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Abstract: Rapidly changing remote sensing technologies (lidar, aerial photography, satellites) provide
opportunities to improve regional-scale landslide risk mapping. However, data limitations regarding
landslide hazard and exposure data influence how landslide risk is calculated. To develop risk
assessments for a landslide-prone region of eastern Kentucky, USA, we assessed risk modeling and
applicability using variable quality data. First, we used a risk equation that incorporated the hazard
as a logistic regression landslide susceptibility model using geomorphic variables derived from
lidar data. Susceptibility is calculated as a probability of occurrence. The exposure data included
population, roads, railroads, and land class. Our vulnerability value was assumed to equal one
(worst-case scenario for a degree of loss) and consequence data was economic cost. Results indicate
64.1 percent of the study area is classified as moderate to high socioeconomic risk. To develop a
more data-limited approach, we used a 30 m slope-angle map as the hazard input and simplified
exposure data. Results for the slope-based approach show the distribution of risk that is less uniform,
with large areas of over-and under-prediction. Changes in the hazard and exposure inputs result in
significant changes in the quality and applicability of the maps and demonstrate the broad range of
risk modelling approaches.

Keywords: hazard; risk; landslides; susceptibility modeling; risk assessment; lidar; vulnerability

1. Introduction

Economic impacts of landslides worldwide include damages to infrastructure, build-
ings, and homes costing hundreds of billions annually, and are forecasted to increase [1–8].
Annual landslide fatalities, often associated with large events such as rainstorms or earth-
quakes, vary significantly due to the vulnerability of elements at risk and hillslope devel-
opment practices. In the United States, landslides occur in every state, causing billions of
dollars in economic losses and estimates of an average of 25–50 fatalities annually [9]. In the
United States, damage from landslides is typically not covered under property insurance
policies [10]. The increasing number of landslides, and the resulting health and economic
impacts, are compounding problems that call for not only more comprehensive landslide
hazard (or susceptibility) assessment, but also socio-economic risk assessments [11,12].

The International Union of Geological Sciences (IUGS) Working Group on Land-
slides [13] define landslide risk as the product of a hazard (the likelihood a landslide will
occur) and exposure (the health, property, or environmental assets that might be diminished
should the landslide occur). However, a range of complex risk modeling equations exist be-
cause there are numerous combinations of spatial and temporal inputs for assessment and
mapping [14,15]. The exposure component can be reformulated to include both vulnerabil-
ity and consequence (such as cost) so that risk becomes the product of hazard, vulnerability,
and consequence [14,16,17]. In reference to landslides, many authors practically define
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vulnerability as the likelihood of elements at risk of having an adverse result to landslide
activity, intensity, and magnitude [4,16,18–21]. Consequence is the economic or societal
loss expected should a landslide affect the asset.

The variability of terms and data inputs prompts differences in units of measure.
For example, the hazard input may be a probability with units of 1/time, vulnerability
is a probability of an asset being damaged (with no units), and consequence may be
in terms of money. However, more importantly, each of the terms in the risk equation
carries with it some degree of uncertainty that can arise from incomplete knowledge of
landslide processes, triggers, and past occurrences. The uncertainty regarding hillslope
soil and rock properties, hydrologic conditions, and landslide triggering mechanisms
affects the way hazards are communicated to stakeholders and how stakeholders perceive
the communication [22]. Even when the landslide mechanisms are qualitatively similar,
quantifying heterogeneous vulnerability data for different elements at risk makes risk
mapping tenuous [23–25]. These uncertainties are reflected in differences in the way
government and private entities respond to landslides, and landslide mitigation practices
that are available and affordable in different areas [26–30].

Estimations of vulnerability are equally challenging because, in addition to under-
standing where a landslide will occur, a risk assessor must also be able to predict how far
and fast the landslide will move and the complex behavior of people [31–33]. Vulnerability
is typically expressed on a scale of 0 (no loss) to 1 (total loss) [4,15,34]. However, a lack of
common language and data related to vulnerability poses many challenges because vulner-
ability is a multi-dimensional, dynamic, scalar, and community-driven concept [21,32].

The optimal risk approach finds the most useful combination of risk components
and associated data, balanced against what is realistic to accomplish. Depending on data
availability and quality, risk assessments fall into quantitative or qualitative approaches [13].
A quantitative approach may contain extensive and accurate occurrence data, landslide
magnitude or kinematics, fatalities, and other vulnerability (of property and people), and
consequence data. [34–36]. The hazard component may be a probabilistic, deterministic, or
scenario-based model that evaluates slope stability, landslide initiation, potential runout, or
frequency of occurrence [28,37,38]. Even further, they may have magnitude, velocity, and
frequency data associated with dynamic real-time rainfall and population location data, as
opposed to static variables. Vulnerability and consequence data may distinguish among
building types, market value of buildings, road types, road value, structure strength or
resistance, persons in buildings, and loss of life considerations [39,40]. Many quantitative
risk assessments are time and data-intensive and challenging to implement but may be able
to narrowly focus on specific risk types such as societal, individual, financial, and health
and safety [4,34]. The robust, data-intensive quantitative approaches still require expert
experience in communication and risk management.

