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Abstract: This study focused on landslide susceptibility analysis mapping of the Xulong hydropower

station reservoir, which is located in the upstream of Jinsha River, a rapidly uplifting region of the

Tibetan Plateau region. Nine factors were employed as landslide conditioning factors in landslide

susceptibility mapping. These factors included the slope angle, slope aspect, curvature, geology,

distance-to-fault, distance-to-river, vegetation, bedrock uplift and annual precipitation. The rapid

bedrock uplift factor was represented by the slope angle. The eight factors were processed with the

information content model. Since this area has a significant vertical distribution law of precipitation,

the annual precipitation factor was analyzed separately. The analytic hierarchy process weighting

method was used to calculate the weights of nine factors. Thus, this study proposed a component

approach to combine the normalized eight-factor results with the normalized annual precipitation

distribution results. Subsequently, the results were plotted in geographic information system (GIS)

and a landslide susceptibility map was produced. The evaluation accuracy analysis method was

used as a validation approach. The landslide susceptibility classes were divided into four classes,

including low, moderate, high and very high. The results show that the four susceptibility class

ratios are 12.9%, 35.06%, 34.11%and 17.92% of the study area, respectively. The red belt in the high

elevation area represents the very high susceptibility zones, which followed the vertical distribution

law of precipitation. The prediction accuracy was 85.74%, which meant that the susceptibility map

was confirmed to be reliable and reasonable. This susceptibility map may contribute to averting the

landslide risk in the future construction of the Xulong hydropower station.

Keywords: geographic information system (GIS); rapid bedrock uplift; analytical hierarchy process;

information content; spatial analysis

1. Introduction

The interaction between triggering mechanisms and natural conditions directly determines the

occurrence and frequency of landslides [1–5]. To understand these natural hazards and predict potential

landslide hazard areas, landslide susceptibility mapping (LSM) is considered to be an effective method

to reduce the hazard impacts [6]. Many approaches can be used to predict the occurrence of slope

failures, such as physically-based and statistical approaches [7–10]. The physically-based method

is appropriate for analyzing the specific event. Combined with the field, GIS technology and the

nonlinear method are utilized for LSM, which is more appropriate due to their flexibility.

Water 2016, 8, 270; doi:10.3390/w8070270 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/journal/water


Water 2016, 8, 270 2 of 21

Landslides are one of the most common natural hazards in the Three Gorges Reservoir [11].

The water level is an important factor to activate old landslides and trigger new landslides [12].

Thus, attention should be given to the reservoir area of the hydropower station, where landslides are

more probable and frequently occur [11]. Landslide susceptibility mapping is necessary to mitigate

and even avoid natural or secondary hazards. In fact, human field investigation in a large region,

especially in mountainous areas, is very difficult. Hence, the prediction of hazards in a certain area

based on limited data is difficult and demands a practical approach to achieve this goal. Some

researchers have recently applied different classification methods to LSM prediction. Many statistical

methods exist for LSM, such as the logistic regression (LR) method [13–17], statistical index (SI) [18,19],

discriminant analysis (DA) [20] and bivariate statistical analysis (BSA) [21]. However, the statistical

approaches have very strict mathematical reasoning, and their application must meet strict demands.

In fact, the prediction samples usually cannot pass the hypothesis test in the assessment process.

Some other approaches have also been developed, according to the methodologies of decision tree

(DT) [22], genetic algorithm (GA) [23], artificial neural network (ANN) [15,24–29], and support vector

machine (SVM) [30–33]. These objective statistical methods were used for evaluating the relationships

between various influencing factors and landslide inventories. However, some methods have a few

limitations in terms of LSM. Tehrany [34] stated that the DT method requires enhancement because

some difficulties were encountered while defining the rules. During the process of ANN modeling,

Tiwari and Chatterjee [35] stated that the length of the dataset could cause errors. Therefore, solely

relying on objective methods has some limitations and can easily lead to misleading information.

Hence, the introduction of a subjective method is necessary.

The pairwise comparison of the analytic hierarchy process (AHP) is based on expert opinions and

thus introduces a degree of subjectivity for the criteria of significance [36]. However, it is sometimes

criticized for its subjectivity. Along with traditional applications, a new trend uses AHP in conjunction

with others methods [37]. An accurate objective method, the information content model (ICM), can be

integrated with AHP to provide a framework for LSM in this study. The combined method makes use

of the advantages of both the subjective method (AHP) and the objective method (ICM) to assess criteria

and improve the accuracy of the results. The proposed method avoids the inherent disadvantages of

using subjective or objective methods in isolation. Meanwhile, the geographical information system

(GIS), which has quick access to the obtained data, global positioning technique, and remote sensing

techniques, has been widely used and integrated with the aforementioned methods.

Approaches should be applicable for a special region. In this study, the Xulong hydropower

station is located in a rapidly uplifting region in Southwestern China. Landslide susceptibility mapping

should be considered from a new perspective based on the characteristics of this area. Based on GIS

technology and field investigations, we obtained a database of 69 landslides along the Jinsha River at

the Xulong hydropower station reservoir. The study area is located in the rapidly uplifting region of

the Tibetan Plateau that is caused by the neotectonic movement. Furthermore, under the influence of

the southwest and southeast monsoons, the study area is dry, with low values of rainfall, and the foehn

effect is significant. Due to the foehn effect and topographical enclosure, the valley along the Jinsha

