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This study presented the prediction capability of three methods including the frequency ratio (FR), fuzzy
gamma (FG) and landslide index method (LIM) to produce landslide-prone areas in the Sari-Kiasar
watershed, Mazandaran Province of Iran. In the first step, 105 landslide locations were selected and were
randomly divided into two groups of 75% (78 locations) and 25% (27 locations) as training and testing
datasets. Then the 17 landslide conditioning factors including land use/land cover, Differential Vegetation
Index (DVI), lithology and distance from faults, elevation, slope aspect, slope angle, tangential curvature,
profile curvature and plane curvature, distance from drainage, rainfall, Stream Power Index, Sediment
Transport Index and temperature, and distance from road, density of settlement were considered for the
proposed modelling approach. Finally, by applying the training dataset, three landslide susceptibility
maps were constructed by using the FR, FG and LIM methods. The prediction capability of the performed
model was evaluated by the area under the receiver operating curve or AUC for both training (success
rate) and testing (prediction rate) datasets. The results showed that the AUC for success rate of FR,
FG and LIM models was 82.04%, 81.08% and 73.61% and for prediction rate was 82.72%, 79.09% and
65.45%, respectively. The results showed that the FR model has a higher prediction accuracy than the
FG and LIM methods. This study revealed that the most important factors in landslide occurrence are
rainfall, slope and vegetation. The result of the present study can be possibly useful for land use planning
and watershed management.
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1. Introduction

Landslides are one of the common natural hazards
in hilly and mountainous areas. All through the
world, landslides have negative effects on human

life and financial movement (Pourghasemi et al.
2012a, b; Pirasteh and Li 2016; Ye et al. 2016;
Li et al. 2017; Pirasteh et al. 2017). Population
growth and the improvement of fundamental struc-
tures and lines (water, power, gas, oil, etc.) in
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unsafe areas bring the expanding effect of natu-
ral disasters in developing and developed nations
(Rosenfeld 1994). Landslides cause damage to nat-
ural resources, development projects, human life
and property. According to the Iranian Landslide
working Party (2007), about 187 people were killed
and losses were estimated at about 12,700 dollars.
Because of the complex nature of natural hazards,
e.g., landslides, current scientific innovations are
not able to predict these events completely. The
dominant part of local and regional authorities and
land use organisers are compelled to elude landslide
susceptibility maps (LSM). Extensive mapping on
a substantial scale of a number of landslides per-
haps is not possible because of the remoteness of
the area and the constraint on spending, and this is
a debatable issue. The number of landslides have
been increased due to the climate change, defor-
estation, unplanned urbanisation, etc. (Yusof et al.
2011; Pourghasemi et al. 2012a, b; Pirasteh et al.
2017). Thus, one of the most important actions of
reduction of landslide hazards is the identification
of landslide-prone areas through LSM by different
methods.

Many researchers have used GIS and remote
sensing for the identification of landslide-prone
areas (Farrokhnia et al. 2011; Pirasteh and Li
2016). Methods of landslide hazard modelling are
divided into two main categories: qualitative meth-
ods (landslide inventories and heuristic analy-
sis) and quantitative methods (statistical analysis,
probabilistic prediction analysis and deterministic
analysis) (Glade and Crozier 2005). Many land-
slide studies are carried out by using GIS, and
some of these studies have applied probabilistic
models such as frequency ratio (FR), fuzzy logic
(Akgun and Bulut 2007; Akgun and Turk 2010;
Pradhan et al. 2010; Yalcin et al. 2011; Tien
Bui et al. 2012; Ozdemir and Altural 2013; Park
et al. 2013; Regmi et al. 2013; Hong et al. 2015;
Khosravi et al. 2016a; Pirasteh and Li 2017a, b),
landslide index method (LIM) approach (Ozdemir
and Turoglu 2007; Ruff and Czurda 2008; San-
tos 2013) and machine learning models (Hong
et al. 2015; Pham et al. 2017). The bivariate
models benefit from some advantages such as (i)
they are simpler than the machine learning mod-
els, (ii) do not use the expert knowledge which
is the source of uncertainty and bias, (iii) have
a reasonable accuracy and sometimes more than
the machine learning models (Khosravi et al.
2016a, b; Rahmati and Pourghasemi 2017) and
(iv) relationships between landslide occurrences

and each class of each factor can be determined
easily.

The aim of the present study is the preparation
of LSM by using FR, an ensemble of FR with
fuzzy gamma (FG) and LIM at the Sari-Kiasar
watershed in Iran as a hotspot area in a landslide
occurrence.

2. Description of the study area

The Sari-Kiasar watershed has an area of about
800 km2 and is located in the upper east of Alborz
mountains in northern Iran, south of Sari city and
lies between 36◦09′56′′–36◦29′24′′N and 53◦0′27′′–
53◦24′18′′E (figure 1). The elevation of the study
area varies from 97 in the plain to 1670 m above
m.s.l. on mountain area. The main units of lithol-
ogy in this region consist of limestone, dolomite,
shale, siltstone, sandstone, marl, tuff, conglomer-
ate, anhydrite, salt and their different combination
(tables 1 and 3). The land use/land cover (LULC)
of the study area is including 10 units (tables 2
and 3). The normal temperature in the study area
is from 12.41◦ to 14.48◦C. The mean annual precip-
itation in the study area varies between 339 mm in
lowlands and 607 mm over the highlands (Meteoro-
logical Organization of Mazandaran Province 2013)
(table 3).

