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Abstract 

Uatzau basin in northwestern Ethiopia is one of the most landslide-prone regions, which characterized by frequent 

high landslide occurrences causing damages in farmlands, non-cultivated lands, properties, and loss of life. Preparing 

a Landslide susceptibility mapping is imperative to manage the landslide hazard and reduce damages of properties 

and loss of lives. GIS-based frequency ratio, information value, and certainty factor methods were applied. The 

landslide inventory map was prepared from detailed fieldwork and Google Earth imagery interpretation. Thus, 514 

landslides were mapped, and out of which 359 (70%) of landslides were randomly selected keeping their spatial 

distribution to build landslide susceptibility models, while the remaining 155 (30%) of the landslides were used to 

model validation. In this study, six factors, including lithology, land use/cover, distance to stream, slope gradient, 

slope aspect, and slope curvature were evaluated. The effects of the landslide factor of slope instability were 

determined by comparing with landslide inventory raster using the GIS environment. The landslide susceptibility 

maps of the Uatzau area were categorized into very low, low, moderate, high and very high susceptibility classes. The 

landslide susceptibility maps of the three models validated by the ROC curve. The results for the area under the curve 

(AUC) are 88.83% for the frequency ratio model, 87.03% for certainty factor, and 84.83% of information value 

models, which are indicating very good accuracy in the identification of landslide susceptibility zones of a region. 

From these resulted maps, it is possible to recommend, the statistical methods (Frequency Ratio, Information Value, 

and Certainty Factor Methods) are adequate to landslide susceptibility mapping. The landslide susceptibility maps can 

be used for regional land use planning and landslide hazard mitigation purposes. 

Keywords: landslide; susceptibility; Geographic Information System (GIS); certainty factor; frequency ratio; 

information value; Ethiopia. 
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Introduction  

As defined by Brunsden (1979) and Cruden (1991), landslides are the downslope movements of debris, rocks, or earth 

material under the influence of the force of gravity. It has occurred when the driving force exceeds the resistance force due 

to the destabilization of natural soil or rock slopes. The natural slope will be destabilized by the natural and anthropogenic 

factors including improper land use practice, the presence of loss sediment, heavy and prolonged rainfall, highly weathered 

and fractured rocks, gully and riverbank erosion, earthquake, due to superficial soil-rock interfere and unplanned urban 

explanation (Kifle  2013; Wubalem and Meten, 2020). The landslides activities in Ethiopia are mostly associated in northern, 

northwestern, central, southern, southwestern and the rift escarpments due to the presence of complex geomorphological 

setting, hydrological setting, geological setting, active geodynamic process and unplanned land use practice (Kifle 2013). 

Globally, a landslide is causing thousands of victims and deaths, hundreds of billion dollars of damages, and environmental 

losses every year (Aleotti and Chowdhury 1999; Gutiérrez et al. 2015; El Jazouli et al 2019). Heavy rainfall and earthquakes 

mostly trigger landslides in Ethiopia (Kifle 2013). It has resulted in a loss of human and animal lives, damages in 

infrastructures and properties (Ayalew 1999; Temesgen et al. 2001; Woldearegay 2008; Ibrahim 2011; Meten et al. 2015; 

Wubalem and Meten 2020). In the last two years, from 2018 - 2019, rainfall triggered landslides also caused 60 people to 

died, 30 people were injured, 5,091 households were displaced, houses were damaged, and a widely cultivated and non-

cultivated land was destructed in different parts of the country (Wubalem and Meten 2020). Despite the landslide problem 

is critical in Ethiopia, still there is no adequate slope stability assessment has applied in the different parts of the country 

(Wubalem and Meten 2020). Uatzau basin is one of the areas that frequently affected by the rainfall triggered landslide 

incidences and so far, the area not yet studied. Landslide in this area resulted in the damage of three houses, farmlands, and 

loss of animal lives. From local people’s witness, rainfall and stream cut triggered deep-seated rotational landslides that 

occurred in 2018 and reactivated in 2019 in the Desa Enese village, which destroyed wide ranges of farmlands that covered, 

by crops. This contribution provides the originality of this study. Therefore, landslide susceptibility mapping and assessment 

in this area can be provided with useful information that helps us to disaster loss reduction and serve as a guideline for 

sustainable land use planning.  

The mitigation measures of landslide incidence in the area, which is already failing or susceptible to fall, require 

identification of existing landslide, determination of the contribution of prevailing causal factors, and generations of 

landslide susceptibility map (Rai et al. 2014).  Landslide susceptibility is the likelihood of a landslide occurrence in an area 

depend on the terrain condition (Brabb 1984). It is an estimate of where landslides will have occurred. The landslide 

susceptibility mapping is not only to ascertain the factors that have most influential to the landslides occurred in the region 

but also to estimate the relative contribution of each factor for slope failures (Chen and Wang 2007). It is also important to 

inaugurate an association between the factors and landslides to foresee the landslide hazard in the future (Chen and Wang 

2007). Before nowadays, because of the lack of remote sensing data and advancements of GIS tools, landslide susceptibility 

mapping has been difficult tasks. However, at the present day, the advancement of computers, remote sensing and GIS 

makes easy the preparation of landslide susceptibility map (Jia et al. 2010; Karimi et al. 2010; Wang et al. 2011; Pradhan et 

al. 2011; Bednarik et al., 2012). Although several approaches are developed for landslide susceptibility mapping, generally 

they can be categorized into (1) deterministic (or engineering or Geotechnical), (2) heuristic (or index), (3) the statistical 

methods (Varnes 1984, regime et al. 2014) and (4) machine learning methods or data mining methods. The statistical 

approaches (multivariate and bivariate statistical techniques) are widely used throughout the world and provides reliable 
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results (Dai and Lee 2002; Donati and Turrini 2002; Ayalew and Yamagishi 2005; Duman et al. 2006; Sakar et al. 2013;  