River has a special dry and hot climate. According to the special climate and different influencing

factors, this study selected nine factors, including vertical distributed annual precipitation, as the

assessment factors, and established a landslide susceptibility assessment factor system. Meanwhile,

this work chose the pixel unit as the evaluation unit to extract the information of each factor and

discussed the intervals of each factor based on GIS technology. The analytic hierarchy process (AHP)

and the information content model (ICM) were combined to establish a landslide susceptibility

assessment model. Finally, the historic landslide data and evaluation accuracy analysis [38] were used

for validation.
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2. Methodology

2.1. The Analytic Hierarchy Process

The analytic hierarchy process (AHP) is a multi-criteria decision analysis method proposed by

Saaty [39]. The weights of these criteria are defined after they are ranked according to their relative

importance. Thus, once all the criteria are sorted in a hierarchical manner, a pairwise comparison

matrix for each criterion is created to enable a significance comparison. The relative significances of

the criteria are evaluated on a scale of 1–9, indicating less importance to greater importance. Weighting

by AHP is widely used in many applications [40,41] and it is recommended to be used for regional

studies. The steps of the AHP for weighting are as follows:

1. The first step is to build the hierarchical structure of the target problem.

2. Saaty proposed a scaling method to score the parameters in each layer. By comparing the

importance of the parameters in each level, aij is used to present the ratio of xi and xj, which builds the

judgment matrix A = (aij):

A “
`
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˘
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3. The judge matrix needs to meet the following equation:

Aω “ λmaxω (2)

where ω is maximum characteristic vector corresponding feature vector of judge matrix A. The weight

value can be obtained after normalizing the feature vector.

4. The consistency check is needed to analyze whether the weights distribution is reasonable or

not. The consistency indicator (CI) can be obtained by the following equation:

CI “
λmax ´ n

n ´ 1
(3)

The random consistence ratio (CR) can be obtained by the following equation:

CR “ CI{RI (4)

where n is the order of RI, RI is a random indicator (RI). A different order of the corresponding RI

values can be obtained listed in Table 1.

Table 1. Consistency random factor (RI).

m 3 4 5 6 7 8 9 10 11 12

RI 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54

If CR < 0.1, the judgment matrix has met the consistency test standards. This means that the weight

of the factors is reasonable. It is necessary to adjust the matrix until the CR meets the requirement.

2.2. The Information Content Model

The information content model (ICM) is evaluated from the theory of communication proposed

by C.E Shannon. He firstly proposed the concept of information and the calculation equation of

information entropy. Recently, more and more researchers applied the ICM on geological hazard

assessment and environmental quality evaluation [42–44]. This method overlays the information

content provided by landslide influencing factors and sets the total information content as the
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quantitative expression factor of landslide susceptibility assessment. The calculation equation is

as follows:

I py, x1x2¨¨¨xnq “ ln
P py, x1x2¨¨¨xnq

P pyq
(5)

where I py, x1x2¨¨¨xnq is the information content provided by factor combinations x1 x2 . . . xn for

landslide hazard, P py, x1x2¨¨¨xnq is the probability of landslide under the condition of factors

combinations x1 x2 . . . xn, P(y) is the probability of landslide.

The procedure of the GIS-based information content model is as follows:

1. Calculate the information content I (xi, H) of each influencing factor xi:

I pxi, Hq “ ln
P pxi{Hq

P pxiq
(6)

where P pxi{Hq is the probability of xi under the condition of landslide, P pxiq is the occurrence

probability of xi in the study area. This equation is a theoretical model; frequency is used for probability

calculation in the actual application:

I pxi, Hq “ ln
Ni{N

Si{S
(7)

where S is the total amount of pixels in the study area, N is total landslide pixels amount in the study

area, Si is the pixels amount of factor xi in the study area, Ni is landslide pixels amount among the

factor xi pixels.

2. Calculate the amount information content of each evaluation factor:

Ii “
n

ÿ

i“1

I pxi, Hq “
n

ÿ

i“1

ln
Ni{N

Si{S
(8)

where Ii is the amount information content of each evaluation factor, n is total number of factors.

3. The total information content Ii is used as the comprehensive factor. The higher the value is,

the greater the landslide susceptibility.

2.3. The Landslide Susceptibility Assessment

Based on the information content model, this study considered the weight of each influencing

factor. Combined with the AHP weighting method, this study overlays the related factor information

content to calculate the information weight values and the total information weighs of each

evaluation unit:

I pxi, Hqw “ Wi ˆ I pxi, Hq “ Wi ˆ ln
Ni{N

Si{S
(9)

Iiw “
n

ÿ

i“1

I pxi, Hq “
n

ÿ

i“1

Wi ˆ ln
Ni{N

Si{S
(10)

The information weight value of each evaluation factor and each evaluation unit are calculated

by the following equations: where Iiw is the comprehensive information weight value of evaluation

unit for the evaluation factors except for precipitation, Wi are the weights of the evaluation factors

calculated by the AHP method, S is the total amount of pixels in the study area, N is total amount of

the number of landslide pixels amount in the study area, Si is the amount of pixels of factor xi in the

study area, and Ni is the number of landslide pixels among the factor xi pixels.

3. Study Area and Data

3.1. Study Area

The study area is located in the mountains separating the Sichuan and Yunnan provinces of China,

along the upper reaches of the Jinsha River (Figure 1). The Jinsha River flows from south to north and
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is controlled by regional tectonics. In this area, the topography is characterized as a steep and deep

valley within the area of the high and very high mountains. The Xulong hydropower station reservoir

is located in the middle-high tectonic erosion mountains, with erosion accumulation landform types.

The elevation difference is mainly greater than 1000 m, and the maximum elevation difference is

2800 m.

Figure 1. Geographical position of the reservoir area of Xulong hydropower station.