3. Data preparation

3.1 Landslide inventory map

The existing landslide inventory map is very
essential for studying the spatial relationship
between the landslide occurrence and the condi-
tioning factors (Pourghasemi et al. 2013). In the
present study, the landslide inventory map was
recorded and mapped by extensive field survey and
utilising 1:25,000 scale aerial photographs (Geolog-
ical Survey of Iran). Finally 105 landslides have
been recognised which occurred from the past up
to 2016. Then, landslide locations are divided into
two parts randomly. Of that 78 locations, 75% for
training the models or model building and the
remaining (25%) were utilised for validation of
the purposes (Hong et al. 2015; Vakhshoori and
Zare 2016). Based on the movement typology, util-
ising a streamlined order of Varnes (1978), the
landslides were grouped into rotational or trans-
lational slides (71 bodies) and complex slides (34
bodies) (figure 2).
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Figure 1. The study area location in Iran and landslide inventory map of the Sari-Kiasar watershed (yellow points are
landslide points for validation of the model and the white points are for training).

3.2 Landslide conditioning factors

There are no universal guidelines regarding the
selection of factors in landslide susceptibility map-
ping (Ayalew et al. 2005). The selection of condi-
tioning factors needs to take the characteristics of
the study area and data availability into account
(Khosravi et al. 2016a). Based on the literature
review, the study area condition and data avail-
ability (Althuwaynee et al. 2014; Hong et al. 2015;
Sahin et al. 2015; Barrile et al. 2016), 17 condition-
ing factors have been identified which are practical
and applicable for the study area including: geolog-
ical factors (lithology, distance from faults, LULC
and Differential Vegetation Index (DVI)), geomor-
phological factors (elevation, slope aspect, slope
angle, tangential curvature, profile curvature and
plane curvature), hydrological factors (distance
from drainage, rainfall, Stream Power Index (SPI),
Sediment Transport Index (STI) and tempera-
ture), and anthropogenic factors (distance from
road, density of settlement).

The distance from drainage, SPI, STI, eleva-
tion, slope aspect, slope angle, curvature, profile
curvature and plane curvature have been derived
from the digital elevation model (DEM), using
ArcGIS10.1 and SAGA GIS 2 software. The DEM
was downloaded from the ASTER Global DEM

(https://gdex.cr.usgs.gov/gdex/) with 30×30 m
pixel size. The remaining landslide conditioning
factors after preparation were changed to the raster
format with 30×30 m in pixel size (figure 3).

3.2.1 Geomorphological factors

The geomorphological factors applied in this study
including elevation, slope angle, slope aspect,
curvature, profile curvature and plane curvature
have been constructed directly from the DEMs
(figure 3).

Elevation: The elevation is one of the important
factors that has been utilised in landslide suscep-
tibility analysis (Cevik and Topal 2003; Caniani
et al. 2008; Raghuvanshi et al. 2015). The eleva-
tion of the study area varies from 97 m in the
plain to 1670 m above m.s.l. on mountain zones.
For the present study, the elevation map has been
constructed and divided into seven classes includes
lower than 100, 100–300, 300–600, 600–900, 900–
1100, 1100–1300 and >1300 m (Raghuvanshi et al.
2015) (figure 3a).

Slope: The slope angle is the primary factor
impacting slope instability (Saha et al. 2002; Yal-
cin 2008; Raghuvanshi et al. 2015). As the slope

https://gdex.cr.usgs.gov/gdex/
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Table 2. Land cover types of the study area.

Land cover

code Description

Area

(km2)

O Trees and garden plants 3.15

F1 Dense forest lands 548.773

IO Blended agriculture and gardens 7.121

F2 Semi-dense forest lands 1.5

I1 Irrigated agriculture 44.305

U1 Residential area 1.586

OI Garden blend and agriculture 47.906

FO Blended forests and orchards 71.766

DF Dry land 73.935

angle increases, shear stress in the soil or other
un-consolidated material generally increases
(Ahmed 2009). The slope degree in the Sari-
Kiasar watershed varies from 0 to 79◦. For the
present study, the slope angle was subdivided into
7 classes: 0–6◦, 6–12◦, 12–18◦, 18–24◦, 24–30◦,
30–40◦ and higher than 40◦ (Althuwaynee et al.
2014) (figure 3b).

Slope aspect: The aspect is viewed as a pertinent
factor for precariousness since it controls some
climatic parameters, e.g., moisture and soil temper-
ature due to solar radiation (Yilmaz 2009; Conforti
et al. 2013). The amount of rainfall on a slope
may also vary depending on its aspect (Raghu-
vanshi et al. 2015). This study produced thematic
maps including slope aspect. The slope aspect
map is divided into nine classes which incorporate
with flat class, north, south, east, and west. These
classes are based on the principle directions (Sha-
habi et al. 2014) (figure 3d).

Curvature: The surface curvature at a point is the
curvature of a line formed by the intersection of
the surface with a plane with a specific orientation,
passing through this point (Evans 1979; Zevenber-
gen and Thorne 1987; Wilson and Gallant 2000).
The curvature or slope shape has three categories:
concave (negative values), convex (positive values)
and flat (zero value). Stocking (1972) expressed
that convex slopes are more stable than concave
slopes, because runoff disperses equally and eas-
ily down the convex slopes. Concave slopes, which
have a tendency to hold moisture, are prone to
landslides (Sujatha et al. 2012).

Plane curvature: The plane curvature is the
curvature in a horizontal plane (Crosby 2006).
The plane curvature is positive for cells with

convex contours and negative for cells with concave
contours (Crosby 2006). In particular, the plane
curvature controls the convergence or divergence
of water in the direction of landslide motion (Car-
son and Kirkby 1972). In the study area, plane
curvature was subdivided into three classes: lower
than −0.01, −0.01 to 0.006 and higher than 0.006
(Ozdemir and Turoglu 2007) (figure 3l) and both
the concave and convex slopes highlight a fairly
homogeneous distribution while the 55.76% of the
Sari-Kiasar catchment falls in the flat area.