Meten et al. 2015; Chandak et al. 2016; Zhang et al. 2017; Kouhpeima et al. 2017; Wubalem and Meten 2020). Certainty 

factor is one of the probability bivariate statistical methods, which can provide with reliable results and help to determine 

the correlation between landslide factor and landslide occurrence (Kanungo et al. 2011; Pourghasemi et al. 2012a; Sujatha 

et al. 2012; Pourghasemi et al. 2013c; Liu et al. 2014). The frequency ratio model is one of the bivariate statistical methods 

which is easy and provide reliable models (Chung and Fabbri 2003, 2005; Lee and Pradhan 2006, 2007; Akgu’’n et al. 2008; 

Pradhan et al. 2010c, 2011, 2012; Meten et al. 2015). Another commonly practiced method in landslide susceptibility 

mapping is an information value method, which easily operated and provided reliable results (Saha et al. 2005; Sarkar et al. 

2006; Kanungo et al. 2009; Wubalem and Meten 2020). 

 The Uatzau basin is one of the areas characterized by populating settlements, intensive farming, and frequent landslide 

incidence, which destroyed widely cultivated land, is important to evaluate the factors that have more role in causing slope 

failure and to minimize their socioeconomic impacts by generating a landslide susceptibility map. For this purpose, statistical 

methods, including frequency ratio, information value, and certainty factor methods were applied. These methods are easy 

to apply and it gives a very well-meaning result. In literature, various bivariate approaches for landslide susceptibility 

mapping are available, however, a comparison among CF, FR, and IV models yet have not encountered. A comparison 

among the three models has discussed in this paper. The accuracy of results of landslide susceptibility maps, which generated 

using the statistical methods, evaluated using the receiver operating characteristic curve (ROC). The resulted maps will be 

used for landslide mitigation purposes and regional land use planning. 

Study Area and Geological Setting 

The study area is located in the northwestern highlands of Ethiopia. It lies within the latitude, 117, 215 m N to 1, 138, 231m 

N and the longitude 349, 253 m E to 364, 786 m E.  The study area covers an area of about 138 km2. The minimum and 

maximum altitudes of the area are 1332 m of the river gorge and 2, 498 m in hills and plateau lands (Fig. 1). Many tributaries 

are available in the entire study area and joined the Uatzau River, which drains into the Abay River. The various streams in 

the study area caused the removal of soil through stream bank erosion. From field observation evidence, the study area is 

highly affected by gulley erosion, which also resulted in small-scale landslide incidences. The study area characterized by 

variable topographic conditions, including ridge, cliff, hill, plateau, deep River gorge, and gentle slope. The fragile nature 

of topography has been in facilities the rate of soil erosion. 54% of this region covered by agricultural lands and rocky 

lands/bar lands, Residential, and Grazing land cover remaining lands. Tropical to subtropical climatic condition prevails in 

the study area. The main characteristic of the climates in the study area is the monsoon rainfall, which occurs between June 

and September and delivers an average of 90% of the total rainfall of the year. This resulted in landslide incidence in the 

study area. For example, reactivated landslides in the Desa Enese village occurred after heavy and prolonged rainfall in 

August in 2019. The maximum annual rainfall is 1,762 mm while the 970 mm is the minimum annual rainfall, with a mean 

annual rainfall of 1, 346 mm. 

Geologically, Ethiopia comprised the Precambrian basement rock, Paleozoic sedimentary rock, Mesozoic marine 

sedimentary rock, and Cenozoic volcanic rocks. However, the study area comprised mainly two geological units besides 

recent soil sediments at the slope toe of the study area, which is grouped into early Mesozoic and Cenozoic Era of 

sedimentary (Adigrat sandstone) and volcanic rocks (flood basalt) respectively. The flood basalt rock units are grouped into 

four geological units, including, Ashengie formation (Lower basalt), Aiba formation (Middle basalt), Alaje formation (Upper 
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basalt), and Termaber formation. Nevertheless, the study area is comprised of only the lower basalt, the early Mesozoic 

sedimentary rock (lower red sandstone), and the Quaternary /recent soil deposit. This lithology digitized from the existing 

1: 50,000 geological map of the Debre Maroks sheets. As shown from Fig. 2, the southern parts of the study area covered 

by the sedimentary rock (Lower red sandstone), which is characterized by medium to thickly bedded thickness, fine to coarse 

texture, red to red-brown color, and strongly cross-bedded. The northern, northwestern, northeastern, and southwestern parts 

of the study area are dominantly covered by the volcanic rock (lower basalt), which is underlined early Mesozoic red 

sandstone unit and covered by thin dark color soil deposit (Fig. 2). This unit characterized by a high degree of weathering 

and fracturing. The central parts of the study area covered by a very loss /unconsolidated soil deposit, which formed due to 

slope failure and gravity effects. In this soil deposit, unplanned intensive agricultural activities are common.  

