Sichuan Basin in China, near the edge of the Eastern Qinghai–Tibet Plateau [1].
The river flows through four cities in Sichuan in an L-shaped trend, with a total length
of 1074 km. Due to the strong tectonic uplift movements, the topography of this area is
mainly controlled by the geological structure. Where three major fault zones (Xianshuihe,
Longmengshan and Anninghe) and other small faults are intersected and compounded,
the Dadu River Basin exhibits the typical features of the intensely eroded alpine canyon
landform, with complex natural geological conditions, rich natural resources and fragile
ecological environments. Influenced by the intense regional neo-tectonic activity and large
variation in precipitation, this region has become one of areas with the most hazards on
southwestern China with a high incidence of various geohazards, including landslides,
debris flows, earthquakes and so on. Among those, more than 1700 landslides spread all
over the basin have been investigated by geological survey [2–4]. Moreover, the massive
exploitation of mineral, forest and hydroelectric resources has promoted the occurrence
of deep-seated landslides, threatening the safety of infrastructures and human life [5].
Therefore, the early identification of landslides in this region has become the focus of
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disaster prevention and mitigation for the local government, and constructing a map of
geological hazards for the Dadu River Basin is of great significance to promote the efficiency
of local geohazard monitoring and decrease the disaster losses.

The existing geohazard monitoring tools in the Dadu River Basin are mainly manual
inspection, in situ measurement, photogrammetry and GNSS monitoring systems [6]. How-
ever, these methods are time-consuming and have very limited area coverage, and they are
often impaired by heavy fog, cloud, rainfall and steep terrain. Deng et al. [7,8] investigated
the landslide and valley evolution in the two ancient landslides of Luding District, and
found that the geological structure and river erosion were the main contributors. Yan
et al. [9] analyzed the reactivation and deformation characteristics of the Jiaju ancient
landslide. Wang et al. [10] investigated the Moxi ancient landslide in Luding based on the
simulation of landslide movements. Zhao et al. [11] assessed the deformation mechanism
of the ancient landslide in Luding. Zou et al. [12] investigated the slope stability and
landslide susceptibility all over the Dadu River Basin. Zhao et al. [13] provided insight on
the large-scale landslide distribution and geological characteristics along the Sichuan–Tibet
railway. The geological environment of the basin is complicated and densely vegetated,
and the hidden landslide spots in this region are characterized by high concealment, wide
distribution, inaccessibility and difficulties with investigation. As a result, the current field
measurement methods cannot satisfy the actual needs of regular and continuous landslide
monitoring with wide areas and high frequency in the Dadu River Basin. Landslide predic-
tion has remained the key and difficult problem in geohazard prevention, and it has been
strongly influenced by dynamics models, climate, river, complex geological environment
and many other uncertain factors [14–17]. While large-scale surface deformation monitor-
ing can provide new information for more reliable landslide prediction, new techniques
are urgently needed to conduct landslide investigations and historical deformation process
monitoring over the whole river basin.

With the development of space remote sensing techniques in the past few decades,
interferometric synthetic aperture radar (InSAR) has shown unprecedented power in the
identification and long-term observation of large-scale landslide disasters with an all-day
and all-weather working capability [18]. Through the analysis of a series of interferometric
phases, InSAR can obtain the surface deformation with high precision, high efficiency
and a large spatial coverage at a low cost. Furthermore, the large number of satellite
SAR systems with different bands and resolutions also provide abundant data sources
for various geodetic applications. Among them, Sentinel-1 with Interferometric Wide
Swath (IW), with its 250 km wide swath, small revisit time and global coverage, has
greatly promoted large-scale deformation monitoring based on the InSAR technique [19].
Many researchers have applied the InSAR technique in landslide disaster detection in
southwestern China and have achieved remarkable results. Li et al. [20] used InSAR to
detect the stability of reservoir banks on the Jinshajiang River with a multi-sourced SAR
dataset, and studied its relation with groundwater and rainfall. Zhang et al. [21] detected
the landslide disasters in Wenchuan using stacking InSAR and small baseline subsets
(SABS). Zhang et al. [22] studied the spatial distribution and controlling factors of wide-
area landslides along the Sichuan–Tibet railway based on SABS. Chen et al. [23] used the
GACOS-assisted stacking InSAR method to analyze landslides along Sichuan expressways
with the combination of topographic and hydrological factors. Intrieri et al. [24] detected
accelerating deformation behaviors prior to disasters in the Maoxian landslide based on
the SqueeSAR method. However, the mountainous areas in southwestern China are mostly
alpine and gorge regions. The complicated terrain, the dense coverage of vegetation
and the high difference in elevation have brought great challenges to conventional InSAR
processing methods, making the monitoring results unreliable due to the shadow, geometric
distortion, decorrelation and coupling problems, especially for wide areas. As a result,
few studies have investigated landslides over the whole Dadu River Basin. The lack of
abundant landslide disaster information has largely influenced geohazard control and
prevention work, consuming a lot of cost and time.
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Based on the considerations above, the combined joint-scatterer InSAR [25] and SBAS
technique is presented in this work to study the potential landslide geohazards in the
Dadu River Basin based on the collection of Sentinel-1 2017~2022 SAR data with multiple
tracks. First, joint-scatterer InSAR preprocessing was performed on the multi-temporal
coregistered SAR images with original resolution to improve the interferometric phase
quality. Next, we used the SBAS InSAR method to generate the surface deformation map for
wide areas. The landslide spots were subsequently detected, categorized and summarized
according to the deformation time series results and regional geological features. Finally,
the typical landslide regions were further analyzed and verified with GNSS measurements.
Our results can help improve the existing monitoring system in the Dadu River, and the
proposed method can provide new insights for geohazard prevention for the numerous
river basins in southwestern China.

