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This study was aimed to utilise important landslide causal factors for the delineation of the landslide
susceptible area using the weights of evidence (WofE) method in the Tehri reservoir rim region on
a macro scale. The Tehri reservoir extends up to 70 km and bounded by moderate to steep slopes.
Landslide susceptibility mapping (LSM) is an essential measure for identifying the potentially unstable
slopes bounding the reservoir. With the help of ancillary data, remote sensing imagery and a digital
elevation model, 10 causative factors along with landslide inventory were extracted. Initially, the WofE
model was applied to obtain the association between landslides and causative factors. The process gave
the numerical estimate of correlation between landslides and causative factors by means of positive and
negative correlation. Important factor attributes, potentially causing landslides, were identified based
on high positive correlation values. Later, the posterior probability of landslide occurrence for each
mapping unit was also computed using the WofE model. Posterior probability was divided into five
relative susceptibility classes. Validation of the posterior probability map was carried out by using the
prediction rate curve technique and a reasonable accuracy of 83% was achieved. LSM of the Tehri
reservoir rim area implicates unplanned road construction and settlements coupled with the reservoir
slope settlement process for the present degradation of the geo-environmental system in that region.
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1. Introduction

Natural disasters have become a very common
phenomenon all over the world. Significant amount
of planning and mitigation works are being car-
ried out to tackle the risks associated with the
disaster events. Devastation following the natu-
ral hazards is often associated with anthropogenic
interference in the geo-environment. Some eye-
opening instances of such recent phenomena are
the 2011 Japan tsunami (Fritz et al. 2011) and
the 2013 Kedarnath floods, Uttarakhand, India
(Dobhal et al. 2013). Various types of natural

hazards such as typhoon, tsunami, flash flood,
hurricane, earthquake, slope subsidence, etc., have
become major threats to all living creatures.
Hilly terrains are susceptible to multiple haz-
ards such as earthquakes, avalanches, cloud bursts,
etc., but landslides are dominant. Disaster studies
on a global scale have emphasised that develop-
ing countries such as India, China and Nepal have
suffered high destruction and fatalities due
to the landslide hazard in the past decade
(OFDA/CRED 2010). Estimates suggest that out
of 80% landslide-related fatalities reported from
developing countries, India accounts for 8% of them
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(Kirschbaum et al. 2010). About 15% of the total
land coverage of India is susceptible to landslides
(NDMA 2009; Kundu et al. 2013). Triggering fac-
tors, namely, earthquakes, excessive rainfall and in-
tense anthropogenic activity are the main reasons
for landslides in India.

Landslide hazard and risk evaluation can be
achieved by supplying risk managers with eas-
ily available, continuous and precise knowledge
about landslide susceptibility (Kouli et al. 2013).
By means of scientific investigation, we can evalu-
ate and forecast landslide prone regions, and thus
minimise landslide destruction by implementing
suitable mitigation measures (Saha et al. 2005;
Pradhan 2010; Kundu et al. 2013).

Landslide susceptibility mapping (LSM) is a
component of preparedness measure against prob-
able landslide hazard event. LSM gives the knowl-
edge of landslide propensity in advance on account
of existing ground physical conditions. The identi-
fication of the landslide susceptible area is rooted
in the premise that future landslides are expected
under the geo-environmental settings which have
been responsible for landslides in the present
and in the past (Varnes 1984; Pardeshi et al.
2013; Kumar and Anbalagan 2015). The reliabil-
ity of LSM is governed by the choice of land-
slide causative factors, distribution of factors in
the given area and applicable methodology. Many
techniques are exercised for the identification of
landslide susceptible regions. They are generally
categorised in qualitative, semi-quantitative, quan-
titative/probabilistic, deterministic/analytical and
process-based methods. Qualitative methods are
based on assigning propensity values to the fac-
tors by expert knowledge and hence they are
very subjective in nature. For the regional sus-
ceptibility analysis, qualitative methods have been
proven useful (Anbalagan 1992; Gupta and Anbal-
agan 1997; Gupta et al. 2008). Examples of semi-
quantitative techniques are weighted linear
combination, fuzzy logic and analytic hierarchy
process. These logical tools are subjected to quan-
tify the significance of landslide causative factors
in terms of weights/ratings (Guzzetti et al. 1999;
Akgun et al. 2008; Pourghasemi et al. 2012; Yan
et al. 2019). The foundation of probabilistic meth-
ods lies in landslide density within factor classes.
Bivariate and multivariate statistics are the two
variants of the probabilistic–statistical method.
Bivariate statistical models are based on the corre-
lation between landslide distribution and landslid-
ing factors. These models compute weights/ratings

of each factor class. Weights of evidence (WofE),
frequency ratio, information value, a combination
of frequency ratio and fuzzy logic are important
bivariate statistical methods which are practiced
in the landslide susceptibility study (Mathew et al.
2007; Akgun et al. 2008; Kannan et al. 2013;
Sujatha et al. 2014; Sharma and Mahajan 2018).
Multivariate models are also based on landslide
density but in order to compute the landslide prob-
ability, they use the collective influence of factors
(Das et al. 2012; Umar et al. 2014; Shahabi et al.
2015; Kalantar et al. 2018). A commonly prac-
ticed multivariate statistical method is the logis-
tic regression method (Nandi and Shakoor 2009).
Another common method for determining slope
failure susceptibility is the analytical/deterministic
method, which uses geotechnical features such as
slope morphometry, structural discontinuity pat-
tern, soil moisture, etc., to estimate the susceptibil-
ity by means of a factor of safety (Chakraborty and
Anbalagan 2008; Akgun and Erkan 2016; Sarkar
et al. 2016; Ciurleo et al. 2017). Nowadays, deep
machine learning algorithms such as decision trees,
fuzzy neural networks, support vector machines
and adaptive neuro-fuzzy interface system models
(Arora et al. 2004; Kanungo et al. 2006; Yao et al.
2008; Yilmaz 2010; Kumar et al. 2017; Hong et al.
2018) are extensively used for identifying landslide
susceptible zones.