Profile curvature: The profile curvature is the
curvature of the surface in the direction of the
steepest slope (in the vertical plane of a flow line)
(Ayalew et al. 2004). The profile curvature affects
the flow velocity of water draining the surface and
influences the erosion and deposition (Zevenbergen
and Thorne 1987). For the present study, the pro-
file curvature was divided into three classes: lower
than −0.01, −0.01 to 0.006 and higher than 0.006
(Ozdemir and Turoglu 2007) (figure 3k).

General curvature: The general curvature (also
called total curvature or standard curvature) com-
bines both the profile and plane curvatures
(Zevenbergen and Thorne 1987). The general cur-
vature can be positive or convex (indicating peaks),
negative or concave (indicating valleys) or zero
(indicating flat surface) (Zevenbergen and Thorne
1987). For the present study, the general curvature
was divided into three classes: lower than −0.01,
−0.01 to 0.006 and higher than 0.006 (Ozdemir and
Turoglu 2007) (figure 3j).

3.2.2 Geological factors

Lithology: This factor shows the physical
characteristics of the rock. Different lithological
units have a different infiltration. The 28 distinc-
tive lithological units in the study area were digi-
tised from 1:250,000 scale geology maps arranged
by the Geological Survey of Iran (GSI) (figure 3q).
The main units of lithology in this region consist
of limestone, dolomite, shale, siltstone, sandstone,
marl, tuff, conglomerate, anhydrite, salt and their
different combinations.

Distance from fault: Discontinuity of rock and
soil as a fault is the principal factor affecting
landslides (Wu et al. 2014; Raghuvanshi et al.
2015). More distance from the fault has the lower
landslide occurrences probability (Shahabi et al.
2014). In the present study, the distance from the
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Table 3. The results of FR, FG (γ = 0.975) and LIM models for spatial relationship between factors
and landslide.

Class Class%

Landslide

(%)

FR

value Wi

Fuzzy

membership

Elevation (m)

<100 0.01 0.000 0.00 0.00 0.00

100–300 9.78 22.890 2.34 0.85 1.00

300–600 36.83 56.620 1.53 0.42 0.65

600–900 34.96 13.250 0.38 −0.96 0.16

900–1100 11.32 0.000 0.00 0.00 0.00

1100–1300 4.71 3.610 0.76 −0.27 0.32

>1300 2.36 0.000 0.00 0.00 0.00

Slope aspect

Flat 10.30 10.840 1.05 0.05 0.47

North 18.39 13.250 0.72 −0.32 0.19

Northeast 5.41 3.610 0.66 −0.4 0.14

East 15.79 12.040 0.76 −0.27 0.22

Southeast 5.49 8.430 1.53 0.42 0.89

South 14.49 24.090 1.66 0.5 1.00

Southwest 5.02 6.020 1.19 0.18 0.59

West 17.89 18.070 1.01 0.01 0.44

Northwest 7.17 3.610 0.50 −0.68 0.00

SPI

>10 35.50 28.916 0.81 −0.2 0.003

10–20 13.85 12.048 0.87 −0.13 0.04

20–30 7.14 13.253 1.86 0.62 0.74

30–40 4.42 3.614 0.82 −0.2 0.006

40–50 3.25 7.229 2.23 0.8 1.00

>50 35.85 34.940 0.97 −0.02 0.11

Distance from drainage (m)

0–100 15.92 30.120 1.89 0.63 1.00

100–200 12.60 18.070 1.43 0.36 0.75

200–400 22.18 26.500 1.19 0.17 0.62

400–700 21.98 18.070 0.82 −0.19 0.43

700–1000 11.55 6.020 0.52 −0.65 0.27

1000–1500 9.69 1.200 0.12 −2.08 0.06

>1500 6.05 0.000 0.00 0.00 0.00

Dist. faults (m)

0–200 27.71 25.300 0.91 −9.1 0.30

200–400 21.09 24.090 1.14 13.5 0.66

400–600 15.88 13.250 0.83 −18.1 0.17

600–1000 18.64 25.300 1.35 30.5 1.00

>1000 16.71 12.040 0.72 −32.7 0.00

Slope degree

0–6 25.98 25.30 0.97 −0.02 0.600

6–12 18.83 19.27 1.02 0.02 0.725

12–18 20.27 20.48 1.01 0.01 0.700

18–24 14.86 16.86 1.13 0.12 1.000

24–30 9.88 7.22 0.73 −0.31 0.000

30–40 7.96 8.43 1.06 0.05 0.825

>40 2.18 2.41 1.1 0.09 0.925
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Table 3. (Continued.)

Class Class%

Landslide

(%)