2. Materials and Methods
2.1. The Study Region

The Dadu River in Sichuan, China, mainly crosses Jinchuan, Danba, Luding and
Shimian from north to south, and then eastward to Hanyuan, Ebian and Leshan. While
most of the geohazards frequently occur from the Jinchuan to Ebian Section river basin,
this work focused on the landslide investigation of this section, which is more than
800 km long. The strong dynamic process and vulnerable geological structure of this
area has caused a large gap along the whole river. The region has a steep relief of terrain
from high mountain valleys in the upstream to small hills in the downstream, with average
altitude more than 5000 m and large height difference over 2000 m, as shown in Figure 1a.
Additionally, from the Landsat false color image in Figure 1b, we can see that the land
cover of the study area is densely vegetated along the Dadu River, which causes a severe
decorrelation problem. Benefitting from many hydraulic resources, more than 20 cascade
hydropower stations have been built or planned along the main stream. However, the river
bank is deeply cut and eroded by flow with a sharp slope and broken rock mass, which
can very easily trigger a geohazard. The frequent landslide disasters in the Dadu River
Basin have caused many casualties and property damage, and they pose a great threat to
local transportation and engineering construction, which has largely affected social and
economic development. Furthermore, the Luding earthquake on 5 September 2022 further
activated a large number of ancient landslides on the bank of the river, while many ancient
landslide groups along the Dadu River have a high probability of sliding. As a result, the
sole expressway lifeline of S211 is in danger, and some of the large-scale landslides may
block the river, which will cause catastrophic implications for the cascade hydropower
stations on the river. However, investigation of the hidden landslides over the whole Dadu
River Basin has remained unclear, and recent studies mostly focus on small landslides in
this region. Therefore, it has become extremely essential to conduct large-scale deformation
monitoring with multi-temporal InSAR in the Dadu River Basin.

2.2. Data

The study region was fully covered by Sentinel-1A with C-band (5.6 cm) interferomet-
ric wide (IW) mode SAR images in four different frames. In total, 595 scenes of Sentinel-1A
in ascending orbits were used in this processing with a time interval of 12 days, taken
between October 2017 and October 2022, including 149 scenes for three frames of track 26
and 148 scenes for track 128. The parameter details are shown in Table 1, and the coverage
of SAR images is shown in Figure 2. In addition, the external DEM was used to removed
topographic phase and geocoding, and ALOS World 3D 30 m (AW3D30) DEM was selected
in this processing. The precise orbit ephemerides (POD) files for Sentinel-1A were also
downloaded and used to remove orbit error phase. Finally, GNSS measurements in typical
regions were collected to confirm the effectiveness of InSAR results.



Sensors 2023, 23, 3383 4 of 16
Sensors 2023, 23, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. The study region. The blue line is the Dadu River. (a) is the topographic image. (b) is the 
Landsat false color image for 2021. (c) is the geological map of the Dadu River. The right figure is 
the location of the Dadu River in Sichuan. 
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Figure 1. The study region. The blue line is the Dadu River. (a) is the topographic image. (b) is the
Landsat false color image for 2021. (c) is the geological map of the Dadu River. The right figure is the
location of the Dadu River in Sichuan.