In the present work, a bivariate statistical
method, ‘WofE’, was attempted to carry out the
susceptibility study. The foundation of WofE lies
in Bayesian statistics, and uses the prior proba-
bility of occurrence of an event such as landslide
to compute its posterior probability on the basis
of the correlation between the evidential themes
and landslide inventory. In this work, we aimed for
the applicability of the WofE method in identifying
the landslide propensity of the Tehri reservoir rim
area. Several authors have successfully attempted
the WofE model in different parts of the Himalaya
to obtain a degree of the susceptibility of terrain
(Mathew et al. 2007; Dahal et al. 2008; Ghosh et al.
2009; Kayastha et al. 2012). In most of the above-
mentioned techniques, the ratings of factor classes
were obtained on the basis of the WofE, formula-
tions and rated thematic layers were arithmetically
overlaid to determine the degree of susceptibility.
In this work, the posterior probability of landslide
occurrence was identified considering existing land-
slide inventory and factor classes together. Given
the extent of the slopes bounding the reservoir, this
work was carried out on a macro scale of 1:50,000.
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2. Study area

The Tehri reservoir rim area is located in the
highly undulating terrain of the Lesser Himalaya
(figure 1). Here, the reservoir rim area refers to
the area bounding the reservoir. The Tehri reser-
voir has developed partly in the Bhagirathi and
partly in the Bhilangana rivers as a result of the
construction of the Tehri dam and it extends in
length up to 70 km. The reservoir is bounded
by moderate to steep slopes which support set-
tlements, forest land, crop land, etc. This area
is represented by cliffs, ridges, spurs, deeply dis-
sected valleys, well-developed terraces and abrupt
sharp slopes. Ridges and spurs are occupied by
dense to sparse forests. Moderate slopes are gen-
erally supported by agricultural lands, plantation
and settlements. The area is drained by a typi-
cal mountainous drainage pattern such as parallel,
sub-parallel and sub-dendrite patterns.

A number of development works are in the
construction or completion phase on the slopes
bounding the Tehri reservoir. This huge reser-
voir is filled during the monsoon season and dries
out substantially in the summer season. Addition-
ally, during the reservoir operation, some degree of
drawdown occurs. The reservoir drawdown takes
place between the maximum reservoir level (MRL
830 m) and dead storage level (740 m) during the
rainy and summer seasons.

When the reservoir attains MRL, it soaks bound-
ing slopes. The saturated slopes fail at a number of
places at the time of sudden drawdown. Instability
in the bounding slopes depends upon the following
factors: (i) nature of slope forming material, (ii)
slope geometry, (iii) vegetation support on slopes
and (iv) anthropogenic activity along the reservoir.
Reservoir water fluctuation leads to the instability
of slopes and these are manifested in terms of land-
slides, subsidence, sink holes, etc. Typical arcu-
ate shape landslides (also called reservoir-induced
landslides) which originate at the reservoir level
have been found progressing towards the upper
reaches of slopes and encroaching settlements.
Additionally, roads have been constructed by ran-
domly cutting the reservoir bounding slopes and
this has only aggravated the instability problem in
the reservoir rim area.

2.1 Geology of the Tehri reservoir region

The most significant geological investigation of
Tehri area was pioneered by Valdiya (1980). The

reservoir region belongs to the great Himalayan
division called the Lesser Himalaya. Henceforth,
rocks in the Tehri reservoir area are represented
by various litho units of the Lesser Himalaya. Raut-
gara, Chandpur, Nagthat, Deoban, Krol and Blaini
formations of Damtha, Jaunsar, Tejam and Mus-
soorie groups, respectively, are the major rock units
occupying the area. Table 1 illustrates the strati-
graphic succession of Tehri area. Extremely worn
quartzite and phyllite (moderate to low grade)
of Chandpur formation are characteristic of the
central part of the reservoir rim region. Charac-
teristic structural discontinuities such as foliation
plane and joints make phyllite and quartzite vul-
nerable to landslides. In the western segment of
the study area, Nagthat quartzites are dominantly
present. These quartzites are characterised by dif-
ferent colours and often found intercalated with
slates. Due to the frequent presence of weathered
top and shearing, Nagthat rocks are vulnerable to
landslides at places. In the eastern segment, the
North Almora thrust (NAT) divides the Jaunsar
group from the Damtha group. Rocks affiliated to
the Rautgara formation consist of varying colours
of quartzite (dominant), slates (minor presence)
and metavolcanics. Rocks affiliated to Deoban for-
mation are seen in the eastern portion of the area.
Deoban formation is stuffed between the Berinag
and Rautgara formation in the southern segment of
the area. It consists of fine-grained dolomitic lime-
stone with minor phyllitic intercalations. Rocks of
the Deoban formation are largely represented at
the higher ridges. Rocks affiliated to the Berinag
formation are manifested in the eastern segment
of the region. The Berinag thrust disconnects this
formation from its base.

Rocks associated with the Berinag formation are
mainly quartzite. Quartzite slates and carbonate
rocks affiliated to the Blaini formation are repre-
sented in the western portion of the study area.
The area is also represented by three regional struc-
tures including two syncline zones and a thrust
fault ‘NAT’ (figure 2).