FR

value Wi

Fuzzy

membership

Lithology code

Cm 0.10 0.00 0.00 0.00 0.00

CPmsl 0.18 1.20 6.74 1.9 1.00

Jd 0.06 0.00 0.00 0.00 0.00

JKl 0.31 0.00 0.00 0.00 0.00

Jl1 0.24 0.00 0.00 0.00 0.00

Jl2 0.28 0.00 0.00 0.00 0.00

K2Pems 0.33 0.00 0.00 0.00 0.00

Klm2 4.90 2.41 0.49 −0.7 0.07

Km2 1.61 1.20 0.75 −0.29 0.11

Kml2 2.50 1.20 0.48 −0.72 0.07

Mg 0.04 0.00 0.00 0.00 0.00

Mm1 0.64 2.41 3.78 1.32 0.56

Mm2 5.52 0.00 0.00 0.00 0.00

Mms 4.76 2.41 0.51 −0.68 0.07

Mmsl23 57.99 45.78 0.79 −0.23 0.11

OMmg1 0.53 0.00 0.00 0.00 0.00

Pel 4.46 6.02 1.35 0.3 0.2

Pelm 1.02 0.00 0.00 0.00 0.00

Pemls 3.13 0.00 0.00 0.00 0.00

Pems 0.58 0.00 0.00 0.00 0.00

Plc 0.54 0.00 0.00 0.00 0.00

Plmc 0.12 0.00 0.00 0.00 0.00

PlQcs 4.26 20.48 4.81 1.57 0.71

PlQmc 0.65 0.00 0.00 0.00 0.00

Pr 0.18 0.00 0.00 0.00 0.00

Q 4.79 16.87 3.52 1.26 0.52

TR3Js 0.13 0.00 0.00 0.00 0.00

V 0.15 0.00 0.00 0.00 0.00

DVI

<30 7.57 24.10 3.18 1.15 0.88

30–60 11.12 39.76 3.57 1.27 1.00

60–90 71.35 33.73 0.47 −0.75 0.07

>90 9.95 2.41 0.24 −1.4 0.00

Settlement density

Very low 73.6 39.760 0.54 −0.61 0.16

Low 18.3 38.550 2.10 0.74 0.64

Mod. low 5.57 18.070 3.24 1.17 1.00

Moderate 1.82 3.610 1.98 0.68 0.61

Mod. high 0.51 0.000 0.00 0.00 0.00

High 0.03 0.000 0.00 0.00 0.00

Very high 0.00 0.000 0.00 0.00 0.00

Land use

DF 9.16 21.680 2.36 0.86 0.38

FO 8.97 7.230 0.80 −0.21 0.13

I1 5.53 8.430 1.52 0.42 0.24

IO 0.89 3.610 4.05 1.4 0.65

O 0.39 2.410 6.18 1.81 1.00

F1 68.5 31.320 0.45 −0.78 0.07

OI 5.99 25.300 4.22 1.44 0.68
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Table 3. (Continued.)

Class Class%

Landslide

(%)

FR

value Wi

Fuzzy

membership

U1 0.19 0.000 0.00 0.00 0.00

F2 0.18 0.000 0.00 0.00 0.00

Plane curv.

< − 0.01 21.89 20.48 0.94 −0.06 0.11

−0.01–0.006 55.76 59.03 1.06 0.05 1.00

>0.006 22.35 20.48 0.92 0.00 −0.02

General curv.

< − 0.01 45.2 42.17 0.93 −0.07 0.53

−0.01–0.006 10.3 7.229 0.70 −0.35 0.00

>0.006 44.4 50.602 1.14 0.13 1.00

Temp. (◦C)

<13.2 1.43 0.00 0.00 0.00 0.00

13.2–13.6 5.56 2.41 0.43 −0.84 0.30

13.6–14 36.72 25.30 0.69 −0.37 0.48

14–14.4 48.47 61.44 1.26 0.23 0.88

14.4–14.8 7.57 10.84 1.43 0.35 1.00

Dist. from road (m)

0–100 14.0 27.71 1.97 0.68 0.91

100–200 10.7 19.27 1.79 0.58 0.81

200–300 7.87 16.86 2.14 0.76 1.00

300–400 10.4 14.45 1.38 0.32 0.59

400–500 7.20 7.23 1.00 0.00 0.38

>500 49.6 14.45 0.29 −1.23 0.00

Rainfall (mm)

<400 2.25 0.00 0.00 0.00 0.00

400–450 7.93 4.82 0.61 −0.49 0.24

450–500 28.22 8.43 0.30 −1.29 0.12

500–550 38.73 28.91 0.75 0.00 0.29

550–600 22.00 56.62 2.57 0.94 1.00

>600 0.86 1.20 1.39 0.33 0.54

STI

0–10 53.1 50.60 0.95 −0.05 0.61

10–20 16.3 21.68 1.32 0.28 0.85

20–30 7.73 12.05 1.56 0.44 1.00

30–40 4.76 6.02 1.27 0.23 0.81

40–50 3.30 1.20 0.36 −1 0.23

50–60 2.42 0.00 0.00 0.00 0.00

60–70 1.83 2.41 1.31 0.27 0.84

70–80 1.41 1.20 0.85 −0.15 0.55

>80 9.05 4.82 0.53 −0.63 0.34

Profile curv.

< − 0.01 44.2 53.01 1.20 0.18 1.00

−0.01–0.006 11 6.02 0.54 −0.61 0.00

>0.006 44.7 40.96 0.92 −0.08 0.57

fault map was constructed and divided into seven
classes including 0–200, 200–400, 400–600, 600–
1000 and higher than 1000 m (figure 3g).

Land use/land cover: It has additionally been
demonstrated that land uses assume a vital role
in the instability of slope in a few regions (Koukis
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Figure 2. Example of landslides detected by multiple field
survey and aerial photographs in the study area.

and Ziourkas 1991; Yalcin 2008). The land that is
barren and sparsely vegetated is prone to weath-
ering, erosion and slope instability (Raghuvanshi
et al. 2015). Regarding land use and vegeta-
tion can be partitioned into 10 units, including
dry lands (DF-73.355 km2), dense forest lands
(F1-548.773 km2), semi-dense forest lands
(F2-1.5 km2), blended forests and orchards (FO-
71.766 km2), irrigated agriculture (I1-44.305 km2),

blended agriculture and gardens (IO-7.121), trees
and garden plants (O-3.15 km2), garden blend and
agriculture (OI-47.906 km2) and residential area
(U1-1.586 km2) (figure 3n).

Divergence vegetation index: Distinctive
densities, classes and distributions of green plants
may turn into predominant factors in landslide
events (Chou et al. 2009). The diversity of vegeta-
tion in the study area was obtained using Landsat
images and the use of DVI reiterated the important
role played by vegetation in retaining soil moisture
and holding soil together because of which they
play an imperative role in preventing landslide
occurrence. For the present study, the DVI was sub-
divided by expert opinion based on the density of
vegetation in the study area into four classes: <30,
30–60, 60–90 and >90 (figure 3c).

3.2.3 Hydrological factors

Hydrological factors used in the present study are
temperature, rainfall, distance from drainage, SPI
and STI (figure 3).