Table 1. Sentinel-1 SAR data used in the study.

Orbit-ID Direction Polarization/Mode Angle Resolution(m)
Azimuth × Range Date Image Number

26-1 Ascending VV/IW 43.9◦ 13.9 × 2.3 3 October 2017~25 October 2022 149

26-2 Ascending VV/IW 43.9◦ 13.9 × 2.3 3 October 2017~25 October 2022 149

26-3 Ascending VV/IW 43.9◦ 13.9 × 2.3 3 October 2017~25 October 2022 149

128-1 Ascending VV/IW 33.9◦ 13.9 × 2.3 10 October 2017~20 October 2022 148

2.3. Method

The landcover of the study region is dominated by dense vegetation, thus conventional
InSAR methods are greatly affected by spatial and temporal decorrelation problems in
this region. In this study, we proposed the JS-InSAR and SBAS combined method to
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improve the deformation monitoring results in these mountainous areas of southwestern
China. First, the single-look complex (SLC) images were generated from Setinel-1 SAR
images with TOPS [26] mode SAR image coregistration method. Then, the SLC images
were preprocessed using spatial adaptive filtering with JS-InSAR method, and the phase
information of SAR images were reconstructed using an optimal estimator. In addition,
SBAS InSAR was later used to obtain deformation rates through the analysis of a series
of interferograms with small baselines. Finally, the landslide regions were extracted and
analyzed based on deformation characteristics and visual interpretations. The flowchart of
the whole processing chain is shown in Figure 3.
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2.3.1. JS-InSAR Preprocessing

JS-InSAR employs the distributed scatterer technique to focus on those temporal
coherent ground targets, such as bare land and grassland, and mitigates interferogram
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decorrelation using joint-scatterer adaptive filtering for the statistically homogenous pixels
(SHP). The SNR and phase quality for SAR images in the low-coherent regions can be
greatly improved without influence on the permanent scatterers. Thus, this method can
increase the spatial distribution density of measurements with high precision in non-urban
areas. JS-InSAR mainly consists of three steps: joint-scatterer signal model, joint-scatterer
goodness-of-fit test, joint-scatterer adaptive filtering.

(1) Joint-scatterer signal model

Unlike the SqueeSAR method [25], JS-InSAR performs joint processing on the spatial
neighboring pixel stacks. As a result, JS-InSAR can identify more distributed scatterers
regardless of pixel center shift or coregistration errors. For N time series of SLC images,
given the joint data vector size with k1 × k2 (usually odd number, 3 × 3), the joint data
vector ux can be written as follows:

ux(n) =

[
x
(

n− k1 × k2 − 1
2

)T
, . . . , x (n)T , . . . , x

(
n +

k1 × k2 − 1
2

)T
]

, (1)

x(i), i ∈ (n− k1×k2−1
3 , n + k1×k2−1

3 ) is the pixel stack, or a vector of complex values of the
time series SLC images, i.e., x(i) = {x1(i), x2(i), . . . . . . , xN(i)}, xj(i) is the ith pixel in jth
SLC. While the middle pixels x(n) are the processing units in this calculation, the phase
values for x(n) are updated in the JS-InSAR processing. The joint data vector is shown
in Figure 4.
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(2) Joint-scatterer goodness-of-fit test

The JS goodness-of-fit test was used to identify SHP around the center pixel and
evaluate the similarity of joint scatterers. As the traditional goodness-of-fit methods cannot
satisfy the needs of multi-dimensional JS vectors, a two-step two-sample KS test was used
to calculate the statistical correlation of JS vector data. The two-sample KS test was applied
on the spatial and temporal domain, respectively. First, in the spatial dimension, the
maximum patch similarity of the center pixel was defined as the KS test result of two JS
vectors for every SLC image. Then, in the time dimension, the KS test calculation on the
pixel stack was the same as the conventional method, while the single pixel value was
replaced by the spatial maximum patch similarity of each SLC. The KS test was given
as follows:

DKS = sup
∣∣Pij(x)− Pcenter(x)

∣∣, (2)

The P(x) is the cumulative amplitude distribution of scatterers in a patch. The KS
test result refers to the maximum difference in cumulative distribution functions of two
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vectors, which can evaluate the similarity between two joint scatterers. The operation was
performed on all of the pixels in the window of every center pixel, and JS-InSAR identified
more distributed scatterers.