The reservoir area is located along the southeastern margin of the Tibetan Plateau. Since the

Quaternary, neotectonic movement has made the study area a rapidly uplifting region [45]. Due to the

landform characteristics and intensity differences of the neotectonic movement, landslides have widely

occurred [46]. The deformation rate of the Jinsha River belt is 5 mm a year [47]. The regional neotectonic

movement zoning is shown in Figure 2. The structural movement of the strong uplift caused a rapid

river incision, yielding secondary disasters, such as landslides and collapses. Meanwhile, this area

is influenced by the southwest and southeast monsoons, which contribute to the foehn effect in this

area. Due to the foehn effect and the topographical enclosure, the characteristics are complex. The

climate is very dry and has sufficient sunlight. Additionally, the diurnal temperature variation is quite

big. The annual temperature is 13.8–19.2˝C. The mean annual precipitation ranges from 354.2 mm to

648 mm in the low and middle elevation area. However, because of the unique landforms and high

mean elevation, this area follows a significant vertical distribution law of precipitation. The annual

precipitation at the high elevation may reach more than 1000 mm. The Jinsha River and its tributaries

mainly form a V shape. The flow velocity and river discharge are both high, which has a great impact

on the landslides along the river.
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The exposed strata in the reservoir are from the Middle Proterozoic, Paleozoic, Mesozoic and

Cenozoic. Magmatite and metamorphic rocks also exist. The Middle Proterozoic strata include the

Xiongsong formation (Pt2X). The lithology of Pt2X is mainly composed of phyllite, marble, limestone,

schist, and slate, which are materials that are prone to landslides. The stratigraphic groups in the

Paleozoic include the Gerong formation (D1g), Qiongcuo formation (D1q), and Ophiolite formation

(DTJ). The lithology of the Jinsha River Ophiolite formation is mainly composed of basic-ultrabasic

rocks, spilite keratophyre, and radiolarian cherts. The stratigraphic groups in the Mesozoic are mainly

Triassic (T) and include the Bulun formation (T1b), the Qugasi formation (T3q), the Waigucun formation

(T3w), the Jiabila formation (T3j), the Sanhedong formation (T3sh), the Waluba formation (T3wl), and

the Maichujing formation (T3m). The lithology of the Triassic formations is mainly composed of

mafic volcanic rocks, carbonate, limestone, basalt, and esite, conglomerate, and sandstone. The

Cenozoic strata include the Relu formation (E2r) and Quaternary sediment. The Relu formation mainly

includes gravelly sandstone and gritstone. The Quaternary Period sediment includes alluvial and

lateral moraine material, in addition to lacustrine accumulation, chemical accumulation, and residual

accumulation. There are many deep and major faults in the study area, which are affected by tectonic

movement. Most of the faults formed as active faults on the basis of the old faults.

 

Figure 2. Regional neotectonic movement zoning map: I: Zhongdian-Yulong-jokul rapid uplift zone; II:

The western of Sichuan rapid uplift zone; II1: Gajinjokul strong rapid uplift zone; II2: Daocheng-Gongga

mountain tilted uplift zone; III: Qiangtang-Changdu rapid uplift zone; III1: Bijiang-Baoshan tilted

uplift zone; III2: Changdu fault block uplift zone; IV: Nianqingtanggula-Gaoligong mountain fault

block uplift zone; A: The Jinsha River; B: The Lancang River, C: The Nu River.

Extensive field investigations and observations were identified and mapped in the Xulong

hydropower reservoir, which was used to produce a detailed and reliable landslide inventory map.

A total of 69 landslides were identified and mapped in the study area by evaluating aerial photos

supported by field investigation (Figure 1). A series of field investigations were undertaken to identify

the relationship between the occurrence of landslides and the environmental factors. The landslide

types of the 69 landslides were various, mainly including rock slope deformation, rock planar slide,

and rock flexural topple [48]. Figure 3 gives some examples of the landslides.
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Figure 3. Landslide inventory in the study area.

3.2. Influencing Factors

Various causative factors data, such as the slope angle, slope aspect, curvature, geology,

distance-to-fault, distance-to-river, vegetation, bedrock uplift, and annual precipitation, were selected

for the LSM of the Xulong hydropower station. These variables were selected because they have been

successfully used in previous studies [31,49–55]. Note that there are few people living in the study area.

Hence, the traffic is not significant and people’s activities have little influence on landslide occurrences.

Precipitation follows a vertical distribution law due to the foehn effect; the higher the elevation is,

the higher the precipitation is. Precipitation-induced landslides have been the main topic in recent

years [56–58]. Evidence has shown that precipitation follows a vertical distribution law. Higher

precipitation zones should, thus, have more landslides. Precipitation and landslides show a very close

relationship over large spatial scales, suggesting that precipitation drives landslide variations [59].

Considering the distribution of the investigated landslides, solely using the ICM cannot reflect this

discipline. Precipitation is the main predisposing factor of landslides, which should be given more

attention. Thus, the annual precipitation should not be treated as the other predisposing factors; it was

necessary to analyze the annual precipitation factor separately for landslide susceptibility assessment.