The area is represented by a variety of structural
discontinuities such as foliation plane, bedding
plane, joints, faults and shear zone. But the most
important discontinuities observed on the slope
faces are the foliation planes, joint set and shear
zone. Rocks found adjacent to the reservoir are
mainly phyllite. General orientation of the foliation
plane is of three types: 45–55◦/N170–180, 40–
45◦/N200–210 and 40–50◦/N120–130. These planes
generally dip into the hill, except at places where it
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Figure 1. Study area: the Tehri reservoir rim region.

Table 1. Illustration of stratigraphic classes present in the Tehri region.

Age Group Formations and rock type

Cambrian Mussoorie Krol formation: Outer Lesser Himalaya

Rock type: limestone intercalated with slates

and siltstone

Neoproterozoic Mussoorie Blaini formation: Outer Lesser Himalaya

Rock type: quartzite, limestone, slates,

phyllites and conglomerate

Mesoproterozoic Jaunsar Berinag formation: Inner Lesser Himalaya

Rock type: weathered quartzite intercalated

with slate

Nagthat formation: Outer Lesser Himalaya

Rock type: weathered quartzite intercalated

with slate

Jaunsar Chandpur formation: Outer Lesser Himalaya

Rock type: low grade lustrous phyllites

Mesoproterozoic Tejam Deoban formation: Inner Lesser Himalaya

Rock type: dolomitic limestone with phyllitic

intercalations

Mandhali formation: Outer Lesser Himalaya

Rock type: dolomitic limestone with phyllitic

intercalations

Mesoproterozoic

(>1300 myr)

Damtha Rautgara formation: Inner Lesser Himalaya

Rock type: quartzite, slate, metavolcanic rocks

dips parallel to the stream. Three dominant joint
sets have been observed in the slopes. The first
set of joints is the bedding joint featured by a

longer extent (130–175◦/50–90◦), the second set
of joints is the cleavage joint (50–100◦/30–50◦)
and the third set of joints is the linear zones of
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Figure 2. Geological map of the Tehri region (after Valdiya 1980).

intensive jointing (210–270◦/30–60◦). A large
number of shear zones of varying dimensions were
also observed.

2.2 Landslide inventory of the area

A total of 195 landslides were mapped through
field observations, image interpretation and his-
torical information. Out of the total, 18% of the
landslides were mapped on a macro scale and the
rest were micro landslides. The general dimen-
sion of the landslides was found in the range
of 50–3000 m2. A large number of slope failure
phenomena were observed on the lower level of
slopes bounding the Tehri reservoir. These make
distinctive arcuate shapes and also called reservoir-
induced landslides (figure 3a). Such landslides were
found to be occurring predominantly on the talus
slopes due to reservoir drawdown. Reservoir water-
level variation also leads to failure in river terraces,
which are composed of alluvial material (figure 3b).
The advancing characteristic of reservoir-induced
landslides has turned out to be major risk to the
inhabitants of the higher slopes also. Many land-
slides were seen alongside the roads constructed
on the reservoir-bounding slopes. In the recent

past, the density of road network on these slopes
has increased substantially. These roads were con-
structed by cutting the slopes randomly and leav-
ing the scarp face untreated. All through the
rainy season, the untreated cut slopes fail at num-
ber of places. Such failures were observed in the
debris/river-borne material (RBM) slopes as well
as in rocky slopes (figure 3c and d). Characteris-
tic translational failures were observed in slopes,
which are composed of phyllite and quartzite rocks
(figure 3e).

The study area belongs to the highly undulating
Lesser Himalayan terrain comprising a variety of
lineaments of different dimensions. Linear struc-
tural discontinuities can be captured in the high
resolution satellite images and these captured ones
are called photo-lineaments (Gupta 2018). Many
landslides were seen linked with photo-lineaments,
namely, ridges, joints, thrusts, spurs, etc. Very
complex and extremely dissected streams drain
this area. In the rainy season, these streams erode
their banks briskly owing to high stream power.
Regardless of the slope-forming material, the eroded
portion of the stream bank develops into a spot of
continuous landslide (figure 3f). Many landslides
were also seen in the settlement/build-up areas and
barren slopes.
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Figure 3. Field photographs: (a) typical arcuate shape scar of the reservoir-induced landslide, (b) slope failure in RBM,
(c) rotational failure along the road network, (d) rotational failure in debris along the road and (e) slope form of phyllite is
subjected to plain failure and (f) drainage-induced landslide.

The landslides observed in the study area can
be grouped into plane failure, rotational failure
and Talus slope failure categories. Rotational fail-
ures, which account for >80% of the total landslide
are found along the ridges, roads and lower eleva-
tion slopes bounding the reservoir. At a number
of places, the reservoir bounding slopes are seen in
distress due to Talus failure. In the case of Talus
failure, shallow debris or soil material, overlying
the base rock, fail along the slope direction. Plane
or translational failures are mainly seen in phyllite

and quartzite rocks and they take place along the
plane of weakness such as foliation planes, joint
planes, etc.

3. Data preparation

Ten landslide causing factors were selected for
analysing the susceptibility of the area. Remote-
sensing imageries, which are used for the extraction
of geo-environmental factors, are listed in table 2.
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Table 2. Details of the data set.