 

 

Fig. 1 Location of the study area 
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Methodology 

For this research, data collection, Field investigation, landslide inventory mapping, Google Earth Imagery analysis, landslide 

factor evaluation, and mapping, GIS-based frequency ratio, information value, and certainty factor landslide susceptibility 

modeling and validation were applied. Furthermore, relevant data, including Digital Elevation Model (DEM) with 30 m 

resolution, topographic map, borehole data, historical landslide events, geological map, and meteorological data were 

collected (Table 1). These data were collected from the Geological Survey of Ethiopia (GSE), United States Geological 

Survey (USGS), Amhara Water Well Drilling Enterprise (AWWDE), Field Survey, Google Earth Imagery from the USGS 

website and Ethiopian National Meteorological Agency (Table 1).  The landslides location of the study area identified using 

field surveys, historical records, and Google Earth imagery analysis. These classified into training and testing landslide data 

sets. The training landslide data sets used for model preparation, whereas the testing landslide data sets used for model 

Fig. 2 Geological map of the study area 
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prediction accuracy evaluation. Based on the data availability, literature, field evaluation, and local people interview, six 

landslides-driving factors were determined. Using ArcGIS 10.1, the landslide driving factor maps and landslide inventory 

maps were prepared. Distance to stream, slope angle, slope aspect, and curvature extracted from 30m resolution of Digital 

Elevation Model (DEM), which downloaded from the USGS website. The lithological layer digitized from the existing 

geological map of the Debre Markos sheet at a scale of 1:50,000. The land use map was prepared using ArcGIS and Google 

Earth Imagery analysis. It digitized from Google Earth Imagery interpretation, which can export to a GIS layer format (Kml) 

and verified in the field as well as by the experience of the users in the local area for the final map due to high spatial 

resolution, easiness as well as user friendly.  The land use map also prepared using the supervised classification of satellite 

images downloaded from the USGS website. Generally, the general procedure flow chart that followed in this research work 

summarized in Fig. 8. 

Geodatabase building is one of the most fundamental elements in the landslide susceptibility mapping. Therefore, three 

databases built for frequency ratio, information value, and certainty factor models. These data contained landslide inventory 

and landslide factors with the same projection (UTM) and pixel size (30mx30m). After the database built, an evaluation of 

the relationship between landslide and landslide factors as well as the determination of the statistical significance of each 

landslide factor was the next step in landslide susceptibility mapping. Therefore, six landslide factor maps reclassified into 

subclass and overlaid with reclassified training landslide data sets raster. Weight ratings for all landslide factor classes 

assigned statistically using Excel as shown in Eq. (1, 3 & 5). These weighted maps were rasterized-using lookup in spatial 

analyst. After rasterized the factor maps, the landslide susceptibility index maps generated by the sum-up of all raster maps 

using a raster calculator in Map Algebra. These maps (LSI) classified into a fivefold classification scheme: very low, low, 

moderate, high, and very high susceptibility classes using natural breaks (Fig. 9). Finally, the accuracy of the three models 

evaluated using the prediction rate curve and landslide density based on observed testing landslide data sets. 

Landslide Inventory Mapping  

In landslide susceptibility mapping, landslide inventory mapping is one of the key elements, which can be prepared using 

various techniques like the aerial photograph or Google Earth Imagery interpretation, field investigation, and evaluation of 

archived data coupled with GIS tools (Van Westen et al.  2008). Landslide inventory map used as the base for future landslide 

prediction by evaluating the relationship between the existing landslide event and landslide driving factors (Mohammad et 

al. 2011; Yalcin et al. 2011; Corominas et al. 2014). Van Westen et al (2000) prepared a landslide inventory map using GIS 

from field investigation, historical landslide events, and satellite image analysis. Landslide inventory maps can be also 

prepared using field surveys and Google Earth Imagery (Meten et al. 2015; Roy and Saha 2019; Zine et al. 2019; Wubalem 

and Meten 2020). In the present research work, from active and old landslide scarps, 514 landslides, which covered 5.6 

square kilometers, identified using detailed fieldwork, historical landslide record, and time series Google Earth Imagery 

analysis (Fig. 7). It was digitized into polygons using a GIS tool with the help of Google Earth Imagery, finally, a landslide 

inventory map was produced (Fig. 7). From local people witness and time series Google Earth Imagery analysis, the study 

area was frequently affected by landslide incidence due to heavy and prolonged rainfall and the presence of unconsolidated 

soil deposit as well as highly weathered basalt rock unit. Soil slide, weathered rockslide, debris flow, earth flow, and earth 

fall types of landslides are dominant in the study area. In literature, some researchers classified landslides into 80% for 

training landslide and 20 % for testing landslide data sets. But most of the researchers' classified landslides into 70 % for 

training data sets and 30 % for testing landslide data sets (Meten et al. 2015; Haoyuan et al. 2016; Anis et al. 2019; Qiqing 
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et al. 2019; Roy and Saha 2019; Zine et al. 2019). Using ArcGIS 10.1, theses landslides classified randomly into 70% (359) 

for training landslide data sets and 30% (155) for validation data sets keeping their spatial distribution.  The training landslide 

data sets are observed landslides that used to develop model while the validation landslide data sets are observed landslides 

that used to evaluate the performance and prediction accuracy of the model. As shown in Fig. 4 & 6, the Desa Enese and 

Aba Libanos area affected by soil slides in 2019 due to heavy and prolonged rainfall. Rotational landslide in the Desa Enese 

area was occurring due to the removal of the slope toe by a stream and resulted in damages in farmlands, which covered by 

crops, and two houses (Fig. 4). As indicated in Fig.7, the spatial distribution of landslides concentrate dominantly on the 

ridge, and along the stream bank. 