In fact, the selection of regional LSM influencing factors should be applicable and practical for

the Xulong hydropower station. Meanwhile, the data obtained by GIS should be reliable. Elevation

is controlled by some geologic and geomorphologic processes [60]. The geological map has a scale

of 1:10,000, and the digital elevation model (DEM) has a resolution of 5 m ˆ 5 m, covering an area of

1413 km2 (Figure 4). The topography of the reservoir area is highland with elevation ranging from

2100 m to 5160 m, with 20 m interval contours in the geological map. Slope angle is an important factor

influencing the slope stability. It was extracted from the DEM through the GIS software at a resolution

of 5 m ˆ 5 m. The slope angle varies between flat and 73.8˝. The slope map was reclassified into

eight classes: (1) 0–10˝, (2) 10˝–20˝, (3) 20˝–30˝, (4) 30˝–40˝, (5) 40˝–50˝, (6) 50˝–60˝, (7) 60˝–70˝, and

(8) >70˝ (Figure 5a). The slope aspect map was also extracted from the DEM through the GIS software
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at a resolution of 5 m ˆ 5 m. Some microclimatic parameters, such as exposure to sunlight and winds,

precipitation intensity, and soil moisture are controlled by slope aspect [29]. The slope aspect was

divided into nine types, including flat, north (337.5˝–22.5˝), northeast (22.5˝–67.5˝), east (67.5˝–112.5˝),

southeast (112.5˝–157.5˝), south (157.5˝–202.5˝), southwest (202.5˝–247.5˝), west (247.5˝–292.5˝), and

northwest ( 292.5˝–337.5˝) (Figure 5b). Curvature describes the slope shape. The slope shape affects

the landslide development, which provides space for slope sliding. Based on the slope shape, the

slope can be divided into three types, including concave, convex, and flat (Figure 5c). The influence of

curvature on the slope erosion processes is the convergence or divergence of water during downhill

flow [61].

 

Figure 4. The digital elevation model of reservoir in Xulong hydropower station.

(a) (b) (c) (d) 

Figure 5. Influencing factors maps of the study area: (a) slope angle; (b) slope aspect; (c) curvature;

and (d) geology.

The study area is covered with various types of geologic formations. According to the geological

map of scale 1:50,000 and field investigation, this study mainly groups the geology into eight types.

The general geological setting of the area is shown in Figure 5d. Field surveys show that faults have
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a great influence on landslide occurrence. In the reservoir of the Xulong hydropower station, deep

and long faults developed substantially. The distance-to-fault is an extremely important evaluation,

factor and the distance-to-fault map was calculated in 200 m intervals (Figure 6a). The landslides

in the reservoir are mostly distributed within 1000 m of faults. The slopes on the banks of the river

often suffer river erosion. In general, at a closer distance to the river, the erosion is stronger and the

probability of the occurrence of landslides is higher. The distance-to-river map was calculated in

200 m intervals (Figure 6b).The dominant vegetation species are grasses and shrubs. The vegetation

distribution is obtained by SPOT5 images. The vegetation distribution is shown in Figure 6c, and the

vegetation is divided into vegetation cover and no cover.

(a) (b) (c) 

Figure 6. Influencing indicators maps of the study area: (a) distance-to-fault; (b) distance-to-river; and

(c) vegetation.

The reservoir belongs to the Daocheng-Gongga Mountain tilted uplift zone (Figure 2), which has

been experiencing rapid bedrock uplift since the Quaternary Period. According to the observation data

collected from 1970 to 2012, the rate of bedrock uplift could have reached 5.8 ˘ 1.0 mm a year in this

study area [62]. The increase of landslides is proportional to the increase rates of bedrock uplift [63,64].

It is apparent that landslides mainly occur along the banks of the Jinsha River (Figure 1), which means

that the interaction of bedrock uplift and river incision contributes to the landslide occurrence. In the

active landslide period, the landslides were impacted by the interaction between rapid tectonic uplift

and the Jinsha River incision. In this period, the angle of slope increased along the river, as well as the

slope potential energy [63]. Burbank [46] considered that the equilibrium was maintained between

bedrock uplift and river incision, with landslides allowing hillslopes to adjust efficiently to the rapid

river incision. The evidence reflected that a relationship exists between the landslide occurrence and

rapid bedrock uplift. The average slope angle among all areas suggested that a common threshold

controlled the occurrence of landslides [46]. Additionally, it has often been argued that high rates of

bedrock uplift and denudation should be correlated with steep slope angles [65]. This study used the

slope angle to represent the influence of the bedrock uplift.
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There is a vertical distribution law of precipitation in this area. According to previous

studies [66,67], precipitation is proportional to the elevation. The coefficients of tendency increase with

increasing elevation, and it is particularly evident in areas above an elevation of 2500 m. The higher

elevation enhances the increasing trend of precipitation erosion. The precipitation erosion force change

trend coefficient increases by 0.05 for every 500 m increase in elevation. The elevation of the reservoir

ranges from 2100 m to 5160 m. In this study, the elevation is divided into six zones based on Liu [67]:

(1) 2100 m–2600 m, (2) 2600 m–3100 m, (3) 3100 m–3600 m, (4) 3600 m–4100 m, (5) 4100 m–4600 m and

(6) 4600 m–5160 m.

Most of the precipitation stations are distributed from Benzilan to Batang county, rather than

along the Jinsha River. Four precipitation stations are distributed along the Jinsha River, as listed in

Table 2 [68–70]. This study established a linear relationship between the annual precipitation and the

elevation (Figure 7). In Figure 7, the blue points represent the data from the four precipitation stations

in Table 2. The linear equation is shown as follows:

y “ 0.244 e ´ 157.7 p2100m ă e ă 5160mq (11)

where y (mm) is the annual precipitation and e (m) is the elevation. The precipitation gradient is

24.4 mm/100 m, in terms of the spatial distribution. The annual precipitation was divided into six

zones based on Equation (11):(1) the annual precipitation range in the elevation range of 2100 m to

2600 m is 355 mm to 477 mm; (2) the annual precipitation range in the elevation range of 2600 m to