Data type Sensor

Resolution/

scale Data derivative Data source

Multispectral

data

ASTER 15 m LULC NASA Reverb

Landsat series 30 m Photo-lineament USGS

IRS–LISS III 23.5 m Landslide inventory NRSC

World view-2 0.5 m (PAN) Digital globe

DEM ASTER GDEM 30 m Slope NASA Reverb

Aspect

Relative relief

Drainage

Ancillary

data

Published geology map 1:250,000 Digitised geology map Himalayan Geology Journal

Published report on

soils of Uttarakhand

1:250,000 Digitised soil map Watershed Management

Directorate, Dehradun

Survey of India

Toposheet 53 J/7 NW

1:25,000 Digitised base map Survey of India

ENVI 4.5 software was employed for the process-
ing of Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) multispectral
data. Processing was carried out for geo-referencing
the image according to Universal Transverse Mer-
cator (UTM) grids and extraction of visible and
near infrared (VNIR) band. World view-2 panchro-
matic data was obtained in the corrected form,
requiring UTM grid coordinates. Landsat 7 data
of pre-2003 yr were also acquired in the corrected
form. Using the nearest neighbourhood re-sampling
method, ASTER VNIR, ASTER global digital ele-
vation model (GDEM) and Landsat 7 VNIR data
were re-sampled to 25 m×25 m pixel size. ASTER
DEM was taken through DEM augmentation pro-
cedures, for instance, DEM fill/sink elimination
for additional study. A panchromatic image of
World view-2 sensor having a 50-cm spatial res-
olution was visually interrelated for extracting the
landslide inventory. Digital image processing meth-
ods, namely, normalised difference vegetation index
(NDVI), supervised classification and band ratio
were exercised for retrieving landslide information,
land use land cover (LULC) and photo-lineament
from the satellite imageries. Additionally, onscreen
visualisation techniques were also exercised for the
detection of LULC distribution, landslide distri-
bution and photo-lineaments. In addition to satel-
lite imageries, ancillary data, namely, topographic
sheet, historical landslide data, soil exposure map
and geological map were obtained from various
sources. As per the cell size (25 m × 25 m) cho-
sen for LSM, ancillary data were converted into the
raster format. Co-registration of satellite imageries

and ancillary data was performed and a precision
of half per pixel was achieved. A base map was gen-
erated using multisource data and as per the base
map, 10 landslide causative factors were extracted
in the raster form.

3.1 Lithology

Lithology is an important causative factor for
the instability of the terrain. A lithology map
of the area was prepared showing the distribu-
tion of various rock types belonging to different
formations. During the field investigation, differ-
ent rock types and their weathering status have
been studied. The contact between different rocks
units have been observed in order to prepare
a lithology map. The dominant rock type in
the study area was of phyllites and quartzites.
Other important lithological units are quartzite
with minor bands of phyllite, phyllite with minor
bands of quartzite, limestone with minor bands
of quartzite and slate, lime stone with alternat-
ing bands of quartzite and phyllite, quartzite with
minor bands of slates and phyllites, slate with
minor bands of quartzites, river-borne materials,
phyllites with minor bands of limestone, conglom-
erate and quartzite and slates. The distribution of
these rocks is shown in figure 2.

Phyllite covers the major part of the study area
and is exposed on both the banks of the Bha-
girathi and Bhilangana rivers along with other
major tributaries. These rocks are generally vul-
nerable and are present in the valley region. In
general, near the confluence of the Bhagirathi
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and Bhilangana rivers, exposed rocks are relatively
hard, compact and siliceous in nature. The other
most dominant rock of the area is quartzite. It
is generally hard and compact and can be found
in the higher reaches of the region. Quartzites
with minor bands of phyllite are weak in com-
parison with quartzites. These rocks are mainly
exposed in the central part of the region. Phyllite
with minor bands of quartzite is mainly occu-
pied in the northern region. These rocks are on
both sides of the Bhagirathi river in the south-
eastern corner of the area. Limestones with minor
bands of quartzite and slate, exposed in the south-
western region are bedded and hard in nature.
Limestone exposed in the western region of the
area is generally hard in nature. Alternate bands
of quartzite and phyllite are encountered in the
south-western region along the right bank of the
Maniyar river, a tributary of the Bhagirathi river.
The thickness of the phyllite and quartzite bands
is more or less equal. Slates with minor bands of
quartzite are exposed in the southern region. The
quartzites with minor bands of slate and phyl-
lite are exposed in the southern region along the
right bank of the Hunal river. River-borne mate-
rials are present at the lower levels on both the
banks of the Bhagirathi river. These older terrace
materials form a fertile agricultural land. Phyllite
with minor bands of limestone, conglomerate and
quartzite are also seen to the south of the Chamba
town. Slate, which contributes to less than one per
cent of the study area, is exposed in the western
region.

3.2 Soil cover

The area is represented by the following three
categories of soil types: black/forest clay soil, allu-
vial/sandy loam and sandy loam (figure 4a). Soil
type of the area varies with the relief/elevation
and annual rainfall. Elevation in the present area
varies roughly from 500 to 2600 m, whereas rain-
fall variation depends on the topographic aspect
of slopes (WMDD 2009). Lower level slopes (600–
1000 m) are occupied by a mixture of alluvial soil
with boulders of varying dimensions. In the mid-
dle elevation level (1000–1500 m), soils are mainly
the sandy loam type. Black soil and forest soils are
present at the higher elevations (>1500 m). Soil
categories of the area influence the landslide sus-
ceptibility condition. Forest and black clay soils are
comparatively less liable to slope failures because
of thick vegetation support. Recent alluvium and

loose boulders are more prone to mass movement
owing to less compaction and high moisture. Old
alluvial deposits seen as terraces in different levels
adjoining the river courses on either side particu-
larly on the left side are more stable because of
high compaction and high friction. Sandy loamy
soil is also weather-prone due to less cementa-
tion and compaction. Several cones of debris which
were formed because of older landslides consist of
assorted sizes of material, ranging from clay to
boulder size. They are seen at a number of places,
mainly adjoining the river course due to past
landslides.