Temperature: Increasing the air temperature can
have contrasting consequences on the slope stabil-
ity. A higher air temperature will expand evapo-
transpiration on vegetated slopes (Crozier 2010;
Senatore et al. 2011), producing positive effects
on slope stability, through a reduction of the
antecedent water conditions (Comegna et al. 2013).
The average annual temperature over a long period
of time (30 yr) in the Sari-Kiasar watershed is from
12.41 to 14.48◦C (Meteorological Organization of
Mazandaran Province 2013). For the present study,
the temperature was subdivided into five classes:
lower than 13.2◦C, 13.2–13.6◦C, 13.6–14◦C, 14–
14.4◦C and 14.4–14.8◦C (figure 3e).

Rainfall: The rainfall accelerates landslide
occurrences by increasing the weight of soil mass
and reducing the strength (Cascini et al. 2011; Lee
and Chi 2011) as precipitation is the primary fac-
tor to trigger a landslide (Wu et al. 2014). Most
landslides have the immediate association with
precipitation in the Mazandaran province (Geo-
logical Survey of Iran 2013). The mean annual
precipitation of 25 yr from 1990 to 2015 for five
rain-gauge stations was selected and due to the
lower RMSE of the proposed interpolation, the
rainfall map was produced by using IDW interpo-
lation method. For the present study, the rainfall
was subdivided into six classes includes lower
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Figure 3. Landslide contributing-factor layers produced for the study area: (a) elevation, (b) slope angle, (c) DVI, (d)
aspect, (e) temperature, (f) rainfall, (g) distance from fault, (h) distance from road, (i) distance from drainage, (j) curvature,
(k) profile curvature, (l) plane curvature, (m) settlement density, (n) land use, (o) STI, (p) SPI and (q) lithology.
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Figure 3. (Continued.)
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Figure 3. (Continued.)
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than 400, 400–450, 450–500, 500–550, 550–600
and higher than 600 mm (Eshghabad et al. 2012)
(figure 3f).

Distance from drainage: The distance from the
drainage can impact on the stability of slopes as
water action on the slopes and erosion of the
groundmass are more near rivers (Pham et al.
2017) or by saturating the lower part of the mate-
rial in a hill-slope (Yalcin 2008). The study area
was divided into five different buffer ranges includ-
ing 0–100, 100–200, 200–400, 400–700, 700–1000,
1000–1500 and greater than 1500 m (Akgun and
Turk 2010; Pourghasemi et al. 2013; Hong et al.
2015) (figure 3i).

Stream Power Index: This conditioning
factor measures the eroding power of water (Wil-
son and Gallant 2000; Althuwaynee et al. 2012).
A direct relationship of SPI with slope failures
shows the more SPI value and the highest landslide
occurrence probability (Akgun and Turk 2010;
Althuwaynee et al. 2014). This index was derived
from DEM using equation (1) (Moore et al. 1991):

SPI = A × tanβ. (1)

In which A is the slope upstream area to a drainage
point (m/m2) and β is the slope angle at that point
(radian).

As the specific catchment area and gradient
increase, the amount of water contributed by up-
slope areas and the velocity of the water flow
increase; hence, the SPI and slope-erosion risk will
be increased (Moore et al. 1991). For the present
study, the SPI value was subdivided by expert
opinion into six classes: 0–10, 10–20, 20–30, 30–40,
40–50 and higher than 50 (Akgun and Turk 2010;
Pourghasemi et al. 2012a, b, 2013) (figure 3p).

Sediment Transport Index: The STI is another
index frequently used to demonstrate the land flow
erosive power (Renard et al. 1997; Pourghasemi
et al. 2012a, b). The STI factor in the Universal Soil
Loss Equation is a measure of the sediment trans-
port capacity of the overland flow (Moore and Wil-
son 1992; Pourghasemi et al. 2012a, b, 2013) and is
calculated as follows:

STI =

(

A

22.13

)0.6

×

(

sin (β)

0.0896

)1.3

, (2)

where A is the specific catchment area and β is the
slope gradient.

This empirical formula resembles the Universal
Soil Loss Equation and thus can be used to depict
locations of potential erosion risk (Moore and
Burch 1986). STI has been derived from DEM
using the SAGA 2.2 software. For the present
study, the STI value was subdivided into nine
classes: 0–10, 10–20, 20–30, 30–40, 40–50, 50–60,
60–70, 70–80 and >80 (Pourghasemi et al. 2012a, b,
2013) (figure 3o).

3.2.4 Anthropogenic factors

Some anthropogenic factors that is used in the
current study are the distance from road and
density of settlement (figure 3).

Distance from road: Excavation of roads
creates instability in the surrounding rock mass
and ground slope (Chang and Wan 2014), thus,
the more the distance from the road, the lower
landslide occurrences (Yalcin 2008). After produc-
ing this layer in ArcGIS10.1 using Multi-ring buffer
command, it is divided into 0–100, 100–200, 200–
300, 300–400, 400–500 and >500 m (Pourghasemi
et al. 2013) (figure 3h).

Density of settlement: Human movement, such
as road excavation and cutting a slope to build
a house, is the primary component influencing
the landslide occurrences (Wu et al. 2014). It
is expected that if the alternate conditions are
provided for the event of landslides, construction
factor will be enhanced susceptibility to landslides.
For the present study, the density of settlement was
subdivided into seven classes including very low,
low, moderately low, moderate, moderately high,
high and very high (figure 3m).

4. Methodology

In the present study, FR, FG and LIMs were
applied into the landslide susceptibility mapping
at the Sari-Kiasar watershed. The main assump-
tion of the present study is to model the possible
occurrence of a landslide in the future using the
same conditions of a past landslide (Lee and Prad-
han 2006). This approach provides the steps in the
flowchart given in figure 4.