3100 m is 477 mm to 599 mm; (3) the annual precipitation range in the elevation range of 3100 m to

3600 m is 599 mm to 720 mm; (4) the annual precipitation range in the elevation range of 3600 m to 4100

m is 720 mm to 843 mm; (5) the annual precipitation range in the elevation range of 4100 m to 4600 m

is 843 mm to 965 mm; and (6) the annual precipitation range in the elevation range of 4600 m to 5160 m

is 965 mm to 1101 mm. The annual precipitation distribution map is shown in Figure 8. Moreover,

the landform of the Xulong reservoir is similar to Gongwang Mountain [71], which is located in the

north of Yunnan Province along the Jinsha River. The precipitation of Gongwang Mountain is very

low, and the precipitation gradient is 24 mm/100 m, which is close to that observed at the study site,

that is, 24.4 mm/100 m. Therefore, 24.4 mm/100 m is a reasonable precipitation gradient of the Xulong

hydropower station reservoir.

Table 2. Annual precipitation measured by precipitation stations along the upstream of the Jinsha

River at different elevation.

Precipitation
Station

Longitude Latitude Elevation/m
Annual

Precipitation/mm
Data

Resources/year

Benzilan 99˝17’ 28˝17’ 2023 308 1965–1988
Shangqiaotou 99˝24’ 28˝10’ 2040 369.68 1961–2004

Batang 99˝06’ 30˝00’ 2590 474.4 1960–2012
Dege 98˝35’ 31˝48’ 3184 619.81 1960–2012

− ＜ ＜

 

Figure 7. The relationship between elevation and annual precipitation based on the four

meteorological stations.
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Figure 8. The annual precipitation classification of the study area.

3.3. Data Processing

Note that the AHP–ICM method for the landslide susceptibility mapping is only used for the eight

factors: slope angle, slope aspect, curvature, geology, distance-to-fault, distance-to-river, vegetation

and bedrock uplift (represented by slope angle). Since the eight-factor comprehensive information

content (CIC) and annual precipitation have different ranges, normalizing the eight-factor CIC and

the annual precipitation is necessary. This study normalizes the data to (0, 1) on the basis of the

following equation:

A = pCIC ´ CICminq{pCICmax ´ CICminq (12)

where A is the landslide susceptibility value of the eight factors, CIC is the different unit information

content, and CICmax and CICmin are the maximum and minimum comprehensive information contents,

respectively.

In this study, the elevation is divided into six zones based on Liu [67]: (1) 2100 m–2600 m,

(2) 2600 m–3100 m, (3) 3100 m–3600 m, (4) 3600 m–4100 m, (5) 4100 m–4600 m, and (6) 4600 m–5160 m.

The six divisions of annual precipitation are: (1) 355 mm–477 mm, (2) 477 mm–599 mm, (3) 599 mm–720 mm

and (4) 720 mm–843 mm, (5) 843 mm–965 mm, and (6) 965 mm–1101 mm. The assignment value is

based on the following equation:

Vi “
pri ` ri`1q pei`1 ´ eiq

prmax ` rminq pemax ´ eminq
pi “ 1, 2, . . . , 6q (13)

where Vi is the assignment value of the annual precipitation pixel; ri is the annual precipitation

interpolation; ei is the corresponding elevation; rmax and rmin are maximum and minimum annual

precipitation in the study area, respectively; and emax and emin are maximum and minimum elevation

in the study area, respectively. As discussed in Section 3.1, the annual precipitation has a linear

relationship with the elevation.

The normalization of annual precipitation is calculated by the following equation:

N = pVi ´ Vminq{pVmax ´ Vminqpi =1, 2, . . . , 6q (14)

where N is the normalization of annual precipitation, Vi is the assignment value of the annual

precipitation pixel, and Vmax and Vmin are the maximum and minimum assignment values of the

annual precipitation, respectively. Eventually, the landslide susceptibility value is calculated by the

following equation:

S “ p1 ´ Wrq ˆ A ` Wr ˆ N (15)

where S is the eventual landslide susceptibility value, A is the eight-factor assessment value of landslide

susceptibility, Wr is the weight of the annual precipitation calculated by AHP, and Ni is the annual

precipitation normalization value of the six zones, respectively.
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4. Results and Discussion

Many of the factors influencing landslide occurrence could be collected to systematically assess

the other areas that might have slope failures. For some areas, this analysis is essential so that people

can consult the landslide susceptibility maps to avoid areas of higher landslide risk. In this study,

landslide susceptibility maps had been constructed using the analytic hierarchy process and the

information content method for the Xulong hydropower station reservoir. A landslide susceptibility

map is provided for this area. In the future construction of this hydropower station, this map may help

avoid losses in human lives and property.

4.1. Determination of Analytic Hierarchy Process (AHP)Weights

Based on the landslide susceptibility assessment factor system, the hierarchical structure was

established. According to previous studies about the relationships between influencing factors and

landslides, the judgment matrix of landslide susceptibility assessment is shown in Table 3. Note

that this study took nine influencing factors into consideration for landslide susceptibility. However,

the influence of the rapid bedrock uplift factor was represented by slope angle (Figure 5a). This study

used the slope angle, slope aspect, curvature, geology, distance-to-fault, distance-to-river, vegetation,

and annual precipitation for weighting with the AHP method. The feature vector (the weight) was

calculated (Table 3). Based on Equations (3) and (4), the CR was calculated; CR = 0.0403, which was

less than 0.1. This means that the judgment matrix met the consistency check and weight allocation

was reasonable.

Table 3. The analytic hierarchy process judgment matrix and influencing factor weights.