(3) Joint-scatterer adaptive filtering

The ground objects for the neighboring distributed scatterers have the similar scatter
mechanism, thus they share the same spatial–temporal decorrelation effect. Through the
statistical characteristics analysis of these SHP, the real phase value of the center pixel could
be estimated using joint-scatterer adaptive filtering. For better use of the phase values
of SHP in the window of the center pixel, the similarity between SHP and center pixel
calculated using the KS test was used as the weight function w(i), which is given as follows:

w(i) = e−
DKS(i)

α , (3)

while the smaller value of DKS(i) means the more similar of two joint scatterers, it will
contribute more to the covariance. The joint covariance matrix can be written as follows:

Cux(n) =
1

∑∆
l=1 w(l)

∑
l∈∆

w(l)ux(l)uxH(l), (4)

where4 is the set of joint vector data, or SHP candidates. Then, the phase optimization
can be determined using phase triangulation [26] or eigen decomposition for the joint
covariance matrix, and the reconstructed phase will replace the original value of SLC
images. Thus, the coherence of SAR images can be greatly improved, and the decorrelation
noise of the interferometric phase will be reduced considerably. In the practical processing,
the SHP search and spatial filtering window size was 7 × 7 with the consideration of SHP
numbers and computation burden.

2.3.2. SBAS Processing

The SBAS technique has been widely used in landslide monitoring, and can acquire
deformation time series for complex non-urban regions at the sacrifice of spatial and time
resolution [27]. After JS-InSAR preprocessing of SLC images, SBAS time series InSAR
processing can further reduce the effect of decorrelation and topographic influence by
multilooking and limiting interferograms with small temporal and spatial baselines. It starts
with forming interferometric pair networks based on the given perpendicular and temporal
baseline threshold, and the interferogram coherence can also be taken into consideration.
Then, the multilook interferograms are generated and flattened with topography phase
removed by external DEM. The generated differential interferograms are unwrapped
using the MCF phase unwrapping method [28]. To obtain more accurate deformation
results, those unwrapped interferograms with low phase quality are removed and the
interferometric pairs are updated. The unwrapped phase for all of the interferograms can
be given as follows:

Aϕ = δϕ, (5)

for N SLC images and M interferograms, the design matrix A will be M × N with only
two elements 1 and −1 for each row, which define the interferometric pair relation. δϕ
is the unwrapped phase vector for all of the interferograms with size of M × 1. Before
retrieving the real phase time series ϕ by inversion, the deformation rate and residual
topography are estimated based on the linear relation between the phase value and the
baseline. Then, the linear deformation phase and topography phase are removed from
unwrapped phase, and the phase time series with single reference are obtained by residual
unwrapped phase inversion with SVD inversion method. Finally, the residual phase time
series are atmospherically filtered and converted into LOS displacement time series. Only
the coherent pixels with high temporal coherence of residual phase can be seen as the
reliable measurements. In the practical Setinel-1 SAR image processing, the multilook
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factor of 10 (range) and 2 (azimuth) were used in the interferogram generation, while the
time and spatial baseline was set to 72 days and 200 m, respectively. An example baseline
map of SAR dataset with track 26-2 is shown in Figure 5. The spatial filtering window is
16 × 16, and the temporal coherence threshold is 0.7.
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3. Results and Analysis
3.1. JS-InSAR Optimization Results

To validate the effectiveness of the JS-InSAR method, we compared the interfero-
gram and coherence between the original and the optimized phase. The interferograms
of the two interferometric pairs for the dates 30 October 2021 vs. 23 November 2021 and
22 May 2022 vs. 3 June 2022 with track 26-2 were selected, and the parts of the interferomet-
ric phase are shown in Figure 6. We observed that the phase noise of the interferometric
phase (without adaptive filtering processing) was largely reduced with JS-InSAR filtering,
and the quality of the interferograms were greatly improved, especially the regions near
the Dadu River. The optimized interferograms could lower the difficulty and increase the
reliability of phase unwrapping in the SBAS processing. To further illustrate the improved
quality of the interferograms, the average coherence for every interferogram was calcu-
lated and counted, and can be seen in Figure 7. The optimized interferograms showed
higher coherence than the original interferograms in general, and thus the JS-InSAR phase
optimization method was proven to be effective.