4.1 Frequency ratio

FR model was applied in order to evaluate the
landslide susceptibility of the case study based on
the observed spatial relationship between landslide
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Figure 4. Flowchart of the proposed approach.

occurrences and conditioning factors. The FR is
the ratio of the probability of the presence to the
absence of landslide occurrence (Lee and Pradhan
2007; Yilmaz 2009). The advantages of this model
are that it can be simply implemented and its result
is completely easy to comprehend (Yalcin et al.
2011; Ozdemir and Altural 2013). FR is expressed
in equation (3), and landslide susceptibility index
(LSI) was calculated by sum of each factor’s ratio
value using the following equation (equation 4)
(Lee and Sambath 2006; Lee and Pradhan 2007;
Park et al. 2013; Hong et al. 2015; Khosravi et al.
2016a):

FR =

[

Npix (SXi)
/

m
∑

i=1

SXi

]

/

⎡

⎣Npix (Xj) Big/

n
∑

j=1

Npix (Xj)

⎤

⎦ , (3)

LSI =

n
∑

j=1

FR (4)

where Npix(SXi) is the number of pixels with
landslides within class i of factor variable X,
Npix(Xj) is the number of pixels within factor
variable Xj , m is the number of classes in the
parameter variable Xi and n is the number of
factors that were selected for modelling in the
study area (Regmi et al. 2013; Jaafari et al. 2014).
In FR, the ratio is that of the area where the
landslide occurred to the total area. Thus, a value
of 1 is an average value or threshold (Akgun and
Bulut 2007). A value of lower than 1 shows a lower
correlation, whereas values higher than 1 mean a
higher correlation (Akgun and Bulut 2007; Park
et al. 2013).

4.2 Ensemble of FG method with FR

Fuzzy logic is an attractive method as it is
straightforward to understand and implement
(Zadeh 1965; An et al. 1991). It can be used with
data from any measurement scale and the weight-
ing of evidence can be controlled by the expert.
The fuzzy logic method allows for more flexible
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combinations of weighted maps and can be readily
implemented with a GIS modelling language (Ilan-
loo 2011). The idea of fuzzy logic (Zadeh 1965) is to
consider the spatial objects on a map as members
of a set. In classical set theory, an object is a mem-
ber of a set if it has a membership value of 1, or
not a member if it has the membership value of 0.
In this study, fuzzy membership values have been
assigned based on FR model (table 3). Each factor
is standardised between 1 and 0 to produce fuzzy
membership values. A variety of operators can be
employed to combine the membership values when
two or more maps with fuzzy membership functions
for the same set are available, including fuzzy AND,
fuzzy OR, fuzzy algebraic product, fuzzy algebraic
sum and FG operator (An et al. 1991). In the cur-
rent study, FG operator was applied for combining
the fuzzy membership functions as its prediction
capability was proved in the landslide susceptibil-
ity mapping (Ramesh et al. 2016).

For fuzzy analysis, at first, the weights of FR
were standardised (Lefteri and Robert 1997) and
then have been used as an input data for fuzzy
analysis. Given at least two maps with fuzzy mem-
bership functions, µA(x), µB(x), . . . , µN (x), for the
similar set, a variety of operators, e.g., FG can be
utilised to consolidate the membership values as
follows (equation 5) (An et al. 1991; Chung and
Fabbri 2001; Eastman 2003):

Fuzzy [GAMMA] : µγ (x)

= [µSUM (x)γ ] × [µPRODUCT (x)]1−γ . (5)

Gamma fuzzy operator is the general method of
augmentation and expansion operators. This oper-
ator, by choice of the gamma value, expanding
and diminishing parameters joined in the mean-
time and accomplishing the values in the output.
Subsequent from the flexible compatibility, there
are rising or falling propensities of fuzzy multi-
plication and γ is variable between zero and one.
In this method for the fuzzy ‘GAMMA’ oper-
ator, the γ value of 0.9, 0.95 and 0.975 was
assigned for producing a landslide susceptibility
index (table 3).

4.3 Landslide index method

The LIM method has been introduced by Van
Westen (1997) for landslide susceptibility mapping.
This method requires important selected param-
eters for classification. Therefore, it can imply
their classification into relevant classes, and finally

to overlaying the landslide inventory map with
each conditioning factor (Van Westen 1997; Ruff
and Czurda 2008). Weight values for each class
of each factor are calculated as the natural loga-
rithm of landslide density of the class divided by
the total landslide density of the study area (Van
Westen 1997; Ozdemir and Turoglu 2007; Safari
and Moghimi 2009; Yalcin et al. 2011; Nezhadali
et al. 2013; Santos 2013). In this study, the Wi val-
ues for each class of each conditioning factor map
were obtained quantitatively using the following
formula (Van Westen 1997; Ozdemir and Turoglu
2007):

lnWi = ln

(

Densclas

Densmap

)

= ln

(

Npix(Si)/Npix(Ni)
∑

Npix(Si)/
∑

Npix(Ni)

)

, (6)

where Wi (the weight given to a certain
conditioning factor class, e.g., a rock type, or
a slope class), Densclas is the landslide density
within the conditioning factor class, Densmap is
the landslide density within entire map, Npix(Si)
is number of pixels, which contain landslides, in a
certain conditioning factor class, Npix(Ni) is the
total number of pixels in a certain conditioning
factor class.

4.4 Model validation

In this study, 75% of landslide locations were used
for model building and the remaining 25% of land-
slide locations or testing datasets, which were not
used in the training phase, were used to evalu-
ate the prediction capability of the models. The
receiver operating curve (ROC) is one of the most
popular techniques to evaluate the model’s effi-
ciency and area under the ROC curves (AUC) can
calculate to model accuracy quantitatively (Metz
1978; Morrison 2005). In fact, the AUC repre-
sents the predicted value of the system through
the description of its ability to correctly estimate
the events that have occurred (landslides) and the
events that have not occurred (no landslides). The
ideal model has the most area under the curve
and AUC values vary from 0.5 to 1 (Chung and
Fabbri 2003; Lee and Dan 2005; Pradhan and Lee
2010). The model with higher AUC is considered
to have the better performance and its classifica-
tions are as follows (0.90–1.0 excellent, 0.80–0.90
good, 0.70–0.80 fair, 0.60–0.70 poor and 0.50–0.60
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indicates failure of the model) (Abul Hasanat et al.
2010).