Figure 3 Time series Google Earth Image show unfailed slope at Desa Enese village in 2018  
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Fig. 4 Time series Google Earth Image shows failed slope at Desa Enese village in 2019 
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Fig. 5 Time series Google Earth Image shows unfailed slope at Aba Libanos village in 2018 

 

Fig. 6 Time series Google Earth Image shows failed slope at Aba Libanos village in 2019 
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Fig. 7 Landslide Inventory Map of the Study area 

Evaluation of Landslide Factors 

In landslide susceptibility mapping, the selection of landslide factors is one of the most important elements. However, there 

is no well-defined standard to select the most significant landslide factors. The factors that initiate the landslide incidence 

in the study area selected based on data availability, literature review, local person interview, and field evaluation. These are 

slope angle, slope, aspect, slope curvature, land use, lithology, and distance to stream/river were taken into account to 

examine the spatial relationship between them and landslide occurrence in the study area. Distance to stream (five classes), 

slope angle (five classes), slope, aspect (ten classes), and slope curvature (three classes) maps were constructed from 30m  

resolution Digital Elevation Model (DEM) which was downloaded from the USGS website (Fig 3a, 3b, 3c, and 3d). The 

lithological map of the study area was prepared through digitization from 1:50,000 existing geological maps of Debre 

Markos sheet from the Geological Survey of Ethiopia, which has three classes (weathered basalt, sandstone, and 
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unconsolidated/colluvial sediments). The land use map of the study area was prepared by digitized from Google Earth 

Imagery, and the supervised classification of Sentinel 2 images. From the results, the land use map, which was prepared 

from Google Earth Imagery, is more reliable compared to the supervised classification of Sentinel 2 images. Preparation of 

Land use map using the supervised classification of satellite images could be best when the study area is so large and the 

users not familiar to the region. Nevertheless, from the resulting point of view, using a manual land use classification of the 

Google Earth Imagery found to be effective as it has a high spatial resolution, and the expert who classifies this image has 

direct control to identify what stands for what. However, Google Earth Imagery requires an advanced internet condition and 

it is so effective when the area well known by the user. Land use map has five classes such as grazing land, cultivated land, 

bare land, residential, and scatters bush (Fig 3e). Even though rainfall is one of the factors that can be triggered landslide 

incidence, it is not included in this landslide susceptibility modeling because of the lack of rain gage station in the target 

area. The earthquake did not consider in the present work because the study area is so far from the active Earthquake sites. 

The source of various landslide factors used in landslide susceptibility mapping summarized in Table 1. To determine the 

effects of each landslide factor class on landslide occurrence, weight rating through landslide factor raster combined with 

landslide raster map is important. For this purpose, all landslide factor maps converted into raster and reclassified with the 

same pixel size (30m x 30m) and the same projection using GIS tools under the Arc toolbox in conversion as well as a spatial 

analysis tool. Then, the landslide inventory raster map overlaid through the combine in spatial analysis tool under local 

toolbox with the landslide factor raster class to extract landslide pixels for each landslide factor class. Then the effects of 

each factor class were determined using the equation of frequency ratio (Eq.1), information value (Eq. 3), and certainty 

factor (Eq. 5) methods, and the results summarized in Table 2. 

Table Error! Unknown switch argument. Information source for the various landslide factors used in the landslides susceptibility mapping 

Data Map Format Source 

Landslide 
Inventory 

Landslide 
Inventory Map 

Vector 
(shapefile) 

Google Earth Imagery, Field Survey and Historical record 

Geology Lithology Map 
Vector 
(shapefile) 

Digitized from Geological map of Debre Markos Sheet  provided by 
the Geological Survey of Ethiopia at 1:50, 000 

Digital Elevation 
Model (DEM) 

Slope Angle 
Map Raster 

(grid)  

Derived from 30 m DEM, using ArcGIS 10.1, Downloaded from 
USGS Aspect Map 

Curvature Map 

Hydrology 
Distance to 
Stream 

Raster 
(grid) 

Developed from DEM and buffering using distance to Euclidian 

Topography 
Topographic 
Map 

Vector 
(shapefile) 

Ethiopian Mapping Agency  at 1:50, 000 

Meteorological 
data 

------- 
Vector 
(shapefile) 

Ethiopian National Meteorological Agency 

Land use Land use Map 
Vector 
(shapefile) 

Sentinel 2 images in the USGS, Field Survey and Google Earth 
Imagery 

Borehole data ----- 
Vector 
(shapefile) 

Amhara Water Well Drilling Enterprise (AWWAE) 

 

Modeling Approaches 

Frequency Ratio Model 

It is one of the bivariate probability methods, which is applicable to determine the correlation between landslide occurrence 

and landslide causative factor classes. The frequency ratio is the ratio of areas where the landslide occurred in the areas of 
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the landslide factor class. When the ratio value is greater than one, it indicates the strong correlation between factor class 

and landslide occurrence in a given terrain, however, the ratio value less than one is indicated that weak coloration between 

landslide occurrence and landslide factors, which means a low probability of landslide occurrence (Bonham-Carter 1994; 

Lee and Talib 2005). It can be calculated using Eq. 1. 

F𝑅 = 𝑎𝑏 = NslpixNtslpixNcpixNtcpix                                                                                                                                        (1) 
Where FR is frequency ratio, Nslpix is a landslide pixel/area in a landslide factor class, Ntslpix is the total area of a landslide 

in the entire study area (a), Ncpix is an area of the class in the study area and Ntcpix is the total pixel area in the entire study 

area (b). In the present research work, the frequency ratio for each causative factor class was calculated using the equation, 

one, and the results are summarized in Table 1. 