Qualitative risk assessments, in which vulnerability and consequence data are gen-
eral or non-existent, equate risk with hazard [13,19]. The hazard input may be sup-
ported by expert knowledge, landslide inventories, national or global-scale elevation
data, and subsequently derived geomorphological or topographic indicators such as slope
steepness [25,41]. Qualitative assessments may involve a simple frequency analysis of past
events or a broad intersection of asset and hazard inputs at a broad scale. Results are often
presented as weighted indices, relative ranks of risk, or other qualitative descriptors [18].

Furthermore, risk is influenced by economic, social, cultural, environmental, clima-
tological, and political factors, that continuously shift perceptions of what is acceptable
and tolerable [8]. Even differences in terms and definitions of landslide types among
geologists, engineers, and the public reflect the complexity of landslide processes, and
consequently, the ways in which risk is communicated, understood, and managed [42]. The
range of landslide risk assessment approaches can vary based on the quality of available
data, which can range from well-established knowledge to broad but geologically plausible
assumptions in the absence of data [4,22].
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Our study focused on evaluating a technical range of model inputs with the need for
practical, cost-effective solutions for stakeholders like emergency managers, first respon-
ders, local officials, and residents and communities at-risk from landslides. We produced
two static socioeconomic risk maps that consider hazard data limitations, as well as limited
vulnerability and consequence data, in five eastern Kentucky counties with chronic land-
slide problems. Both approaches leverage existing remote sensing data and generalized
infrastructure and land-use data useful for estimating exposure and consequence. One
approach uses a robust landslide inventory, 1.5 m airborne lidar digital elevation models
(DEM), and lidar-derived geomorphic datasets to model landslide susceptibility [43]. High-
resolution remote sensing data provides an opportunity to model relevant geomorphic
conditions that lead to landslides at a regional scale.

Our second risk approach uses a coarse slope angle map sourced from global 30 m
DEM as a hazard input in the risk equation. This model incorporates no landslide suscepti-
bility data, simplified exposure data, but similar vulnerability and economic consequence
data. The main purpose of the coarse, slope-based approach is to demonstrate the myriad
of results possible at regional scale with limited quality data availability. Given our history
of working with regional development groups, we also sought to determine levels on
the quantitative risk assessment continuum that met the practical needs of stakeholders.
While coarse slope-based models are not computationally intensive and are more readily
accessible, we argue that further refinement of risk components creates more practical and
uniform risk models while maintaining ease of access.

A practical and useful landslide risk assessment can be developed at a regional scale
with limitations regarding hazard behavior and asset data. We reason that somewhere
in between quantitative and qualitative risk assessments is a practical level, perhaps a
model in which hazard and exposure data are well-established, yet still limited, compared
to an advanced quantitative assessment. A static, geomorphic-based landslide hazard
input, minimal to no vulnerability data, and consequence data constrained to economic
loss will model a true risk assessment that is a useful, realistic combination of inputs.
In fact, many approaches have effectively used a hazard input, yet are still limited with
vulnerability and exposure data, often over-simplifying results. For example, the Federal
Emergency Management Agency (FEMA) National Risk Index for 18 natural hazards,
including landslides, leverages available source data for baseline risk for counties and
census tracts [17]. These risk approaches can effectively connect data and modeling needs,
computational requirements, and expert knowledge, which makes this approach practical
at various scales.

2. Study Area

The study area comprises five counties in eastern Kentucky, USA (Magoffin, Johnson,
Floyd, Martin, and Pike Counties) that form the Big Sandy Area Development District. The
study area lies within the Appalachian Plateau, which is part of the larger Appalachian
Basin northwest of the Valley and Ridge Province (Figure 1), characterized by steep hill-
sides with a mean slope angle of 24◦ to 25◦ [44]. Rainfall-triggered landslides (including
translational landslides, slumps, creep, debris flows, and rockfalls) are a dominant erosional
process creating significant direct and indirect costs in the region [9,45,46]. Infrastructure
and buildings are generally restricted to narrow valley bottoms, with moderate amounts
of development on steep hillsides and reclaimed coal mine sites. The Big Sandy Area
Development District encompass 5136 km2 with a population of 140, 215 people [47]. Four
of the five counties of the area are recognized as economically distressed as defined by
indicators such as high percentages in average unemployment and poverty rates [48]. The
development district includes 2519 km of state-maintained, roads and 3443 km of locally
maintained roads, and 419 km of privately maintained railroads.
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Figure 1. Map showing the locations of Kentucky, USA (a), the eastern Big Sandy Area Development
District (b), and elevation map of the counties in the district (c). Black dots are documented landslides
from the Kentucky Geological Survey inventory database.