To further verify the performance of our method, we compared the deformation
rate distribution of the proposed method with the SBAS method as shown in Figure 8.
We observed that the deformation range for the conventional SBAS was larger than our
method, which meant that the SBAS method had obtained more extreme deformation
values. Furthermore, there were evident deformation errors (the red box in Figure 8b)
caused by incorrect phase unwrapping in the SBAS method. Thus, the proposed method
could acquire more reliable deformation results than the conventional results.

3.2. The Deformation Rate Map of InSAR Results

The annual average deformation rate for the Dadu River Basin from October 2017
to October 2022 was obtained using the SBAS method, as shown in Figure 9. The InSAR
measurements in the figure were the high coherent scatterers in the SBAS processing, and
the deformation results were along the line of sight (LOS) direction with color coding
based on its values, while the positive or negative value represented surface displacement
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moving towards or away from the satellite, respectively. From the figure, we observed
that the JS-InSAR method had extracted more ground targets in a complex environment,
with the average point density of 1496/km2, thereby obtaining clearer and more accurate
displacement information. Moreover, no obvious large-scale atmospheric or orbit errors
were found in the deformation results, avoiding deformation overestimation and artifacts.
The average deformation rate of the Dadu River Basin for 2017~2022 was−87.5~36.7 mm/y,
with 85% deformation in regions located in the range between−10~10 mm/y, which proved
that most of the areas in the Dadu River maintained a certain degree of stability. We also
found that some landslide groups with large deformation mainly occurred in Danba,
Luding and Shimian. However, some slopes along the river bank were affected by the SAR
imaging geometry and alpine valley topography and could not be fully investigated due to
the shadow and decorrelation problems.
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The displacement map of the three major deforming regions was enlarged and shown
in Figure 10 for the (a) Danba Section, (b) Luding Section and (c) Shimian Section, and a
range of suspected landslides with noticeable subsidence could be clearly seen in these areas.
In the Danba Section, a large number of landslides with an average deformation rate of more
than −30 mm/y could be identified along the Dadu River, such as the Jiaju landslide [29],
Danba landslide, Bawang landslide and so on. The most serious deformation area in
this region was situated in the ancient landslide of Gezhong village, and the cumulative
displacement from 2017 to 2022 was more than −220 mm. The Luding district was strongly
influenced by intense geological activity, where the most geohazards could be found. The
maximum subsidence of the Luding Section was located in the Weishe village, which had
reached about −147 mm from 2017 to 2022. The Shimian Section is in the lower part of the
Dadu River and covered by dense vegetation. Thus, most of the detected landslides were
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not close to the Dadu River. The maximum deformation area was in the Baojiawuji village,
and its subsidence was −131 mm during 2017~2022.
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3.3. Landslide Extraction and Analysis

To investigate the geohazard distribution along the Dadu River and its controlling factor
in detail, major landslides in the 5 km buffer of the Dadu River were extracted based on the
average deformation rate of the Dadu River Basin from October 2017 to October 2022, with the
combination of Google optical images. In our experience, the obvious deforming regions
with the following conditions were considered as hidden landslide spots: the maximum
subsidence rate was more than −30 mm/y; the maximum cumulative displacement was
more than 80 mm; the slope angle was more than 15◦; the total deforming areas were more
than 0.01 km2. Furthermore, high coherence, topographic trend and vegetation cover were
also taken into consideration to avoid potential decorrelation and unwrapping errors. A
total of 143 evident landslides were detected, which greatly threaten the Dadu River, as
shown in Figure 11.