5. Results and discussion

This study has analysed the relationship between
17 conditioning factors and landslide occurrence
and the FR ratio, fuzzy membership and Wi values
were calculated. The weight of each class in all 17
factors in landslides is shown in table 3.

5.1 Frequency ratio

The FR method was produced using the weights
of each class of each conditioning factor. For eleva-
tion, the high FR was observed in 100–300 m class
(FR = 2.34) (table 3). The possible causes for the
concentration of the landslide occurrences in this
class can be correlated with the residential area,
road and mine excavation, and areas with scat-
tered forest at this class. For elevation higher than
300 m due to the dense vegetation and far from
roads and residential areas, landslide occurrences
have been reduced. In the case of slope angle, high
FR belongs to 18–24◦ class (FR = 1.13), it showed
that by increasing the slope angle to 24◦, the FR of
landslide occurrences generally increases. At slope
higher than 24◦ due to less water infiltration, land-
slides occurrence reduced. The results of the aspect
revealed that the concentration of landslides in
the slope, facing towards the south and southwest
directions may be related to the higher slope in the
south and southwest direction areas. The result of
FR for plane curvature showed a similar landslide
distribution both on concave and convex slopes.
The landslide index showed a value of 20.48% for
both the concave and convex slopes. The relation-
ship between landslides and profile and general
curvature maps indicated a similar landslide dis-
tribution both on concave and convex slopes as
well. In the profile curvature and general curva-
ture, the landslide index depicted a value of 53.01%
and 42.17% for concave slopes and 40.96% and
50.6% for convex slopes, respectively. In particular,
it was observed that a complex and flow-type land-
slide falls on concave slopes in the profile curvature
and on convex slopes in the general curvature as
well.

In the case of lithology, 4 units had the high-
est FR of occurrence of landslides in the case
study including: Q (alluvium), CPmsl (variegated
red–brown–grey silty marl, calcareous sandstone,

shales, thin-medium bedded limestone, marly
limestone), Mm1 (homogeneous ochre coloured
marls), PlQcs (conglomerate, sandstone, siltstone,
silty marl). Less resistance lithology units such as
alluvium, marl, marlstones, sandstones and conglo-
merate are very susceptible to landslides.

In LULC, the high frequency of landslides was
observed in the garden blend with agriculture (OI)
class that prone to landslide occurrences. The main
reason is that the other factor controls the land-
slide occurrences in the study area which is more
stronger than LULC, such as slope angle (18–
24◦), elevation (100–300 m), moderate vegetation
cover and lithology (Q, CPmsl, Mm1 and PlQcs)
at these classes. The frequency of STI and SPI
factor classes shows that these factors have a posi-
tive impact on the occurrence of landslides as, the
more the SPI and STI, the higher is the proba-
bility of landslide occurrences. There is not much
of a difference between the maximum and min-
imum temperature in this study area; therefore,
temperature as a factor has not been included in
preparing landslide susceptibility mapping. Land-
slide occurrences were observed when rainfall is
in the range of 550–600 mm (FR = 2.57). The
result of the FR method showed that more rain-
fall is associated with higher landslide occurrence.
According to the vegetation factor in the present
study, the DVI showed that with increasing dense
vegetation, the frequency of landslides generally
decreases. As a general rule, the greater the dis-
tance from roads, rivers and faults, the less the
landslide FR. In the study area, the distance from
the road and the river confirms this issue, but
there is no significant relationship between the fre-
quency of landslides and classes of the distance
from the fault factor. Most landslides occur near
the road (0–300 m) and river (0–100 m). Three
classes of very low, low and moderate to low
cover 96.47% of the total area and in this por-
tion 95.37% of landslide occurrence and high and
very high classes cover 3.53% of the total areas.
The high frequency of landslides in this region
occurs near the settlement and the more the set-
tlement density, the higher landslide occurrences
probability (figure 5a).

5.2 FG method

Fuzzy membership values were calculated
according to the pixel values tabulated in table 3.
In the case of fuzzy ‘GAMMA’ operator, the three
common γ values of 0.9, 0.95 and 0.975 were
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Figure 5. The landslide susceptibility map of the study area
of FR, FG operator (γ = 0.975) and LIM models.

assigned for producing a landslide susceptibility
index. At first, the weights from FR in each class of
factor were standardised by using the fuzzy mem-
bership tool and then have been used as an input
data to fuzzy analysis. In this study, fuzzy mem-
bership values have been assigned based on the FR
model (table 3). In each factor, higher to lower FR
was standardised between 1 and 0 to produce the
fuzzy membership values. For instance, in eleva-
tion factor the FRs for seven classes are 0, 2.34,
1.53, 0.38, 0, 0.76 and 0, respectively, and are given
in table 3 and in the fuzzy membership column
they are 0, 1, 0.65, 0.16, 0, 0.32 and 0, respectively.
Among the γ values, the γ value of 0.975 was shown
to be the best result for producing a landslide sus-
ceptibility index. The maps resulting from the FG
model were shown in figure 5(b).