2.1. Geology

Bedrock geology across most of eastern Kentucky consists of sequences of relatively
flat-lying sedimentary rocks that include thin to thick beds of sandstone, shale, siltstone,
coal, and underclay. The landscape is highly dissected, with narrow ridges and sinuous
alluvial valleys. Deeply incised valleys range from long and narrow main stems to short
bowl-shaped tributary catchments. Slopes are covered with colluvium ranging in thickness
from 0.5 to 5 m. The colluvium is, in general, poorly sorted, fine to coarse loam with grain
sizes that range from clay to medium-coarse boulders perhaps a meter in diameter [49].
Closely influenced by the lithology of the rocks below the soil, landslides in colluvium are
commonly thin (<3 m) translational slides or thicker rotational slumps with both types
being capable of developing into damaging debris flows or earth flows, especially on steep
slopes [45,50,51].

2.2. Study Area Impact

The counties included in this study incur high landslide occurrence impacting several
municipalities [45,52]. Historically, severe storm events with high-intensity and/or long-
duration rainfall have triggered shallow, rapidly moving landslides, or remobilized existing
slow-moving landslides, resulting in casualties and property damage in many parts of the
Appalachian Plateau [53]. From 2015 to 2021, Kentucky received 11 presidential disaster
declarations due to severe storms, flooding, and landslides (Table 1). These declarations
allow public officials (FEMA in the U.S.) to exercise emergency powers to assess damage
and preserve life and property following a disaster.

The estimated direct cost for landslides across Kentucky ranges from $10 to $20 million
annually and has caused damage to homes, commercial property, and transportation
infrastructure [45,54] (Figure 2). Indirect costs such as road closures, decreased property
values, and utility interruption are potentially significant but are difficult to quantify.
Figure 3 shows the study area roads that are classified by the cost of damage per state
route based on transportation maintenance records from 2003 to 2009 for landslides and
rockfalls [55]. These are only routine maintenance cost records and do not include large,
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expensive, geotechnical mitigation projects. Broad assessments of impacts such as these
direct costs emphasize the need for subsequent, more robust, risk assessments.

Table 1. Rainfall and related FEMA-designated presidential disaster declarations in Kentucky (KY)
from 2015 to 2021. Documented landslides from the Kentucky Geological Survey inventory database.

Dates Rainfall Disaster Declarations Landslides Documented

March 2015
80 mm on March 3–4 over much of
SE KY, followed by 50 to 200 mm

in April
4 Over 100 landslides documented for

the year

2016 Average of 1285 mm statewide 1 Approximately 60 landslides documented

Winter 2018
data

125 to 250 mm of 14-day observed
rainfall ending February 18 across

SE KY
2 Approximately 43 landslides documented

from December to March

2019 An average of 1525 mm statewide 1 Approximately 153 landslides
documented for the year

Winter-Spring 2020

50 to150 mm from February 4–6 in SE
KY, 66 mm in 12 h in parts of two

counties, 200 to 380 mm from January
1 to February 11, 25 to 75 mm

followed in 24 h on April 13, and 25 to
100 mm on May 19–20.

2
Approximately 123 landslides

documented for the year, 30 landslides
documented from January through May

2021 Average 1306 mm statewide 2 Over 100 landslides documented

Figure 2. Landslide head scarp threatening a home in Floyd County (upper left, photo credit
Matt Crawford), landslide on road in Johnson County (upper right, photo credit Johnson County
Emergency Management), and a debris flow that caused a train derailment in Pike County (bottom,
photo credit Pike County Emergency Management).
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Figure 3. Landslide and rockfall costs per state route in the Big Sandy Area Development District,
eastern Kentucky, USA. Costs are in U.S. dollars from 2003 to 2009. Map generated from data in [55].

3. Materials and Methods

We evaluated two quantitative approaches based on Equation (1).

Risk = Hazard × Vulnerability × Consequence (1)

We define hazard as the likelihood a landslide will occur, vulnerability as the likelihood
of elements at risk of having an adverse result to a landslide, and consequence as the
economic or societal loss expected should a landslide affect the asset.

The first approach utilizes landslide susceptibility data as the landslide hazard input,
vulnerability, and consequence data. The second approach uses a coarse (30 m) slope map
as the hazard input along with simplified exposure data, specifically using U.S. Census
Bureau block groups https://www.census.gov/data.html (accessed on 3 April 2020) for
population input. Vulnerability remained the same in the risk calculation. The coarse, slope-
based map comparison demonstrates the spectrum of results and sensitivity of quantitative
risk calculation inputs.

3.1. Landslide Susceptibility Approach
3.1.1. Hazard Input

The hazard input is a landslide susceptibility map produced from a machine learning
and logistic regression-based landslide susceptibility model described by Crawford and
others [43]. The model combined two traditionally distinct machine-learning methods
that complement each other to produce a susceptibility map. The susceptibility model is
based on geomorphic variables slope, curvature, plan curvature, terrain roughness, and
aspect from a 1.5 m lidar-derived regional digital elevation model and a detailed landslide
inventory (N > 1054) for Magoffin County, Kentucky. The mean landslide area was 6400 m2,
however specific slide type and age was not determined. An equal number of landslides
(1) and non-landslides (0) made up the binary data set of variables. The bagged tree model
predicts a weighted classification from the variables and ranks importance. The logistic
regression model estimates the probability of landslide occurrence (that a raster cell is

https://www.census.gov/data.html
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occupied, or might be occupied in the future, by a landslide) as a function of the statistical
analysis and combination of geomorphic variable values (Figure 4). We found that eight
variables were significant (p-value < 0.05) and the model performance evaluation by the
receiver operating curve, area under the curve, was 0.83 [43]. Leveraging quality, high-
resolution remote-sensing data including lidar, lidar-derived geomorphic datasets, and
aerial photography allowed for a accurate and high-performance landslide susceptibility
model, which we applied at the five-county regional scale.