After calculation of the frequency ratio for each landslide factor class using Microsoft Excel and GIS, the frequency ratio 

value for each factor class assigned through the join in the ArcGIS tool. Then the weighted landslide factors were rasterized 

using the lookup tool in spatial analysis. The landslide susceptibility index indicated the degree of susceptibility of the area 

for landslide occurrence. The landslide susceptibility index (LSI) of the study area calculated by carefully summing up the 

weighted rasterized factor raster maps using equation 2 by the raster calculator in Map Algebra of the spatial analysis tool. 

To get the landslide susceptibility index, the frequency ratio of each factor type or class summed as in Eq. 2. LSI =∑FRiXin
i=1                                                                                                                                                             (2) 

 𝐿𝑆𝐼 =  𝐹𝑅 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐹𝑅 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐹𝑅 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐹𝑅 ∗ 𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐹𝑅 ∗ 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐹𝑅 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑎𝑠𝑡𝑒𝑟 

Where LSI is the landslide susceptibility index, n is the number of landslide factors, Xi is landslide factor and FRi is the 

frequency ratio of each landslide factor type or classes. After landslide susceptibility index calculation, the index values 

were classified into a different level of landslide susceptibility zones using natural breaks in the ArcGIS tool.  The higher 

the value of the landslide susceptibility index (LSI), the higher the probability of landslide occurrence, but the lower the LSI 

is indicated, the lower the probability of landslide occurrence. 

Based on the natural break classification, the landslide susceptibility map of the study area has five classes such as very low, 

low, moderate, high, and very high landslide susceptibility class (Fig 9a). 

 Information Value Model 

The information value method is one of the probabilistic methods of a bivariate statistical method, which used to envisage 

the correlation between landslides and landslide factor classes (Sarkar et al. 2006). The information values for each factor 

class have been determined through the combination of reclassified landslide raster to reclassified landslide factor raster 

based on the presence of landslide in a given map unit (Fig 9c). These values are important to define the role of each causal 

factor in classes for landslide occurrence (Kanungo et al., 2009). This can be calculated as in Eq.3. 

IV = ln (Conditional probability (CP)Prior probability (PP) = NslpixNcpixNtslpixNtcpix                                                                                                          (𝟑) 
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Where Conditional probability is the ratio of the pixel of a landslide in class to the pixel of a class and prior probability is 

the ratio of the total number of pixels of landslide to the total number of pixels of the study area. Nslpix  s landslide pixel/area 

in a landslide factor class.  Ntslpix is the total area of a landslide in the entire study area. Ncpix is the area of the class in the 

study area and Ntcpix is the total pixel area in the entire study area. When the IV > 0.1, the landslide occurrence with the 

factor classes have a high correlation, means it will have a high probability of landslide occurrence however when the IV < 

0.1 or IV < 0, it is low coloration between landslide factors and landslide occurrence which indicated a low probability of 

landslide occurrence. After calculation of the information value for each landslide factor class using Microsoft excel and 

GIS, the information value for each factor class assigned through the join in the ArcGIS tool. Then, the weighted landslide 

factors are rasterized using the lookup tool in spatial analysis and the landslide susceptibility index (LSI) of the study area 

calculated as in Eq. 4. 

𝐿SI =∑IViXin
i=1                                                                                                                                                                      (4) 

𝐿𝑆𝐼 = 𝐼𝑉 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐼𝑉 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐼𝑉 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐼𝑉 ∗ 𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 𝑟𝑎𝑠𝑡𝑒𝑟 + 𝐼𝑉 ∗ 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐼𝑉 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑎𝑠𝑡𝑒𝑟.  Where LSI is landslide susceptibility index and IV is the 

information value of each factor class. The higher value of LSI has indicated the higher probability of landslide occurrence. 

 Certainty Factor Model 

The certainty factor is one of the probabilistic methods that widely used for landslide susceptibility mapping for different 

data (Kanungo et al. 2011; Sujatha et al. 2012; Pourghasemi et al. 2013c; Liu et al. 2014).  Shortliffe and Buchanan (1975) 

proposed the certainty factor (the probability function) for landslide susceptibility mapping later Heckeman (1986) improved 

it and it expresses mathematically as: 

𝐶𝐹 = { 
 𝑃𝑃𝑎 − 𝑃𝑃𝑏𝑃𝑃𝑎(1 − 𝑃𝑃𝑏)  𝑖𝑓 𝑃𝑃𝑎   ≥ 𝑃𝑃𝑏 𝑃𝑃𝑏 − 𝑃𝑃𝑏𝑃𝑃𝑎(1 − 𝑃𝑃𝑏   𝑖𝑓 𝑃𝑃𝑎 ≤ 𝑃𝑃𝑏                                                                                                          (𝟓) 

         

Where PPa is the conditional probability of landslide in the defined area a and PPb is the prior probability of landslide in the 

defined entire study area b. The CF value ranges from -1 to 1, a positive value indicates increasing certainty of landslide 

occurrence, and a negative value indicates decreasing of certainty of landslide occurrence. If the certainty value is close to 

zero, it means there is no adequate information about the relation between landslide factor classes and landslide occurrence; 

therefore, it is difficult to give any certainty of landslide occurrence (Sujantha et al. 2012; Dou et al. 2014).  

The CF values calculated for all landslide factor classes through overlaying landslide factors with landslides using Eq. 5 and 

Eq. 6.  After the calculation of CF for each landslide factor class, the landslide susceptibility index (LSI) is determined as in 

Eq. 7. 