3.3 Land use land cover

LULC design of the area plays a vital role in
the landslide hazard study. Amalgamation of the
remote sensing image and the topographic map
resulted in the following five classes of LULC:
(i) dense forest, (ii) scrub forest, (iii) agricultural
land, (iv) settlement/barren land and (v) water
body (figure 4b). A multispectral VNIR image
of the ASTER sensor was subjected to super-
vised classification and NDVI analysis for the
extraction of LULC classes. Vegetation categories
were obtained using NDVI thresholds and other
LULC categories from supervised classification.
LULC classes were extracted with 78% of accuracy.
Most of the landslide incidences were found to be
associated with settlement/barren land class and
agricultural land class.

3.4 Slope angle

ASTER DEM was used to derive the continuous
slope angle information. Slope angle was found
to be varying in the range of 0–70◦, and it was
categorised into the following five relative classes:
very low (0–8◦), low (8–18◦), moderate (18–30◦),
high (30–42◦) and very high (>42◦) according to
its inherent influence on the landslide (figure 4c).
In the absence of universally accepted criteria of
slope angle classification, the distribution of exist-
ing landslides under different ranges of slope angles
was considered to classify continuous slope angle
data into relative classes. It is commonly per-
ceived that the regions of high slope gradient are
more susceptible to landslides compared to regions
having a low slope gradient (Anbalagan 1992; Saha
et al. 2005; Anbalagan et al. 2015).
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Figure 4. Maps showing landslide causative factors used in LSM preparation: (a) soil covers map, (b) land use/land cover
map, (c) topographic slope (angle) map and (d) topographic aspect map.

3.5 Aspect

The topographic aspect often influences land-
slide susceptibility. The slope aspect governs the
concentration of sunlight on slopes, which is con-
nected to temperature and the interrelated cli-
matic condition. In this Lesser Himalayan area,
the effect of the topographic aspect can be noticed
in terms of forested, wet and warm south-facing
slopes, whereas largely dry and cold in north-facing
slopes. Due to high precipitation, slopes having the
south aspect face more number of landslides in the
Himalaya. In this work, the aspect was derived
from DEM and then classified into nine classes
(figure 4d).

3.6 Relative relief

Relative relief is the contrast between the high-
est and the lowest elevation within a facet or area

(Anbalagan 1992). In this study, DEM was used to
extract relative relief and was found in a range of
0–367 m. The range of relative relief was grouped
into five classes, namely, very low relief (0–30
m), low relief (30–60 m), moderate relief (60–100
m), high relief (100–150 m) and very high relief
(>150 m) for the LSM (figure 5a). Field inspections
have indicated that areas of high relative relief are
more vulnerable to landslide compared to those of
low relative relief.

3.7 Lineaments

Geological structures such as faults, folds, frac-
tures, shear zones, ridges and spurs are widely
distributed in the study area. The area is repre-
sented by three regional geological structures which
include two synclines and a thrust fault named
NAT (figure 2). Depressions of variable dimen-
sions were observed all through the axial zone of
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Figure 5. (a) Topographic relative relief map, (b) lineament buffer (or distance to lineament) map, (c) road buffer map and
(d) reservoir buffer map.

synclines. NAT crosses through the eastern and the
north-eastern side of the area and crosses the reser-
voir at Chham. Where NAT crosses the reservoir, it
forms visible scrap faces on the left bank adjoining
the river course. Linear structural discontinuities
were captured in the form of photo-lineaments with
the help of high resolution satellite images and
DEM (figure 5b). It is a common knowledge that
landslides are more likely to occur near lineaments.
A lineament buffer zone (or distance to lineament)
map covering 50, 100, 150 and 200 m distances
was prepared as per the distribution of landslides
recorded in proximity to the lineaments. Landslide
density was found to be higher around the close
proximity of lineaments.

3.8 Distance to drainage

Drainage of the area was delineated from the DEM.
The area has a high drainage density and high

stream order (up to fifth order – Bhagirathi). The
rugged topography of the area supports a deeply
incised drainage system. Landslides are often found
to be associated with drainage (Kumar and Anbal-
agan 2016). In the mountainous terrain, rivers
constantly erode their banks and make sharply
dipping slopes which often become the site of
progressive landslide. A large number of such land-
slides were seen in the field. In compliance with
the field evidence, the distance to the drainage
(drainage buffer – 50, 100, 150 and 200 m) was
prepared.

3.9 Distance to the road

A large number of landslides were recorded on the
untreated cut-slopes, which occurred during the
construction of the road. Most of the cut-slopes are
dipping towards the road at steep angles. Through-
out the rainy season, cut-slopes become highly
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vulnerable to landslides. Landslides on the road
cut-slopes were seen advancing at the upper lev-
els of the main slope body. The distance to the
road (road buffer – 50, 100 and 200 m) layer was
generated as per the field observation (figure 5c).

3.10 Distance to the reservoir rim

During the reservoir drawdown (water level recedes
>50 m), slopes saturate with moisture. The satu-
rated portion of the slopes has been failing at a
number of places. This type of reservoir-induced
failures tends to advance at the upper reaches.
The distribution of reservoir-induced landslides
was recorded at the time of field observation, and
accordingly, a buffer zone of reservoirs (100, 200,
300, 400 and 500 m) was prepared (figure 5d).