Figure 4. Landslide susceptibility in the Big Sandy Area Development District, eastern Kentucky, USA.
County boundaries are shown in gray. The map data serves as the hazard input to the risk calculation.
Susceptibility is calculated as a probability of occurrence derived from a geomorphic-based, logistic
regression model.

We classified the landslide susceptibility results in GIS using equal interval classes,
which is a data interval classification that works well with skewed data distribution (not
normal distribution), focusing the high and low values and emphasizing the value to the
rest of the map area. Equal interval will also allow a seamless uniform scheme across
county boundaries. Table 2 shows the probability values, susceptibility classifications,
percent area, and intersections with assets divided up by county. The buildings, roads, and
railroads were expanded with a 15 m buffer during the intersection process to encompass a
more realistic footprint of the asset.

3.1.2. Elements at Risk (Exposure and Assets)

We generated kernel density maps for major assets, defined as elements at risk po-
tentially affected by landslides, in the area. We used population, roads, and railroads as
exposure inputs in our risk models because they are critical datasets for determining socio-
economic risk, but also measurable assets in terms of spatial extent and monetary value. A
kernel density map is a smoothed raster estimation of the number of occurrences per unit
area (density) of a point or line feature, produced by replacing each discrete point or line
with a smooth continuous function and summing the results weighted by distance from the
geographic point at which the density is being estimated. To generate the population kernel
density map, we used the 2018 census block group population values [56] and building
footprints. We divided the block group population value per centroid point of each building
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footprint (Figure 5). Although not all building footprints are inhabited homes, nor does the
assigned value correspond with the true number of occupants, calculating a population
density using a centroid of a building footprint assigned with a population provides a
more realistic distribution of people than using the centroid of the block group (Figure 6).
If we had generated a population kernel density map based on census block group data
alone, with perhaps no buildings or roads in the area, that would create a much coarser
map. The kernel density for roads and railroads was generated based on units of length of
line per square map unit (Figures 7 and 8). For each asset we used a search radius of 300 m
(radius within which to calculate density) in the kernel density function. This search radius
accounted for the true footprint of assets, which represents the adjacent property that may
be at risk. Using a quartic kernel function for point (population) and line data (roads and
railroads), the density at each output raster cell (pixel) is the units of the number of points
per square map unit and units of length of line per square map unit, respectively [57].

Table 2. Landslide susceptibility and intersection of assets for Magoffin, Floyd, Johnson, Martin, and
Pike Counties.

County Probability Landslide
Susceptibility % Area % Buildings % Roads % Railroads

Magoffin

0–0.2 low 37.67 28.0 26.34 NA

0.21–0.4 low-moderate 34.8 24.25 40.14 NA

0.41–0.6 moderate 16.77 1.47 8.67 NA

0.61–0.8 moderate-high 5.17 0.11 1.32 NA

0.81–1 high 0.25 0.002 0.09 NA

Floyd

0–0.2 low 29.16 21.18 25.0 21.05

0.21–0.4 low-moderate 31.97 24.04 36.37 34.67

0.41–0.6 moderate 21.64 2.19 8.05 8.37

0.61–0.8 moderate-high 10.96 0.25 1.89 2.61

0.81–1 high 0.91 0.03 0.32 0.72

Johnson

0–0.2 low 36.35 24.23 26.31 18.57

0.21–0.4 low-moderate 34.39 22.42 37.31 30.27

0.41–0.6 moderate 15.91 1.57 7.60 10.48

0.61–0.8 moderate-high 5.59 0.16 1.61 5.52

0.81–1 high 0.42 0.01 0.23 2.78

Martin

0–0.2 low 31.79 20.37 22.34 29.20

0.21–0.4 low-moderate 33.35 30.39 41.98 40.19

0.41–0.6 moderate 19.63 3.77 10.85 11.05

0.61–0.8 moderate-high 10.49 0.45 2.57 4.28

0.81–1 high 1.01 0.04 0.50 0.84

Pike

0–0.2 low 30.27 21.97 26.22 20.96

0.21–0.4 low-moderate 31.0 28.52 40.67 40.55

0.41–0.6 moderate 20.51 3.33 10.47 12.44

0.61–0.8 moderate-high 13.01 0.40 2.96 4.65

0.81–1 high 2.32 0.06 0.43 0.86
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Figure 5. Example area showing three different U.S. census block groups and their total population,
divided among the centroids (black dots) of building footprints (purple polygons) to generate the
population kernel density map.