𝐶𝐹 = { 𝑋 + 𝑌 − 𝑋𝑌𝑋, 𝑌  ≥ 0 𝑋 + 𝑦1 −min(|𝑋|, |𝑌|)         𝑋 ∗ 𝑌 < 0𝑋 + 𝑌 + 𝑋𝑌𝑋,           𝑌 < 0                                                                                                                          (𝟔) 
Where Z is the calculated CF value, X and Y are two different layers of information. 
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𝐋𝐒𝐈 =∑𝐂𝐅𝐢𝐗𝐢𝐧
𝐢=𝟏                                                                                                                                                             (𝟕) 

 𝐿𝑆𝐼 =  𝐶𝐹 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐶𝐹 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐶𝐹 ∗ 𝑆𝑙𝑜𝑝𝑒 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐶𝐹 ∗𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐶𝐹 ∗ 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 𝑟𝑎𝑠𝑡𝑒𝑟 +  𝐶𝐹 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑠𝑡𝑟𝑒𝑎𝑚 𝑟𝑎𝑠𝑡𝑒𝑟.          
Where LSI is the landslide susceptibility index and CFi is the certainty factor. 

Model Validation 

Landslide susceptibility map without validation has no sense in the scientific world (Wubalem and Meten 2020). Therefore, 

validation of the landslide susceptibility model is very important to evaluate the degree of accuracy of modeling using 

different validation techniques (Gorsevski et al 200; Chung and Fabbri 2003). For this purpose, the landslide area classified 

based on time, space, and random partition (Chung and Fabri, 2003, Lee and Pradhan, 2007, and Meten et al., 2015). In this 

case, the landslide in the study area classified into 70 % (359) training landslide data sets and 30 % (155) validation landslide 

data sets randomly keeping their spatial distribution. As stated by Yesilnacar and Topal (2005), the area under the curve 

(AUC) value used to evaluate the performance of the model, and its value range from 0.5 – 1. When the AUC value in 

between the range of 0.9 – 1, the model has excellent performance; if an AUC value in between the range of 0.8 – 0.9, the 

model has very good performance. If the AUC value between the range of 0.7 – 0.8, the model has good performance. If the 

AUC value between the range of 0.6 – 0.7, the model has an average performance. However, if AUC values between the 

range of 0.5 – 0.6 and equal to 0.5 or less than o.5, the model has poor performance (Yesilnacar and Topal 2005). 

In the present work, the landslide area randomly classified as 70 % landslide for training and 30 % landslide for model 

validation by keeping their spatial distribution into the account using the random partition technique (Chung and Fabri, 2003, 

Meten et al., 2015).  After model development, the models validated by Receiver Operating Characteristics (ROC) curves. 
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Fig. 8 General flow-charts for the methodology of the study area 

Results and Discussions  

Results 

As shown in Table 2, the correlation between landslide locations and landslide driving factor classes were determined using 

FR (Eq. 1), IV (Eq. 3), and CF (Eq. 5). The higher value of the FR, IV, and CF, indicated the strong correlation between the 

landslide and landslide factor classes. The detail for FR, IV, and CF has described in the following sections. 

Frequency Ratio (FR) 

To understand the significance of landslide factor classes for landslide occurrence, weight value computed using frequency 

ratio methods as shown in Eq. 1 (Table 2). The frequency ratio for all landslide factor classes was rating and show important 

effects of each factor class on slope instability (Table 2). As it can be observed from Table2, the lithology class colluvial 

deposit and weathered basalt have a high value of the FR (1.3 and 1.1 respectively) which is > 1, indicated high landslide 

probability, but sandstone class has low FR value (0.6) which is < 1, indicated a low probability of landslide occurrence. 

Because from field observation, it has seen that the colluvial deposit is a recent deposit in the study area, which characterized 

by loose/unconsolidated, low shear strength, and a series of spring water. The presence of spring water has been reducing 

the normal force in the slope material when the pore space in the soil grain filled with water, it will be generated pore water 

pressure. Besides this, a series of the stream has passed through the slope toe of this loose soil deposit, which caused the 

removal of the slope toe, by the stream bank erosion. This resulted in the reduction of resisting force in the slope material 

when the slope toe eroded. As we know that landslide may have occurred when the driving force exceeds the resisting force 
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in the slope material. This is happening due to various constraints. In this research case, slope toe erosion by a stream is the 

key element to driving landslide incidence in the study area. Basalt rock has a high positive relation to landslide occurrence 

than sandstone due to the effects of weathering because the basalt rock in the study area is highly affected by weathering, 

but sandstone has a low degree of weathering because of the presence of quartz cement. As designed in Table 2,  the slope 

class 0°-7°, and 7°–14° have low FR value (0.89 & 0.76, respectively) and high value of the FR (1.04, 1.3, & 2.09) for slope 

classes 14°–21°, 21°–28°, 28°–68°, respectively. This correlation indicated that landslide probability increase as the slope 

gradient increases (Sun 2009), however, it may not be always true when the steep slope comprised of massive and strong 

slope material. Landslide may have occurred in a gentle slope when the slope material is loose and the slope subjected to 

modification due to anthropogenic and natural activity (Wubalem & Meten 2020). However, in the present study area, the 

result of the FR value indicated in Table 2, as the slope angle increased, the landslide probability is increased. This is because 

of the presence of shallow loose soil deposit, highly weathered rock, active soil erosion, and improper land use practice. In 

the case of the slope aspect factor class, the FR value is > 1 for south-facing (1.33), southwest facing (1.68), and west-facing 

(1.41), indicated high landslide probability. However, the remaining slope aspect classes have FR value < 1, indicating a 

low probability of landslide occurrence. The FR value of the slope curvature class of -26- -2 (1.42) & 2 – 23 (1.32) is > 1, 

indicated high landslide probability. This is because of the effects of slope shape for rainwater impounding and gravity 

effect. However, the slope curvature class -2–2 has the FR value (0.85) is < 1, which indicated a low probability of landslide 

occurrence. In the case of distance to stream, as designated in Table 2, as a distance to stream increase, the probability of 

landslide occurrence decrease. At a distance of 0–50m, 50-100m, and 100–150m, the value of the FR (1.2) is > 1, indicated 

high landslide probability, however, at a distance >150m, the value of the FR is < 1, indicated the low landslide probability. 