From Figure 10, we observed that the spatial distribution of landslides in the Dadu
River Basin was uneven at different parts of the river. In the upstream of the river, this
region belonged to the Ganzi Aba crease southeastern zone with a cold and dry plateau
climate, and the emergence stratums were mainly intrusive granite. Thus, most of the
areas in this region seemed to be very stable, such as the Jinchuan Section. However, the
topography of the alpine valleys and river erosion cutting had high potential to cause
slope instability in the Danba Section, where a large number of ancient landslide groups
were distributed. Furthermore, in the Luding Section of the middle stream, earthquakes,
faults and other geological activities were very typical and active in this region. These have
become important contributing factors of landslide geohazards, as can be seen from the
yellow lines in the figure. In the downstream of the Dadu River, the plentiful rainfall and
extreme weather in the Shimian and Hanyuan Sections most likely resulted in the frequent
occurrence of large-scale landslides. Thus, the landslide distribution in the Dadu River
exhibited close relations with the geological structure and climate features.
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According to the detected landslide inventory shown in Figure 10, we studied two
typical landslides in Danba and Luding, respectively, to illustrate the landslide body based
on their cumulative time series displacement, and both of which had evident deformation
trends, as shown in Figure 12. It can be seen in Figure 12a that all three points had the
continuous deformation trend in the slope of Danba. The maximum subsidence, P3, was
located in the middle of the slope, which was about −120 mm from 2017 to 2022, while the
top of the slope had relatively smaller deformation in points P1 and P2. From the optical
images, we learned that the road construction and river cutting had been the major causes
of slope instability. The same situation applied to the second landslide in Luding, which
had a larger deformation rate due to the steeper slope with a subsidence of −120 mm.
The P1 point at the top of the slope remained stable compared to P2 and P3. As the two
landslides were closely adjacent to the Dadu River, if a landslide occurred, they might block
the river and endanger the cascade hydropower station in the downstream, similar to the
lake barrier after the Luding earthquake. The local government should pay attention to
these detected regions. Therefore, despite the low resolution of Sentinel-1 with the SBAS
method, our proposed method could be applicable in landslide analysis through long-term
series monitoring.

3.4. Validation of InSAR Results

Field investigations in the Dadu River were conducted very early for some specific
areas, and we collected three GNSS points, ZP01, ZP02 and ZP03, from the Zhengjiaping
landslide in this validation. The three-dimensional measurements of GNSS with the same
duration of SAR image acquisition were first projected into the InSAR line-of-sight direction,
and the difference in the initial deformation offsets between two methods were removed.
The InSAR time series displacement and GNSS measurements from 1 October 2017 to
30 October 2022 were then compared at the three points, as shown in Figure 13.



Sensors 2023, 23, 3383 13 of 16
Sensors 2023, 23, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 12. The time series displacement for two typical landslides detected in Danba (a) and Luding 
(b), respectively. 

3.4. Validation of InSAR Results 
Field investigations in the Dadu River were conducted very early for some specific 

areas, and we collected three GNSS points, ZP01, ZP02 and ZP03, from the Zhengjiaping 
landslide in this validation. The three-dimensional measurements of GNSS with the same 
duration of SAR image acquisition were first projected into the InSAR line-of-sight direc-
tion, and the difference in the initial deformation offsets between two methods were re-
moved. The InSAR time series displacement and GNSS measurements from 1 October 
2017 to 30 October 2022 were then compared at the three points, as shown in Figure 13. 

Figure 12. The time series displacement for two typical landslides detected in Danba (a) and Luding
(b), respectively.Sensors 2023, 23, x FOR PEER REVIEW 15 of 18 

 

 

 
Figure 13. The comparisons between displacement time series and GNSS measurements of the 
Zhengjiaping landslide in the LOS direction for three stations: ZP01 (a), ZP02 (b) and ZP03 (c), re-
spectively. 

From Figure 13, it can be clearly seen that the InSAR displacement time series were 
highly consistent with the GNSS measurements. The three measurements shared very 
similar deformation trends with the InSAR results from 2017 to 2022. While ZP01 had the 
highest agreement with the two methods, the InSAR time series exhibited more fluctua-
tion in ZP02 and ZP03, which might be caused by the scatterer near the vegetation cover 
or different geo-locations between the two points. The RMSE of the difference between 
the GNSS and InSAR time series for the three stations were 0.5 cm, 0.71 cm and 0.86 cm, 
respectively. The results showed that our proposed time series InSAR method was relia-
ble, but the accuracy of the InSAR results were still impacted by the processing errors. 

4. Discussion 
The landslide detection and deformation results in the previous section were con-

sistent with previous studies, especially in the typical landslide regions, such as Danba, 
Jiaju village, Gezhong village, Zhenjiaping and Luding, while many newly detected land-
slides should be further inspected by field investigations. Due to the SAR side-looking 
image geometry, the mountainous areas with steep topographic relief in the Dadu River 
Basin caused a serious geometric distortion problem. A large number of slopes along the 
river had been missed in the monitoring because they were totally covered by shadows 
and did not have adequate measurement points in the InSAR processing. Moreover, the 
InSAR deformation results in some areas with extremely dense vegetation were still af-
fected by strong decorrelation errors, and these unreliable measurements might bring 
about deformation artefact in the landslide interpretation. Finally, the number of the Sen-
tinel-1 SAR images with acquisition time after the Luding earthquake were not enough to 
investigate the influence of the earthquake striking the study region. Thus, future research 
will incorporate more Sentinel-1 images into the time series analysis. The Sentinel-1 da-
tasets with both ascending and descending orbits will be combined to conduct a more 
comprehensive landslide survey for the Dadu River Basin. 