Heading X1 X2 X3 X4 X5 X6 X7 X8 Weights

X1 1 1 2 4 4 6 7 8 0.2803
X2 1 1 2 3 3 5 6 7 0.2452
X3 1/2 1/2 1 3 3 4 5 6 0.1800
X4 1/4 1/3 1/3 1 1 3 4 5 0.0948
X5 1/4 1/3 1/3 1 1 3 4 5 0.0948
X6 1/6 1/5 1/4 1/3 1/2 1 2 3 0.0482
X7 1/7 1/6 1/5 1/4 1/3 1/2 1 2 0.0329
X8 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.0237

Notes: X1: precipitation; X2: lithology; X3: slope angle; X4: distance-to-river; X5: distance-to-fault; X6:
vegetation; X7: slope curvature; X8: slope aspect.

4.2. The Information Content (IC) of Eight Factors

Based on Figures 5 and 6, the eight factors were calculated and listed in Table 4. According

to Equations (7) and (8), the information contents of units of influencing factors were calculated.

If Ii ă 0, the landslide occurrence probability of the influencing factor is lower than that of the average

probability. When Ii “ 0, the landslide occurrence probability of the influencing factor is equal to that

of the average probability. If Ii ą 0, the landslide occurrence probability of the influencing factor is

higher than that of the average probability.

Table 4 shows that for most landslides (72.81%), the slope angle is distributed between 20˝ and

50˝. However, the IC values of 0˝ to 10˝, 10˝ to 20˝, 50˝ to 60˝ and 60˝ to 70˝ were 0.8997, 0.3498,

0.4180, and 0.2850, respectively. This indicates that the slopes with slope angles of 0˝ to 20˝ and 50˝

to 70˝ were prone to failure in this study area. The substitution of steeper slopes for gentler slopes is

the reason for landslide occurrence, which is a process driven by the rapid bedrock uplift and river

incision. This was the most advantageous slope angle condition of landslides. For the slope aspect

factor, the highest probabilities of landslide occurrence were mainly in the east, southeast, and south

directions. The IC values were 0.5566, 0.3843, and 0.3583, respectively. The north, southwest, and

northwest did not develop. Because the slope body of the south is easily loosened and broken under

water and heat, the critical slope angle was lower than that of the northern slopes. The curvature of

landslides was mainly concave (43.9%) and convex (43.19%), but the IC values were not high. For the
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landslides in the reservoir, most of the geological formations were composed of Quaternary Period

(Q) loess, mud, and gravel, Xiongsong Formation (Pt2) schist, phyllite and marble, and the Devonian

to Triassic ophiolite suite. The IC values were 1.3652, 0.3278, and 0.3023, respectively. The landslides

along the Jinsha River were widely developed. The Xiongsong Formation (Pt2) geologic suite had a

layered fracture structure. Their rock strength was not high, which provided a pre-condition for the

occurrence of landslides. Meanwhile, the ophiolite suite had a complicated geologic combination, and

its anti-weathering ability was poor. The landslides were mainly distributed within 200 m–600 m of

the faults and 0 m–400 m of the river. It could be observed that the farther distance from the river, the

smaller the probability of landslides occurrence. The plants on the ground could improve the shear

strength of rock and soil mass. The IC values of vegetation cover and no cover were ´0.7883 and

0.2879, respectively. This suggests that the ground with no vegetation was more prone to landslides.

The eight-factor LSM result is displayed in Figure 9a.

Table 4. Distribution of the training pixels.

Factor Class
Landslide Not Occurred Landslide Occurred Total

Count
Information

ContentCount Ratio/% Count Ratio/%

Slope Angle
(Rapid

Bedrock
Uplift)/˝

0–10 1,858,723 3.36 110,024 8.56 1,968,747 0.8997
10–20 5,788,727 10.48 192,876 15.01 5,981,603 0.3498
20–30 14,993,603 27.14 326,073 25.38 15,319,676 –0.0656
30–40 22,210,924 40.21 389,651 30.33 22,600,575 –0.2763
40–50 9,069,973 16.42 219,551 17.09 9289,524 0.0391
50–60 1,195,655 2.16 42,750 3.33 1,238,405 0.4180
60–70 118,723 0.21 3700 0.29 122,423 0.2850
>70 1572 0 0 0 1572 0

Slope Aspect

Flat 499,251 0.01 12,648 0.01 511,899 0.1861
North 6,890,597 0.12 90,223 0.07 6,980,820 ´0.5644

Northeast 5,660,124 0.10 138,129 0.11 5,798,253 0.0470
East 6,459,419 0.12 266,725 0.21 6,726,144 0.5566

Southeast 6,699,468 0.12 231,321 0.18 6,930,789 0.3843
South 6,775,601 0.12 227,748 0.18 7,003,349 0.3583

Southwest 6,890,429 0.12 14,262 0.01 6,904,691 ´2.3973
West 7,870,201 0.14 168,562 0.13 8,038,763 ´0.0806

Northwest 7,492,796 0.14 135,002 0.11 7,627,798 ´0.2501

Curvature

Concave 23,966,881 43.39 563,969 43.90 24,530,850 0.0115
Flat 5,947,546 10.77 165,781 12.90 6,113,327 0.1766

Convex 25,323,475 45.84 554,878 43.19 25,878,353 ´0.0582

Geology

Q 2,451,097 4.44 239,012 18.61 2,690,109 1.3652
K 4,718,96 0.85 0 0 471,896 0.0000
T 16,883,871 30.57 160,526 12.5 17,044,397 ´0.8791
P 7,619,949 13.79 19,629 1.53 7,639,578 ´2.1783