4. Methodology

WofE is a data-oriented method, which is primarily
a Bayesian method in the log-linear structure using
prior and posterior probability (P ). The WofE
technique is employed when necessary data are
available to approximate the relative significance
of evidential parameters using statistics (Bonham-
Carter 1994; Pradhan et al. 2010). The WofE
method works on the principles of conditional prob-
ability and it leads to the determination of the
weight of a predictive pattern, B (factor/class)
given the known occurrence D (landslide). Weights
of the predictive pattern are synthesised on the
basis of the favourability of locating an event
given the presence and absence of the evidential
theme (Pradhan et al. 2010). Bonham-Carter et al.
(1989) synthesised the mathematical formulation
to deduce the posterior probability of occurrence
D, given the predictive pattern/factor B in terms
of an odds-type formulation where the odds, O, are
defined as O = P/(1 − P ):

O {D|B} = 0 {D} P {B|D}
P

{
B|D̄} , (1)

O
{
D|B̄}

= 0 {D} P
{
B̄|D}

P
{
B̄|D̄} . (2)

Weights for each landslide predictive pattern are
computed on the basis of the presence or the
absence of landslides within it:

W+ = loge

P {B|D}
P

{
B|D̄} , (3)

W− = loge

P
{
B̄|D}

P
{
B̄|D̄} , (4)

where P denotes the probability, W+ and W−

are the weights for the presence or absence of
landslides within a factor class, B refers to the
presence of landslide predictive pattern, B̄ refers
to the absence of predictive pattern, D denotes the
landslide occurrence and D̄ denotes the landslide
non-occurrence. The weights can be computed by
cross-tabulating the observed landslide map with
the landslide conditioning factor map using the
equation below:

W+ = loge

{N (B ∩ D) /N (D)}{
N

(
B ∩ D̄

)
/N

(
D̄

)} , (5)

W− = loge

{
N

(
B̄ ∩ D

)
/N (D)

}
{
N

(
B̄ ∩ D̄

)
/N

(
D̄

)} , (6)

where N{A} represents the number of pixels on
the map when {A} occurs. For n number of pre-
dictive patterns (Bi, i = 1, 2, ..., n), the posterior
odd probability can be calculated using the formula
given below, assuming that the predictive patterns
are conditionally independent:

logeO {D|Bs
1 ∩ Bs

2 . . . Bs
n}=

n∑

i=1

W s
i + logeO {D} ,

(7)

where s is positive or negative corresponding to
whether the predictive pattern is present or absent,
respectively. Posterior odds can be converted to
posterior probabilities, based on the relation P =
(O/1 + O) (Lee et al. 2002). The statistical signif-
icance of the weights can be tested on the basis
of their variances (S2), which can be estimated
roughly as (Bonham-Carter 1994; Kayastha et al.
2012)

S2
(
W+

)
=

1
N (B ∩ D)

+
1

N
(
B ∩ D̄

) , (8)

S2
(
W−)

=
1

N
(
B̄ ∩ D

) +
1

N
(
B̄ ∩ D̄

) . (9)

A positive weight (W+) reflects that the predic-
tive pattern is present at the landslide locations
and the magnitude of this weight is the manifes-
tation of the positive correlation between the pres-
ence of the predictive pattern and the landslides.
A negative weight (W−) refers to the absence of
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Table 3. Computed weights (W+, W−) contrast (C), standard deviation (SW−, SW+, SC) and studentised contrast (c/s)
for classes of various data layers.

Class

Area

(km2)

Area

(%)

L

(%) W+ SW+ W− SW− C SC c/s

Lithology

Blaini formation 48.30 8.694 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nagthat formation 121.07 21.793 20.15 −0.08 0.19 0.02 0.10 −0.10 0.22 −0.46

Chandpur formation 234 41.76 55.97 0.46 0.12 −0.38 0.13 0.84 0.17 4.82

Berinag formation 76.80 13.826 14.18 0.03 0.23 0.00 0.09 0.03 0.25 0.12

Rautgara formation 41.57 7.490 2.99 −0.92 0.50 0.05 0.09 −0.97 0.51 −1.91

Deoban formation 34.69 5.235 2.99 −0.74 0.50 0.03 0.09 −0.77 0.51 −1.52

Mandhali formation 3.91 1.202 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Soil cover

Alluvial/sandy loam 84.092 15.003 55.97 2.354 0.216 −0.766 0.137 3.120 0.256 12.205

Forest soil/black clay 283.808 50.634 35.82 −0.413 0.155 0.336 0.124 −0.749 0.199 −3.766

Sandy loam 192.603 34.363 8.21 −1.597 0.309 0.434 0.105 −2.032 0.326 −6.229

LULC

Water body 6.570 1.182 1.492 0.298 0.813 −0.004 0.097 0.302 0.819 0.369

Settlement/barren land 37.142 6.683 17.164 1.413 0.294 −0.146 0.104 1.559 0.312 5.004

Agricultural land 123.805 22.276 28.358 0.309 0.187 −0.100 0.113 0.409 0.218 1.875

Scrub/open forest 209.616 37.715 37.313 −0.013 0.157 0.008 0.122 −0.021 1.199 −0.107

Dense forest/vegetation 178.648 32.144 15.671 −0.834 0.229 0.277 0.108 −1.111 0.253 −4.385

Slope angle

0–8◦ 27.684 4.939 3.73 −0.337 0.484 0.016 0.098 −0.352 0.493 −0.714

8–18◦ 136.630 24.374 7.46 −1.336 0.326 0.256 0.103 −1.592 0.342 −4.658

18–30◦ 288.293 51.429 47.01 −0.110 0.139 0.109 0.133 −0.219 0.192 −1.136

30–42◦ 104.875 18.709 41.04 1.117 0.177 −0.384 0.121 1.502 0.215 7.000

>42◦ 3.081 0.550 0.75 0.395 1.162 −0.002 0.096 0.397 1.166 0.340

Slope aspect 0.046 0.008 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000