5.3 Landslide index method

Wi values were calculated according to the pixel
values tabulated in table 3. Comparing the result
of this model with the FR method showed a high
degree of correlation; in general, the class with
the highest weight and lowest weight was simi-
lar in both models with little difference. In the
case of elevation, landslide mostly occurred in the
elevation range of 100–300 m (Wi = 0.85). For
the slope angles 18–24◦, the Wi value was 0.12,
which illustrated that the more the slope angle, the
higher the susceptibility to landslide occurrence.
Also, the impact of the aspect was evaluated as a
contributor to landslide occurrence. For the slope
aspect, Wi value was highest (0.5) for the class of
south. The highest Wi values for rainfall classes
belonged to the area of 550–600 mm precipitation
with a ratio of 0.94. For SPI and STI, the Wi val-
ues were highest 0.8 and 0.44 for the classes of
40–50 and 20–30, respectively. For LULC, the high-
est Wi value of 1.44 was achieved for the garden
blend and agriculture (OI) class which amplified
the landslide occurrences. The most effective class
of distance from the river was 100 m with a Wi
value of 0.63. The geological layers revealed that
the most slide events in the study area occurred
in the Q, CPmsl, Mm1 and PlQcs units with Wi
values of 1.26, 1.9, 1.32 and 1.57, respectively. In
the case of distance from roads, the higher Wi val-
ues 0.68, 0.58 and 0.76 were found to be between 0
and 100, 100 and 200 and 200 and 300 m, respec-
tively. For DVI, the higher Wi values 1.15 and 1.27
were found to be between 0 and 30 and 30 and 60
classes, respectively, and the result shows that by



42 Page 18 of 22 J. Earth Syst. Sci. (2019) 128:42

Figure 6. The success and prediction curve of FR, FG oper-
ator (γ = 0.975) and LIM by ROC curve.

increasing the dense vegetation, the frequency of
landslides generally decreases. Also, results demon-
strated that there is a negative correlation between
landslide occurrence and temperature and distance
from the fault, thus, these conditioning factors were
omitted. The final values of pixels change between
0 (no susceptibility) and 4.17 (high susceptibility)
(figure 5c).

In particular, the coefficient that belongs to the
conditioning factors ‘precipitation, slope and veg-
etation’ has a stronger effect on the development
of landslides than any other conditioning factors in
the region of the Sari-Kiasar watershed.

The classification of the final map into dif-
ferent susceptibility classes is very difficult. The
landslide susceptibility map was obtained and the

Table 4. Results of validation of output maps
by of FR, FG operator (γ = 0.975) and LIM
models.

Model

AUC (%)

Success rate Prediction rate

FR 82.04 82.72

FG 0.9 74.71 74.45

FG 0.95 77.69 76.87

FG 0.975 81.08 79.09

LIM 71.63 65.45

Figure 7. FR plots of six landslide susceptibility zones of the
three models.

study area was divided into six classes of landslide
susceptibility: lacking, very low, low, medium, high
and very high (figure 6).

5.4 Validation and comparison of LSM

In this study, the success and prediction of ROC
curve and AUC have been used for the model
validation process. The success rate has been con-
structed using the training dataset (75%) and it
cannot be used to show a model prediction capabil-
ity (Khosravi et al. 2016a, b). Success rate results of
the models are shown in figure 6(a), which indicate
a higher prediction capability for the FR model
(82.04%) followed by FG 0.975 (81.08%) and LIM
model (73.61%). The prediction rate has been con-
structed using the testing dataset (25%). The AUC
values for prediction rate curves are also shown in
figure 6(b). The AUC of the models for the testing
phase is 82.72%, 79.09% and 65.45% for FR, FG
(0.975) and LIM methods, respectively (figure 6b
and table 4). The results also showed that the FR
model has higher prediction accuracy than that
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of Landslide index and FG model to landslide
prediction in the Sari-Kiasar watershed.

For further comparison of the models, a fre-
quency curve (percentage of landslide occurred in
each zone divided by the zone area percentage) of
the three models was plotted in figure 7. Theoreti-
cally, the frequency of the occurrence of landslides
of different zones should increase from lacking and
very low to very high susceptible zone, where the
rate of increase is much higher for the classes of
high and very high susceptible zones (Pradhan and
Lee 2010). Based on this point, figure 7 shows
that the FR, FG and LIM methods will differenti-
ate the high and very high classes from the other
classes.

6. Conclusion

The main aim of the current research is the
prediction capability of three models, namely FR,
FG and LIM for determination of the landslide-
prone areas in Sari-Kiasar watershed. In the first
step, 105 landslide locations have been recognised
and divided into two categories randomly of 78
locations for modelling (75%) and 27 locations
for model validation (25%). In the next step, 17
landslide conditioning factors including geological
factors (land use, DVI, lithology and distance from
faults), geomorphological (elevation, slope aspect,
slope angle, tangential curvature, profile curvature
and plane curvature), hydrological (distance from
drainage, rainfall, SPI, STI and temperature) and
anthropogenic factors (distance from road, density
of settlement) were prepared and mapped to the
detection of spatial relationship between landslide
occurrence and conditioning factors in the study
area. A reliable and accurate susceptibility map
depends on the inclusion and proper determina-
tion of the role of these conditioning factors. Of the
17 conditioning factors, the temperature has been
omitted because there is no significant relationship
between landslide occurrences with this factor. The
most important conditioning factors are ‘precipita-
tion, slope and vegetation’ which have a stronger
effect on the landslide occurrences in the region of
the Sari-Kiasar watershed. LSM were constructed
by using FR, FG and LIM on the training dataset.
Finally, the prediction capability of the performed
model has been evaluated on the testing dataset by
using the area under the ROC curve. The results
show that the AUC for success rate of FR, FG 0.975
and LIM models were 82.04%, 81.08% and 73.61%

and for prediction rate were 82.72%, 79.09% and
65.45%, respectively. The results show that the FR
model has higher prediction accuracy than that
of LIM and FG models. The LSM produced for
the Sari-Kiasar watershed allow the identification
of the most problematic areas and can predict
future landslide locations where events have not
been occurred previously; however, the high and
very high susceptible zones should be examined in
a larger scale study. The result of the current study
has shown a great deal of importance for land use
planning and watershed management.
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