1 

 

 

Fig 6 

  

Figure 6. Kernel density map of population for the Big Sandy Area Development District. The low to
high range of density classification represents the units of number of points per square map unit.
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2 

 

Fig 7 

  

Figure 7. Kernel density map of state and local roads for the Big Sandy Area Development District.
The low to high range of density classification represents the units of length of line per one square
map unit.

 

3 

 

Fig 8 

  

Figure 8. Kernel density map of railroads for the Big Sandy Area Development District. The low to
high range of density classification represents the units of length of line per one square map unit.

We also included land class (developed and undeveloped) as an asset in our assessment
to capture the threat of landslides that occur upslope on land that does have some value
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but is perhaps away from other assets in valley bottoms. To do so, we rasterized the
polygon building footprints using a 15 m buffer, then reclassified the raster as developed
and undeveloped land. All areas outside the building buffer were considered undeveloped,
combining land classes woodland, cropland, and pasture as undeveloped. Buffering the
buildings allowed us to include adjacent property and accurately define a larger area of
developed land classification.

3.1.3. Asset Values

To assign the monetary values to the roads and railroads, we rasterized those assets
by buffering the line data. Local roads received 6 m and 3 m buffers for county and private
roads, respectively. State roads received a 9 m buffer and the U.S. highways received a
30 m buffer. Railroads received a 3 m buffer. We obtained economic value estimates for
state roads, local roads, railroads, developed land, and undeveloped land from several
government and industry sources (Table 3). The costs are considered recovery costs and
not necessarily the market value of each asset. We determined the value of roads from the
Kentucky Transportation Cabinet, which estimated the value of state-maintained roads
through the Governmental Accounting Standards Board [58]. The methodology is based
on cost-to-build values at the time and used construction costs categorized by two major
costs factors, facility type (two-lane, multi-lane divided) and terrain type (Table 4). We
determined values of railroads using a value of $1,000,000 to $2,000,000 per 1.6 km estimated
by the Aberdeen Carolina and Western Railway [59]. Because of the wide range of values
for railways, we used the more conservative $1 million value for this study.

Table 3. Elements at risk and their estimated monetary value. KYTC = Kentucky Transportation
Cabinet, UK Agriculture = University of Kentucky Agriculture Department, FHFA = Federal Housing
Finance Agency, ACW = Aberdeen Carolina & Western Railway. Calculations were performed using
United States customary units (miles) and converted to metric. Values are in U.S. dollars.

Assets Value Source

Major Road $15,000,000 per km KYTC

Local Road $9,000,000 per km KYTC

Railway $600,000 per km ACW Railway

Developed Land $237,500 per hectare FHFA

Undeveloped Land $4500 per hectare UK Agriculture

Table 4. Value of various roads in Kentucky, incorporating lane amount and terrain type. Cost values
are in U.S. dollars and per 1.6 km (×$1,000,000).

Lanes Rural Developed

Flat Rolling Mountainous Flat Rolling Mountainous

1 to 2 4.5 7 14 6.5 9 16

3 to 4 6.5 11 24 8.5 13 26

5 to 6 12 18 32 14 20 34

7 + 18 26 42 20 28 44

We used developed land values from the U.S. Federal Housing Finance Agency [60].
We used properties that fell in the study area, a small sample (N = 26) focused in one
county, to create an average of 0.1 hectare value as an estimation of property within the
entire project area. We determined the undeveloped land values using data available from
the University of Kentucky College of Agriculture and the United States Department of
Agriculture [61,62]. Undeveloped land monetary values were averaged at $4500 per hectare.
We converted the asset data to dollars per-pixel rasters for model input consistency. For
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example, dollars per hectare in land value was converted to a value per 3 m by 3 m pixel
(Figure 9).

Figure 9. Cost-per-pixel map of part of Floyd County in the Big Sandy Area Development District.
Values are in U.S. dollars.

3.1.4. Vulnerability and Consequence

There are many aspects of landslide hazard vulnerability (including social, economic,
physical, cultural, and environmental) that dictate vulnerability being degree of loss ex-
pressed as a scale of 0 (no loss) to 1 (total loss) [24,34,63]. Due to the lack of comprehensive
vulnerability data such as landslide behavior and infrastructure resistance, we assumed
a constant vulnerability value of 1, essentially a worst-case scenario for a degree of loss.
The other component of our risk assessment is consequence. We define consequence as
an estimate of the value of the elements at risk. The consequences in our risk assessment
are categorized as societal (consideration of population and infrastructure exposure) and
economic (consideration of the value of assets), therefore C is calculated in terms of the
elements at risk and their economic value, used as cost per pixel.