Figure 13. The comparisons between displacement time series and GNSS measurements of the Zhengji-
aping landslide in the LOS direction for three stations: ZP01 (a), ZP02 (b) and ZP03 (c), respectively.

From Figure 13, it can be clearly seen that the InSAR displacement time series were
highly consistent with the GNSS measurements. The three measurements shared very
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similar deformation trends with the InSAR results from 2017 to 2022. While ZP01 had the
highest agreement with the two methods, the InSAR time series exhibited more fluctuation
in ZP02 and ZP03, which might be caused by the scatterer near the vegetation cover or
different geo-locations between the two points. The RMSE of the difference between the
GNSS and InSAR time series for the three stations were 0.5 cm, 0.71 cm and 0.86 cm,
respectively. The results showed that our proposed time series InSAR method was reliable,
but the accuracy of the InSAR results were still impacted by the processing errors.

4. Discussion

The landslide detection and deformation results in the previous section were consistent
with previous studies, especially in the typical landslide regions, such as Danba, Jiaju
village, Gezhong village, Zhenjiaping and Luding, while many newly detected landslides
should be further inspected by field investigations. Due to the SAR side-looking image
geometry, the mountainous areas with steep topographic relief in the Dadu River Basin
caused a serious geometric distortion problem. A large number of slopes along the river
had been missed in the monitoring because they were totally covered by shadows and did
not have adequate measurement points in the InSAR processing. Moreover, the InSAR
deformation results in some areas with extremely dense vegetation were still affected
by strong decorrelation errors, and these unreliable measurements might bring about
deformation artefact in the landslide interpretation. Finally, the number of the Sentinel-
1 SAR images with acquisition time after the Luding earthquake were not enough to
investigate the influence of the earthquake striking the study region. Thus, future research
will incorporate more Sentinel-1 images into the time series analysis. The Sentinel-1
datasets with both ascending and descending orbits will be combined to conduct a more
comprehensive landslide survey for the Dadu River Basin.

5. Conclusions

In this study, the JS-InSAR and SBAS combined method was proposed to acquire
surface deformation in the mountainous areas of southwestern China. The JS-InSAR pre-
processing was introduced to improve the quality and coherence of the interferograms
through the joint-scatterer optimal phase estimation, thus obtaining better deformation
results compared to the conventional SBAS processing. A total of 595 sentinel-1 SAR images
taken between October 2017 and October 2022 were used to conduct landslide monitoring
in the Dadu River from the Jinchuan to the Ebian Section. The annual average deformation
rate map in the LOS direction was generated based on the proposed method, and the
deformation rate of the Dadu River Basin was between −87.5 and 36.7 mm/y from 2017 to
2022. It was found that the large-scale landslide groups were mainly concentrated in Danba,
Luding and Shimian County. With the comprehensive consideration of the deformation
rate map, geological structures and optical images, a total of 143 evident landslides along
the Dadu River were detected by visual interpretation. The landslide inventory of our
results can provide useful information for local government about geohazard mitigation.
The spatial distribution of the detected landslides was strongly correlated with their geo-
logical and climate characteristics, and showed significant differences between upstream
and downstream. In addition, the deformation time series of two typical landslides in
Danba and Luding were further taken into analysis, and the reliability of the landslide
monitoring results could be well validated. Finally, the comparative results of InSAR
and GNSS in the Zhengjiaping landslide demonstrated the accuracy and effectiveness of
the proposed method. Thus, the application of the multi-temporal InSAR and Sentinel-1
dataset can greatly improve the level of safety monitoring in the Dadu River. The InSAR
results in this work will help local government to build a geohazard map for the whole
Dadu River Basin, and the detected landslide groups can be directly applied in geohaz-
ard management. Furthermore, our proposed method has been proven very useful for
landslide monitoring in the complex geological environment of southwestern China, and it
can improve the efficiency of geohazard prevention by revealing geohazard evolution and
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discovering potential hazards, which will facilitate the “Early detection, early treatment”
goal of geohazard mitigation and control.
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