North 18.859 3.366 3.73 0.129 0.504 −0.005 0.098 0.134 0.513 0.261

North-east 98.793 17.633 8.96 −0.788 0.304 0.125 0.102 −0.913 0.321 −2.849

East 36.655 6.542 5.97 −0.112 0.389 0.008 0.099 −0.120 0.402 −0.298

South-east 87.373 15.594 25.37 0.647 0.207 −0.150 0.110 0.798 0.234 3.409

South 83.952 14.984 27.61 0.834 0.204 −0.195 0.111 1.029 0.233 4.426

South-west 81.435 14.534 9.70 −0.480 0.297 0.069 0.102 −0.548 0.314 −1.747

West 37.120 6.625 1.49 −1.659 0.723 0.067 0.097 −1.725 0.729 −2.365

North-west 75.934 13.553 8.96 −0.492 0.309 0.065 0.101 −0.556 0.325 −1.711

North 40.123 7.161 8.21 0.172 0.341 −0.014 0.100 0.186 0.356 0.523

Relative relief

Very low 8.405 1.499 1.49 −0.006 0.786 0.000 0.097 −0.006 0.792 −0.007

Low 145.779 26.005 8.21 −1.303 0.311 0.274 0.103 −1.577 0.328 −4.812

Moderate 316.705 56.496 58.96 0.053 0.126 −0.072 0.149 0.124 0.195 0.638

High 81.805 14.593 29.10 0.958 0.204 −0.226 0.112 1.184 0.232 5.097

Very high 7.888 1.407 2.24 0.615 0.692 −0.011 0.097 0.625 0.699 0.895

Lineament buffer (distance to lineament)

0–50 m 36.103 6.441 5.97 −0.093 0.390 0.006 0.099 −0.099 0.402 −0.247

50–100 m 38.707 6.906 2.24 −1.275 0.596 0.061 0.098 −1.336 0.604 −2.211

100–150 m 79.273 14.143 5.97 −0.991 0.369 0.114 0.100 −1.104 0.382 −2.890

150–200 m 73.983 13.199 8.21 −0.561 0.321 0.070 0.101 −0.630 0.337 −1.872

>200 m 332.439 59.311 77.61 0.345 0.113 −0.699 0.193 1.043 0.224 4.662

Drainage buffer

0–50 m 14.983 2.684 11.19 0.77 0.26 −0.69 0.082 1.33 0.28 4.76

50–100 m 15.537 2.783 11.19 1.26 0.26 −0.067 0.082 1.29 0.28 4.62

100–150 m 31.330 5.613 21.64 1.23 0.19 −0.137 0.086 1.3 0.21 6.26

150–200 m 31.722 5.683 14.93 1.18 0.23 −0.071 0.083 0.84 0.24 3.48

>200 m 464.636 83.237 64.93 −0.47 0.108 1.08 0.11 −1.55 0.158 −9.81
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Table 3. (Continued.)

Class Area (km2) Area (%) L (%) W+ SW+ W− SW− C SC c/s

Road buffer

0–50 m 32.301 5.785 38.81 1.904 0.139 −0.432 0.110 2.336 0.177 13.172

50–100 m 27.960 5.008 5.22 0.042 0.378 −0.002 0.089 0.045 0.388 0.115

100–200 m 46.575 8.342 5.97 −0.335 0.354 0.026 0.089 −0.360 0.365 −0.988

>200 m 451.489 80.865 50.00 −0.481 0.122 0.961 0.122 −1.442 0.173 −8.343

Reservoir buffer

0–100 m 13.776 2.458 14.93 1.805 0.224 −0.137 0.094 1.942 0.243 8.005

100–200 m 12.904 2.302 26.87 2.459 0.167 −0.290 0.101 2.749 0.195 14.092

200–300 m 12.256 2.187 8.21 1.323 0.302 −0.064 0.090 1.387 0.315 4.406

300–400 m 11.620 2.073 0.75 −1.022 1.000 0.014 0.087 −1.035 1.004 −1.031

400–500 m 11.141 1.988 3.73 0.630 0.447 −0.018 0.088 0.648 0.456 1.421

>500 m 498.807 88.993 45.52 −0.670 0.128 1.600 0.117 −2.270 0.174 −3.085

Figure 6. Map of posterior landslide probability computed using the WofE method.

the predictive pattern and shows the degree of
negative correlation (Dahal et al. 2008). The con-
trast (C) between W+ and W− is

C = W+ − W−, (10)

reflects the spatial correlation between the pre-
dictive pattern and the landslides. For a spatial
association, the value of C is positive, and for
disassociation, the contrast takes a negative value.

5. Analytical results and discussion

The initial steps involved the generation of a train-
ing data set, in which a total of 134 (out of 195)
landslide occasions were randomly chosen for the
training and the rest of the 61 landslides were left
for validation. To carry out WofE in the present
study, the Arc SDM extension of the ArcGIS 9.3
software was used. The extension has several tools
to compute the posterior probability map along
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Figure 7. Landslide susceptibility map of the Tehri reservoir rim area.

with a Grand WofE tool which computes W+,
W− and the posterior probability map, etc., in a
single step. All 10 factor maps were subjected to
grand WofE tool of the Arc SDM, which resulted
in a grand table (table 3) containing W+, W−, C,
S2(W+), S2(W−), S2(C) and C/S(C) information
of each of the factor class using equations (5, 6
and 8–10). It also resulted in a posterior probabil-
ity map containing the information of probability
(in a range of 0–1) of landslide occurrence on a
cell-by-cell basis by using equation (7) (figure 6).
In general practice, some degree of conditional
dependence amongst the predictor maps always
exists (Bonham-Carter 1994; Mihalasky 1999; Por-
wal et al. 2003), which results in the artificial
inflation or deflation of the posterior probability.
Henceforth, the posterior probability map should
be considered largely as a relative ranking of land-
slide propensity (on a cell-by-cell basis) rather than
the corresponding posterior probability values hav-
ing any direct meaning (Porwal et al. 2003; Fabbri
and Chung 2008).