3.2. Coarse, Slope-Based Approach

The slope-based risk input data differs from the susceptibility-based risk approach in
three ways (Table 5). First, we used a publicly and globally available 30 m DEM acquired
from the NASA Shuttle Radar Topography Mission [64]. We generated a slope map using
the 30 m DEM to replace the lidar-based landslide susceptibility map as the hazard input.
The slope map was resampled to 3 m cell resolution and scaled by the maximum value
to compare. Second, the population asset data were generated from U.S. Census Bureau
block groups https://www.census.gov/data.html (accessed on 3 April 2020), as opposed
to the kernel density population map. The third difference is that the road, railroad, and
land exposure raster maps were not included in the consequence component of the risk
equation. However, these assets’ cost-per-pixel maps and cost data remained the same.

https://www.census.gov/data.html
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Table 5. Risk modelling differences between the landslide susceptibility hazard input approach and
the slope-based hazard input approach. Road, railroad, and land cost-per-pixel maps remained
the same.

Risk Map Hazard Vulnerability Consequence

Susceptibility-based Landslide susceptibility; sourced
from 1.5- lidar-based DEM 1

• Population kernel density,
based on people per building

• Included road and railroad
kernel density maps, land
class maps

• Included cost-per-pixel maps

Slope-based Slope degrees; sourced from
global 30 m DEM 1

• Population directly from
extents of U.S. Census block
group raw data

• Only included cost-per-pixel
maps (no asset exposure maps

3.3. Risk Model Estimation

For both approaches, we used a risk equation incorporating hazard, vulnerability, and
consequences to produce a socioeconomic landslide risk map (Equation (2)).

R = (H) × (V) × [(C1) + (C2) + (C3)] (2)

where, H is the hazard (dimensionless), V is vulnerability (V = 1, no units), C is consequence,
which is the economic value bins multiplied by binned population kernel density (C1),
binned road kernel density (C2), and binned railroad kernel density (C3). The C component
calculates a socio-economic consequence (unitless).

The consequence components are the elements at risk split into separate components,
societal (kernel density maps) and economic (infrastructure and land monetary value maps).
Asset values range from $4 to $45,454 per pixel (see Tables 3 and 4). In order to maintain
the influence of all asset data in the risk calculation, and to not skew risk towards the most
expensive asset, we categorized the values of roads, railroads, and land class into order
of magnitude bins with the highest being $10–100 k. Similarly, to avoid skew in kernel
density population, we categorized the data into six commensurate bins, as opposed to
order of magnitude bins because of the narrower range of density values compared to asset
dollar values. These binned consequence elements are combined and then multiplied by
the hazard and vulnerability value to calculate a risk (R) value for each raster.

The slope-based map estimation did not include the kernel density or land-use maps
in the exposure component. The asset costs and cost-per-pixel map data remained the same.
This change of using different hazard inputs and keeping the asset costs the same (while
excluding the exposure maps) allows for a quality comparison between estimations and
maps. The slope-based estimation is an example of a limited resource risk assessment and
demonstrates a reality for many communities that lack robust model inputs.

4. Results
4.1. Susceptibility-Based Risk Map

All data inputs were normalized prior to calculating risk. Therefore, R in Equation
(2) is unitless and we consider the result a risk factor score having a theoretical range of
0–1. We determined the risk classification using the standard deviation of the logarithm of
the risk results because of the range of risk factor scores. The classification generated five
classes; however, we excluded the lowest two classes because those areas are mostly stable
ridgetops or valley bottoms (Table 6). The resulting three risk classifications applied to all
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counties are low, moderate, and high (Figure 10). The logarithm of the risk factor score
creates a more practical, useable map classification, similar to a natural breaks classification.
The areas not designated in a risk class (no color) could be moved into a risk classification
if the hazard input data changed or development occurred.

Table 6. Risk factor score and classification. The risk classification corresponds to Figure 10.

County Risk Factor Score % Area Landslide Risk Classification

Magoffin

0–0.0023 15.8 Excluded

0.0024–0.0102 70.3 Low

0.0103–0.0213 12.0 Moderate

0.0214–1 1.9 High

Floyd

0–0.0036 14.9 Excluded

0.0037–0.0182 74.1 Low

0.0183–0.0403 9.6 Moderate

0.0404–1 1.4 High

Johnson

0–0.0032 15.5 Excluded

0.0033–0.015 70.9 Low

0.016–0.0324 11.6 Moderate

0.0325–1 2.0 High

Martin

0–0.0034 14.8 Excluded

0.0035–0.016 71.5 Low

0.017–0.0344 12.2 Moderate

0.0345–1 1.5 High

Pike

0–0.0035 15.4 Excluded

0.0036–0.0186 72.7 Low

0.0187–0.043 10.7 Moderate

0.0431–1 1.2 High

 

4 

 

Fig 10 

  

Figure 10. Landslide risk for the Big Sandy Area Development District. County boundaries are
shown in gray.
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Risk results indicate 64.1 percent of the study area is classified as moderate to high
risk. In general, high concentrations of buildings, roads, and railroads that intersect, or are
in the vicinity of, areas with high landslide susceptibility values, are classified as moderate
or high risk (Figure 11). Hillslopes with little to no infrastructure are classified as low risk
(mapped in yellow). High concentrations of buildings and roads along steep streambanks
and below steep slopes are classified as high risk. We did not calculate values for areas
with topographic slope angles < 3◦. The risk maps do not consider scenario-based elements
and should be considered static socioeconomic risk maps. As a final step, we resampled
the risk maps with a 15 m radial smoothing window to reduce visual noise. The smoothing
is a focal statistics function calculated in ArcGIS https://desktop.arcgis.com/en/arcmap/
10.3/tools/spatial-analyst-toolbox/focal-statistics.htm (accessed on 4 May 2022) that uses
a neighborhood operation to compute an output raster where the value for each output cell
is a function of the values of all the input cells that are in a specified neighborhood around
that location.