This is because of the effects of slope modification, gully erosion, riverbank erosion, and river undercutting. As noticed in 

Table 2, the value of the FR for land use/cover class of agriculture land (1.1) and bar land (10.7) is > 1, indicated high 

landslide probability. This is because the cultivated land has increased soil moisture. Whenever the soil moisture increased 

in the slope, the weight of slope material and the pore water pressure in the slope material increased in parallel. This could 

have resulted in a reduction in the normal force in the soil mass. This leads to slope failure when the driving force exceeds 

a resisting force. In the case of bare land class, FR value has shown a higher correlation to the probability of landslide 

occurrence. Hence, bare land in the study area is highly affected by a gully soil erosion, which caused a reduction of shear 

strength of soil material. The remaining classes, including settlement and grazing land, have FR value < 1, indicating a low 

probability of landslide occurrence. Because of settlement and grazing land have been practicing in gentle slope gradient 

parts of the study area.  

Information Value (IV) 

The information value rating for different landslide factor classes calculated by overlay landslide raster with landslide factor 

raster layer and it shows the important effects of each factor class on slope instability (Table 2). When the IV value is > 0.1, 

the given factor class will have a positive correlation for landslide occurrence, but the IV < 0.1 indicates a low probability 

of landslide occurrence. As designated in Table 2, the IV > 0.1 for lithology class such as colluvial deposit and weathered 

basalt ( 0.27 and 0.12 respectively), indicated high landslide probability, but the IV < 0.1 for sandstone class (-0.5) which 

indicated a low probability of landslide occurrence. As observed in Table 2, the IV < 0.1, for slope class 0°-7°, 7°–14°  and 

14°-21° ( IV = -0.12, -0.28 & 0.04, respectively), indicated low landslide probability and IV > 0.1 for slope classes, 21°–

28° and 28°–68°, respectively (IV = 0.27 & 0.74), indicated high landslide probability. In the case of slope aspect factor 
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class, the IV > 0.1 for south-facing (IV = 0.28), southwest facing (IV = 0.52) and west-facing (IV = 0.34), indicated high 

landslide probability. However, IV < 0.1 for the remaining slope aspect classes indicated a low probability of landslide 

occurrence. The IV > 0.1 for the slope curvature class of -26- -2 (IV = 0.35) & 2 – 23 (IV = 0.28), indicated high landslide 

probability. However, the IV < 0.1 for the slope curvature class -2–2 (IV = -0.17), indicated low probability of landslide 

occurrence. At a distance of 0–50m and 100–150m, the value of the IV > 0.1, which is 0.2 and 0.16, indicated high landslide 

probability, however, at a distance 50–100m and >150m, the IV < 0.1, indicated the low landslide probability. As noticed 

in Table 2, the value of IV for land use/cover class of agriculture land (0.07) and bar land (0.91) is > 0.1, indicated high 

landslide probability. The IV for the remaining factor classes like settlement, scatter bush and grazing land is < 0.1, indicated 

a low probability of landslide occurrence. 

Certainty Factor (CF) 

The certainty factor rating for different landslide factor classes calculated by overlay landslide raster with landslide factor 

raster layer using Eq. 5 & 6 and it shows the important effects of each factor class on slope instability. As designated in 

Table 2, the lithology class such as colluvial deposit and weathered basalt have a positive and high value of CF ( 0.24 and 

0.11, respectively), indicated a high landslide probability, but sandstone class has negative CF value (-0.4) which indicated 

a low probability of landslide occurrence. As observed in Table 2, the slope class 0-7°, and 7°–14° have a negative CF value 

(-0.11 & -0.25, respectively), indicated the low landslide probability and positive value of CF (0.04, 0.24 & 0.54) for slope 

classes, 14°–21°, 21°–28°, and 28°–68°, respectively, indicated high landslide probability. In the case of slope aspect factor 

class, the CF value is positive for south-facing (0.25), southwest facing (0.42), and west-facing (0.3), indicated high landslide 

probability. However, the remaining slope aspect classes have negative CF value, indicating a low probability of landslide 

occurrence. The CF value of the slope curvature class of -26- -2 (0.31) & 2–23 (0.25) is positive, indicated high landslide 

probability. However, the slope curvature class -2–2 has a negative CF value (-0.16), indicated a low probability of landslide 

occurrence. At a distance of 0–50m and 100–150m, the value of CF (0.19 and 0.25) is positive, indicated high landslide 

probability, however, at a distance 50–100m and >150m, have negative value, indicated the low landslide probability. As 

noticed in Table 2, the value of CF for land use/cover class of agriculture land (0.07) and bar land (0.91) is positive, indicated 

high landslide probability. The remaining factor classes as settlement, scatter bush and grazing land have negative CF value 

indicated a low probability of landslide occurrence. 