6. Landslide susceptibility mapping

As mentioned in the previous section, the pos-
terior probabilities should not be considered in

Table 4. Threshold values used for classifying
posterior probability map into relative susceptibil-
ity classes and the resulting area occupied by those
classes.

LSM class
Threshold

value

Area occupied

(km2)

Very low 0.014 121.55

Low 0.06 164.4

Moderate 0.19 141.2

High 0.52 106.6

Very high 0.997 16.25

absolute terms, but as a relative term of land-
slide favourability, which can be depicted by the
relative landslide susceptible map instead of using
the actual posterior probability values. Arc-SDM’s
GWofE outputs a continuous raster, which repre-
sents landslide probability in a continuous scale
from 0 (minimum) to 1 (maximum). In the present
case, a minimum probability value of 0.00004 and a
maximum of 0.9973 were observed. Jenk’s natural
break method (ESRI F 2012) was used to classify
the posterior probability map into relative land-
slide susceptibility classes (figure 7) as indicated in
table 4. This table also refers to the area occupied
under different LSM classes.
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Figure 8. Curve showing the cumulative percentage of landslide occurrences vs. cumulative percentage of the decreasing
landslide susceptibility index value.

7. Conditional independence (CI) test

The WofE method considers the CI between the
landslide factors, in which each factor induces
‘independent’ evidence of favourability. Agterberg
and Cheng (2002) arrived at the conclusion that
for all conditionally independent factors, the num-
bers of observed and predicted occurrence will be
equal. However, when working with data contain-
ing a wide range of information, CI is constantly
disobeyed to some degree (Bonham-Carter 1994;
Porwal et al. 2003). In this work, the omnibus test,
also known as the ‘Agterberg–Cheng test’ was exer-
cised for the delineation of CI between the landslide
factors and factor classes. The omnibus test reveals
whether the number of predicted occurrences (T )
and the number of observed occurrence (T − n)
are ‘significantly >0’. This is a one-tailed test of
the null hypothesis that T − n = 0 (Agterberg
and Cheng 2002). The test statistic is (T − n)/σT .
Probability values >95% or 99% show that the
hypothesis of CI should be rejected, but any value
>50% points out that some degree of conditional
dependence happens (Agterberg and Cheng 2002).
The test has been suggested as providing the most
reliable approach for testing for CI (Thiart et al.
2006). CI tests within the factors and factor classes
were carried out in the Arc SDM extension of

the ArcGIS 9.3 software. More than 70% of the
combinations (factors/classes: between them tests
were carried out) gave a fair degree of CI, while the
rest of the combinations resulted in varying degrees
of dependence.

8. Validation

In this work, the success rate/cumulative per-
centage curve method was applied to accomplish
the accuracy assessment of LSM. The curve was
formed by plotting the cumulative per cent of
the susceptibility index (posterior probability) in
descending order on the X-axis and the cumula-
tive percentage of landslide on the Y-axis. The
curve was generated using the 61 landslide inci-
dences spared for the accuracy assessment. The
posterior probability map was sliced into 25 classes
according to the natural break thresholds and
cross-tabulated with the landslides present in each
sliced class in descending order of the probabil-
ity classes. Cumulative percentage of the area of
sliced classes and landslide present in those were
calculated to generate the cumulative percentage
curve (figure 8). The curve shows that 60% land-
slide falls under the initial 10% of high probability
class and more than 75% landslide falls under the
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initial 20% of high probability classes. This clearly
indicates the prediction capability of the WofE-
based LSM method. The value of the area under
curve (AUC) was estimated through the simple
trapezium method, which gave a value of 0.83.
AUC value of 0.83 can be interrelated as 83% of
accuracy in identifying landslide probable zones.

9. Conclusions

Landslides have become a frequent phenomenon
in the Tehri reservoir rim area. Reservoir water
fluctuation (mainly between the monsoon and lean
seasons) and construction activities such as roads,
modern buildings, etc., in the rim area have added
further stress. The LSM of slopes bounding the
reservoir can provide important inputs in long-term
planning that include reservoir operation, reser-
voir sedimentation, land-use, etc. A comprehensive
landslide inventory is required to carry out LSM.
For this study, field-based observation and a high
resolution satellite image were used to generate the
landslide inventory.

The WofE technique was applied to understand
the relationship between factor attributes and
landslides. It has given positive and negative corre-
lation values in numerical form. Furthermore, this
technique was applied to generate a posterior prob-
ability map in which each mapping unit contains
a landslide probability value. The results show
the robustness of the WofE technique in mapping
landslide susceptible areas with uniform landslide
distribution. Planners can quickly identify sus-
ceptible areas if a detailed landslide inventory is
available. Based on positive and negative contract
(C) values, important factors responsible for land-
sliding can be identified.

High positive C values are observed in rocks
belonging to the Chandpur formation, high slope
category (30–44◦), alluvial soil, settlement/barren
land, south facing aspect, high relative relief (150–
200 m), very high proximity to drainage (0–50 m),
very high proximity to road (0–50 m) and very
high proximity to the reservoir (0–100 m). Fac-
tors which are found to have no influence (high
negative contract values) are the rocks belonging
to the Blaini and Rautgara formations, forest soil,
low slope areas (8–18◦), north-east and north-west
slope aspects, low relative relief areas (30–60 m),
low proximity to drainage (>200 m), low proxim-
ity to roads (>200 m) and low proximity to the
reservoir (>500 m).

The WofE technique has given reasonable (83%)
accuracy in mapping susceptible areas. Accuracy
was assessed by applying the AUC technique. The
final map establishes that approximately 50% of
the reservoir rim area falls in a moderate to very
high susceptible zone. This is very important for
the planners since the Tehri dam and the reservoir
are a great asset to this country; hence, proper
reservoir rim area planning is required for the
long-term functioning.
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