Figure 11. Risk map examples, Magoffin County (upper left), Pike County (upper right), Floyd
County (lower left), and Johnson County (lower right). Black lines are roads, black polygons are
buildings, and hatched lines are railroads.

4.2. Slope-Based Risk Map

Compared to the susceptibility-based map, the coarse, slope-based map shows a
less consistent distribution of risk and shows no or very little risk in many block groups
(Figure 12). This difference partially hinges on the census block group population input.
The primary differences in the slope-based maps include:

(1) The census block group data outweighs the asset density to skew the risk distribu-
tion compared to the susceptibility-based map. The coarseness of the census block
group data creates sharp and unrealistic risk boundaries. The modeled results show
large areas with little risk and some blocks with no risk. These boundaries create
inconsistency with how assets fall within risk classes.

(2) A broad under-prediction at all classes relative to the susceptibility-based maps,
particularly in less populated areas. In rural, sparsely populated areas, the moderate
and high-risk classes are significantly reduced to low or no risk in the slope-based

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/focal-statistics.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/focal-statistics.htm
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map. Risk in the low class dropped an average of 39 percent over all counties in the
slope-based map.

(3) Only two counties showed an increase in the moderate risk class, 16 and 22 percent in
Johnson and Martin counties, respectively, which contains some of the most populated
census blocks. However, this creates high risk surrounding buildings, roads, and
stream banks inconsistent.

(4) Few building footprints adjacent to steep high-hazard slopes, particularly in the
narrow valleys and catchments, are classified as moderate or high risk. Classification
of risk along roads, particularly local roads, is much less consistent compared to the
susceptibility-based map. Very few local roads fall within the high-risk category.

(5) Because of the slope input, the map shows less over-prediction compared to the
susceptibility-based map at congested valley bottoms or engineered embankments.
These small, high-density areas of roads, railroads, and buildings are not likely to be
at risk.

 

5 

 

Fig 12 

 

Figure 12. Slope-based risk map of the Big Sandy Area Development District. A coarse slope
map as the hazard input and population data generated from U.S. Census block groups models
an inconsistent risk distribution, creating stark boundaries of risk classes. Counties models were
generated individually, those with smaller population ranges show high-skewing results. County
boundaries are shown in gray.

Using a slope map derived from a 30 m DEM and the coarse U.S. Census Bureau block
group-based population input data makes this map less consistent overall and generally
under-represents risk. (Figures 13–15). The slope map input creates less emphasis on open
land risk, except in the more populated block groups, however, this approach could be
used to guide a broad risk assessment at a state or national scale, but we demonstrate that
perhaps a minor GIS task change that improves risk equation inputs does make a practical
difference in map quality.
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Figure 13. Comparison of the susceptibility-based map (left) and slope-based risk map (right) for
part of Pike County. The block group-based population data and coarse slope map input creates
stark boundaries in risk classes (right). The northeast portion of the slope-based map (right) shows
how low population removes all risk, except for areas directly adjacent to buildings roads. While not
inaccurate, the remaining area shows that more highly populated block-groups do not have such
stark skews.

Figure 14. Comparison of the susceptibility-based map (left) and slope-based map (right) in part
of Floyd County. The block group-based population data and coarse slope map input creates
stark boundaries in risk classes (right). Compared to the map on the left, under prediction is
apparent in the slope-based map (right), and population block-group data skews the model results
between boundaries.

Figure 15. Comparison of the susceptibility-based map (left) and slope-based map (right) in popu-
lated part of Johnson County. Relatively large population differences in block group-based population
create over prediction of risk at the block-group boundaries (right).

5. Discussion

The primary drawback for both quantitative and qualitative risk assessments is based
on relevant degrees of data limitations and complex environmental conditions, and the
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uncertainties they introduce. Most advanced landslide hazard assessments require land-
slide frequency and run-out data that does not exist. Similarly, landslide vulnerability and
consequence data regarding building types, road infrastructure, and personal safety is
virtually non-existent in most places in the world. However, understanding that a range of
quantitative risk assessments is a continuum that includes advanced, site-specific models
to over-simplified modelling techniques is the foundation of developing a risk assessment
that is useful for landslide-prone communities. We demonstrate a variety of methods, from
conventional risk estimations to sparse, yet resourceful risk model inputs can effectively
address data limitations and produce quality maps.