DTJ 12,172,394 22.04 395,719 30.8 12,568,113 0.3278
D2q 491,512 0.89 0 0 491,512 0.0000
Pt2X 13,753,469 24.90 435,508 33.9 14,188,977 0.3023

Intrusive
rock

1,393,883 2.52 34,142 2.66 1,428,025 0.0527

Distance-to-
Fault/m

0-200 5,488,207 24.54 170,371 16.07 5,658,578 ´0.4073
200–400 5,129,121 22.93 298,303 28.14 5,427,424 0.1945
400–600 4,465,698 19.97 300,739 28.37 4,766,437 0.3326
600–800 3,871,123 17.31 181,969 17.17 4,053,092 ´0.0077

800–1000 3,412,901 15.26 108,548 10.24 3,521,449 ´0.3837

Distance-to-
River/m

0–200 7,180,378 28.70 424,595 37.73 7,604,973 0.2602
200–400 6,451,048 25.79 345,492 30.70 6,796,540 0.1665
400–600 6,005,606 24.01 211,146 18.76 6,216,752 ´0.2368
600–800 5,378,631 21.50 144,181 12.81 5,522,812 ´0.5000

Vegetation
Cover 21,230,458 38.44 221,769 17.26 21,452,227 ´0.7883

No cover 34,006,789 61.56 1,063,500 82.74 35,070,289 0.2879
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Figure 9. Landslide susceptibility map results using the new approach: (a) eight-factor LSM results;

(b) LSM discrete results; and (c) LSM classification results.

4.3. Landslides Susceptibility Mapping

The weights of the influencing factors were calculated by the AHP. The method for the eight-factor

LSM result was based on the ICM, whereas the annual precipitation factor was analyzed separately.

Then, the eight-factor LSM was combined with the annual precipitation factor based on Equation (15)

for the eventual landslide susceptibility mapping. The eventual landslide susceptibility map was

generated through the GIS software and the value scope is 0–0.8533. The discrete result is shown in

Figure 9b. The natural break classification scheme was applied for the classification of the landslide

susceptibility zones. Recently, the classification method mainly used the natural break classification

scheme [72–76]. The landslide susceptibility maps were reclassified into four classes: low (0–0.3323),

moderate (0.3323–0.4593), high (0.4593–0.5699), and very high (0.5699–0.8533).

The eventual landslide susceptibility results are shown in Figure 9c. The area of the very high zone

was 252.23 km2, accounting for 15.17% of the whole study area (Table 5). This area is mainly distributed

in the high elevation areas of Quaternary-aged material. The very high susceptibility zone is not stable

and is prone to large-scale landslides. The high susceptibility zone is 479.99 km2, accounting for 34.11%

of the whole reservoir. This sub-class basically represents the landslide susceptibility of the whole

study area. It is mainly distributed on the left bank of the Jinsha River in the middle elevation areas.

The geology of this area was mostly Xiongsong Formation (Pt2X) schist, phyllite, marble, and the

Devonian to Triassic ophiolite suite. Middle-large landslides were prone to occur in this zone. The

moderate zone was 493.46 km2, accounting for 35.06% of the area. This zone mainly had small-middle

scale landslides. However, the moderate zone was mainly distributed in the low elevation area, where

the annual precipitation was not as high as the higher elevation area. The rest of the 181.58 km2
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was of low susceptibility, that is, landslides were not likely to occur. Overall, approximately 87.1%

of the reservoir area may have experienced landslides. It was found that 89.8% of the landslides

occurred in areas allocated to the moderate, high and very high areas. The low, moderate, high,

and very high zones accounted for 10.2%, 48.92%, 30.12% and 10.46% of the landslide occurrence,

respectively. This suggests that the susceptibility mapping of the study area was consistent with the

actual consequences. The high and very high susceptibility zones accounted for 52.03% of the Xulong

hydropower station reservoir.

Table 5. Statistical results of LSM in the Xulong hydropower station reservoir.

Susceptibility
Landslide Occurred Total Study Area

Count Ratio (%) Area (km2) Count Ratio (%) Area (km2)

Low 131,027 10.20 3.28 7,263,251 12.90 181.58
Moderate 628,504 48.92 15.71 19,738,352 35.06 493.46

High 390,774 30.12 9.77 19,199,915 34.11 479.99
Very High 134,422 10.46 3.36 10,089,277 17.92 252.23

4.4. Discussions and Validation

Most of the aforementioned literature used objective methods for LSM, which were mostly based

on objective data from field investigation aerial photos. However, regarding the implemented special

area, these approaches had limitations, such as obtaining unclear data [35] and the strict demands of

the methods. Any incorrect results can easily be conveyed into the weighting assignments. Therefore,

solely relying on objective methods has some limitations and can easily lead to misleading information.

Based on expert opinion, AHP introduced a degree of subjectivity when used to make comparison

judgments. The expert experiences combined with ICM permitted a better flexibility in the landslide

susceptibility analysis. The proposed approach retained many advantages that AHP had, especially its

hierarchical structure, reduced inconsistency from the pairwise comparison, and the priority vectors

generated [77]. The AHP-ICM approach can be applied as a quantitative solution for LSM considering

both the priority for landslide susceptibility factors and the objective investigated information. The

results using the combination method were superior to those from using the alternative method alone.

It was found that most of the study area was rocky and poorly vegetated. Due to the effects of the

vertical distribution law of precipitation, the vegetation also had a vertical distribution law along with

precipitation. There was almost no vegetation in the low elevation area, whereas the vegetation at high

elevation was widely distributed. The vegetation coverage increased with the elevation because of the

higher precipitation.