Our models emphasize a regional scale, limited data approach that provides risk
information for imposing risk evaluation and mitigation strategies for communities. The
hazard input (landslide susceptibility) to our risk equation highlights the importance of
existing deposits that have a moderate to a high probability of subsequent movement
and highlight other parts of the slope that do not necessarily show obvious landslide
activity but are classified, nonetheless. The hazard input is limited regarding landslide type
and behavior (extent or runout), however using static probability serves as a critical risk
input. We obtained the economic values from various sources, and all were generalized as
total values for the elements in question. Developed and undeveloped land values were
determined from a small sample of property values. This analysis lacks data on other
highly vulnerable elements, such as powerlines, water lines, and sewerage lines, therefore
these elements are not included in the risk assessment. Population considerations did not
include where populations would be at any given moment. Vulnerability was assumed
at the maximum value (1), which is not likely the case uniformly across the study area.
We submit that using a vulnerability value of 1, combats an underestimating of landslide
hazard impacts and the often-related reduced awareness and concern [65].

Our risk calculation and map derived from a coarse slope-based hazard input rec-
ognizes similarities in risk distribution at a regional scale, but also highlight the need for
further evaluation of over-and under-predicted risk in several areas. These comparisons
assume that our susceptibility-based landslide risk map is a strong model primarily be-
cause of the landslide susceptibility input, thus better constraining the areas vulnerable
to landslides. A slope-based hazard input, limited exposure and consequence data, and
limited computing power are a reality for developing countries striving for risk evaluation
and implementation. The susceptibility map input is a superior input to slope angle, but
minor GIS tasks (such as improving on census block data or how exposure is quantified)
can significantly improve the risk calculation and results that make a practical difference in
map quality.

Because we developed a socio-economic approach to risk, a recognition of how chang-
ing conditions and opportunities could impact community resilience in the long term
need to be considered in future assessments. Additional data sets to consider in future
risk mapping may include property value administrator data, traffic counts, cell phone
locational data, geology, updated land class maps, and time-dependent rainfall. National
Oceanic and Atmospheric Administration differenced 30-year averages (1991–2020 minus
1981–2010) which indicated Kentucky has experienced an increase in annual precipitation
change across the state that ranges from 3–12% [66]. Increased precipitation will translate
to more landslides and increased risk. Incorporating precipitation data, rainfall triggering
thresholds, and other related climate change factors may also improve risk assessments in
the future.

Considering the variability in methods for landslide risk, establishing the utility of
model and map results, in conversation with local stakeholders, is critical. Regardless of
the robustness of data availability and model inputs, landslide risk mapping can provide
baseline information for all stakeholders that show economic benefits, improves public
safety, and builds trust. Our results contain data to inform mitigation strategies that
could support building and infrastructure assessment, land-use planning, event awareness,
response, and recovery actions for communities in the region.
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6. Conclusions

We evaluated a susceptibility-based landslide risk map and a more limited, slope-
based approach in order to emphasize how minor changes in data quality can improve
landslide risk assessments. Minor changes in the hazard and vulnerability inputs result in
significant changes in the quality and applicability of risk maps. All approaches and inputs
of regional-scale landslide risk assessments have limitations and a recognition of data
resources and the quality of model inputs allows for comparison of map results that can be
used by practitioners and communities to mitigate landslide hazards and reduce risk.

Using different hazard inputs (landslide susceptibility versus slope angle), exposure
data, and associated economic value of assets in a risk equation, we generated two landslide
risk maps for five counties in a landslide-prone portion of eastern Kentucky. We used a
logistic regression-based landslide susceptibility model as the hazard input. The elements
at risk included population, road, railroad, and land class inputs, along with associated
asset costs (consequence). The vulnerability input was assumed to be (1), modelling a total
loss. For the slope-based map, the vulnerability remained (1) and the road, railroad, and
land exposure asset raster maps were not included in the consequence component of the
risk equation. However, these assets’ cost-per-pixel maps and cost data remained the same.

The susceptibility-based map indicates 64.1 percent of the study area is classified has
moderate to high risk, with assets closer to high hazard areas being reliably highlighted
as moderate to high risk. The map effectively highlights high-risk road segments, which
is helpful to emergency managers, first responders, and local officials who need to com-
municate the threat of landslides. Broad, wide-open hillslopes and ridges with little to
no infrastructure or other elements at risk are classified as low risk. Because of our asset
density and hazard input (landslide susceptibility), the model over-predicted risk in some
areas (compared to the slope-based map) particularly valley bottoms with dense areas of
buildings or roads that are in close proximity to a toe slope or engineered embankment.
These areas are mostly flat and have little correlated hazard.

The more data-limited risk assessment used a coarse (30-m) slope input and U.S.
Census block group-derived population data, resulting in much less consistent distribution
of a risk factor score. The map shows sharp boundaries between areas with moderate and
high-risk and large areas of very low risk. These boundaries are coarse renderings of how
buildings, roads, and railroads fall within risk classifications. Although identification of
risk classes for local scale areas is possible with the slope-based map, the utility is limited
for a broad five-county area.
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