Precipitation commonly occurred as snowfall during the winter in the high elevation area.

Matsuura [78] found that the maximum daily displacements of each year were observed not in

snow melting periods, but immediately before or at the beginning of snow cover periods. According

to [78], the displacement of a landslide that has a shallow sliding surface in a snowy region was found

to be affected by snow accumulation conditions. A slight effect was still observed for landslides in the

snow cover period. Snow accumulation is not annual. In warm seasons, the snow melts. In this study,

precipitation is considered throughout the whole year. Slope instability appears to be mainly forced by

the snow melt accumulated during the winter season, which, in turn, promotes rock and soil water

saturation and landslide occurrence in the following spring-summer generated by the snow melt [79].

Yamasaki [80] also considered that precipitation was presented as snowfall, suggesting a possible

increase in slope instability because of the more frequent rock water saturation in high elevation areas.

This study introduced an approach for landslide susceptibility mapping considering the vertical

distribution law of precipitation in the study area. Figure 9a shows the eight-factor LSM results.

It shows that the very high susceptibility zones were mainly distributed in the area covered by

Quaternary material. The high susceptibility zones were mainly distributed in the areas of the



Water 2016, 8, 270 16 of 21

Xiongsong Formation (Pt2) geologic suite and Ophiolite formation (DTJ). It seemed that the lithology

played a dominant role in the LSM. However, based on Table 3, the precipitation was the most

important factor influencing landslide occurrence. When taking the vertical distribution of precipitation

into consideration, the LSM results became totally different. It is shown in Figure 9c that the

susceptibility values of the high elevation areas were higher than those of the low elevation areas. The

susceptibility values increased with increasing elevation. It was obvious that the vertical precipitation

distribution had a great contribution to the landslide distribution. It should be noted that there were

some red belts at the top of the mountain (Figure 9c). The red belts represent the very high susceptibility

zones. This pattern followed the vertical distribution law of precipitation.

To validate the accuracy of the results, this study used the evaluation accuracy analysis method

as the validation [38]. The equation is as follows:

P “
M1

N1
ˆ

ˆ

M ´ M1

N ´ N1

˙1{3

(16)

where P is the accuracy of the prediction, N is the total pixel number of the study area, N1 is the pixel

number of landslides, M is the pixel number above the critical value of the study area, and M1 is the

pixel number of landslides above the critical value. Since all of the moderate, high and very high

susceptibility zones yield different sized landslides, this study sets the moderate susceptibility zone as

the critical value. The parameters are shown in Table 6.

Table 6. The evaluation results accuracy analysis.

Susceptibility Degree M N M1 N1 P

Moderate 19,738,352

56,290,795

628,504

1,284,727 85.74%
High 19,199,915 390,774

Very High 10,089,277 134,422
Counts Number 49,027,544 1,153,700

Based on Equation (16), the prediction accuracy was calculated as P = 85.74%. The prediction

accuracy was very high and the landslide susceptibility map using the AHP-ICM evaluation results

was reasonable and reliable in terms of the vertical distribution law of precipitation.

5. Conclusions

The preparation of the landslide susceptibility map is one of most important planning agencies for

hazard prediction in the reservoir of the Xulong hydropower station. It should be implemented

in the process of the hydropower station construction. Based on the field investigation data,

this study provided a landslide distribution and data of their basic influencing factors. Among

the landslide-related factors, the slope angle, slope aspect, curvature, geology, distance-to-river,

distance-to-fault, vegetation, bedrock uplift, and annual precipitation were used for landslide

susceptibility mapping.

It has often been argued that the high rates of bedrock uplift and denudation should be correlated

with steep slope angles. The rapid bedrock uplift of this area also plays an important role in the

slope angle distribution, which directly influences the occurrence of landslides. With the analytic

hierarchy process, this study collected the observations and suggestions of many experts and references

and established a weighting model of the related factors. The eight factors were analyzed with the

information content method, except for annual precipitation.

The evidence shows that a vertical distribution law of precipitation exists in the study area. The

precipitation directly determines the occurrence probability of landslides. The ICM cannot reflect the

vertical distribution law of precipitation, which represents the characteristics of the implemented area.

Analyzing the annual precipitation factor separately can satisfy this condition. The eight-factor
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landslide susceptibility map was combined with the annual precipitation map for the eventual

landslide susceptibility mapping. The landslide susceptibility map was generated and the value

scope was 0–0.8533.

Objective methods have been widely used for landslide susceptibility analysis. However, most

objective methods have their limitations, which would easily introduce some mistakes in assigning

factor weights. The AHP method was useful for many cases because of its ease of applicability

and the structure of AHP. This study proposed an approach for integrating an accurate objective

method (ICM) with an overall guidance subjective method (AHP) to develop a landslide susceptibility

map. The combined method with the advantages of the two methods can obtain accurate results.

Moreover, the proposed method permits better flexibility in LSM. GIS was applied to obtain the

landslide susceptibility map.

The landslide susceptibility map comprises four classes, including low, moderate, high and very

high. These susceptibility zone ratios were 12.9%, 35.06%, 34.11% and 17.92% of the study area,

respectively. The precipitation had a great effect on the occurrence of landslides. It was necessary to

consider this factor correctly. Since there was a vertical distribution law of precipitation in the study

area, the top of the mountain displayed a series of very high susceptibility pixels. The validation

results showed that the prediction accuracy was 85.74%, which meant that the susceptibility map was

confirmed to be reliable and reasonable. This study could serve as an effective guide for the further

construction of the Xulong hydropower station. It also verifies that the method for obtaining the

vertical distribution law of precipitation in the study area was appropriate.
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