Table 2 Spatial relationship between each landslide factors and landslide using frequency ratio (FR), Certainty factor (CF) and information value 

(IV) methods 

Factors Class Ncpix 

% 

Class 

Area 

(b) Nslpix 

% 

landslide 

in class (a) FR CP PP 

IV CF 

Lithology 

Colluvial Deposit 39011 25.2 524 32.9 1.3 0.01 0.01 0.27 0.24 

Sandstone 51186 33.1 320 20.1 0.6 0.01 0.01 -0.50 -0.40 

Weathered Basalt 64419 41.7 748 47.0 1.1 0.01 0.01 0.12 0.11 

Land use/cover 

Agriculture 83991 54.3 375 8.4 1.1 0.004 0.004 0.1 0.07 

Settlement 43115 27.9 133 4.3 0.7 0.003 0.004 -0.3 -0.26 

Grazing Land 25490 16.5 76 2.6 0.7 0.003 0.004 -0.3 -0.29 

Bar Land 1364 0.9 61 0.1 10.7 0.045 0.004 2.4 0.91 

Scatter Bush 616 0.4 0 0.1 0.0 0.000 0.004 0 -1.00 

Distance to 
stream 

0–50 47432 30.7 2115 37.5 1.2 0.04 0.04 0.20 0.19 

50–100 42442 27.4 1487 26.4 1.0 0.04 0.04 -0.04 -0.03 
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100–150 33253 21.5 1416 25.1 1.2 0.04 0.04 0.16 0.15 

150–200 22225 14.4 469 8.3 0.6 0.02 0.04 -0.55 -0.43 

200-2, 355 9270 6.0 149 2.6 0.4 0.02 0.04 -0.82 -0.57 

Slope angle 

0°–7° 48562 31.4 1577 28.0 0.89 0.03 0.04 -0.12 -0.11 

7°–14° 48082 31.1 1329 23.6 0.76 0.03 0.04 -0.28 -0.25 

14°–21° 29704 19.2 1124 19.9 1.04 0.04 0.04 0.04 0.04 

21°–28° 19003 12.3 899 16.0 1.30 0.05 0.04 0.26 0.24 

28°–68° 9271 6.0 707 12.5 2.09 0.08 0.04 0.74 0.54 

Slope Aspect 

Flat (-1) 37796 24.4 1143 20.3 0.83 0.03 0.04 -0.19 -0.18 

North (0-22.5) 2094 1.4 23 0.4 0.30 0.01 0.04 -1.20 -0.71 

NE (22.5-67.5) 17652 11.4 388 6.9 0.60 0.02 0.04 -0.51 -0.41 

E (67.5-112.5) 6855 4.4 146 2.6 0.58 0.02 0.04 -0.54 -0.42 

SE(112.5-157.5) 6756 4.4 187 3.3 0.76 0.03 0.04 -0.28 -0.25 

S (157.5-202.5) 26889 17.4 1299 23.0 1.33 0.05 0.04 0.28 0.25 

SW (202.5-247.5) 6981 4.5 428 7.6 1.68 0.06 0.04 0.52 0.42 

W(247.5-292.5) 32180 20.8 1656 29.4 1.41 0.05 0.04 0.34 0.30 

NW (292.5-337.5) 9839 6.4 231 4.1 0.64 0.02 0.04 -0.44 -0.36 

N (337.5-360) 7580 4.9 135 2.4 0.49 0.02 0.04 -0.72 -0.52 

Slope Curvature 

Concave Slope (-26- -
2) 22881 14.8 1188 21.1 1.42 0.05 0.04 0.35 0.31 

Flat Slope (-2-2) 109717 71.0 3385 60.1 0.85 0.03 0.04 -0.17 -0.16 

Convex Slope (2-23) 22024 14.2 1063 18.9 1.32 0.05 0.04 0.28 0.25 
 Note: IV is information value, FR is frequency ratio, CF is certainty factor, CA is a class area, LA is a landslide area in a class, CP is the 

conditional probability of landslide in a class, and PP is the prior probability of landslide in the entire area 

 

 Landslide Susceptibility Mapping  

After the calculation of the landslide susceptibility index, it is important to classify the LSI into different susceptibility 

classes based on the LSI value. The landslide susceptibility index map of the study area of the information value method, 

certainty factor method, and frequency ratio method was classified into five levels of susceptibility classes using the natural 

break method in ArcGIS 10.1. Using the natural breaks method in ArcGIS 10.1, the landslide susceptibility map generated 

with the information value model reclassified into five classes like very low, low, moderate, high, and very high landslide 

susceptibility classes (Fig 9c). From the results of the analysis (Table 3), 15.5% and 24.3% of the study area fall in very low 

and low susceptibility classes. Moderate, high and very high landslide susceptibility classes have comprised 31.5%, 21.1%, 

and 7.6% of the study area, respectively. As designated in Table 3, 6.3% and 11.1% of the landslide fall in very low and low 

susceptibility classes of the study area, respectively. The remaining 23.8%, 31.8%, and 26.3% of landslides fall into 

moderate, high, and very high landslide susceptibility classes. A landslide susceptibility map produced using certainty factor 

model (Table 3), very low and low susceptibility classes cover 17.8% and 31.0% of the total study area, however, 28.8%, 

19.0% and 3.4% of the total area fall into moderate, high and very high landslide susceptibility classes, respectively. As 

indicated in Table 3, 4.7% and 12.3% of the landslide fall in very low and low susceptibility classes of the study area, 

respectively. The remaining 17.5%, 34.8%, and 30.7% of landslides fall into moderate, high, and very high landslide 

susceptibility classes, respectively. As it observed from Table 3, the landslide susceptibility map produced using the 

frequency ratio model, very low and low landslide susceptibility classes cover 22.7% and 30.8% of the total area, however, 

22.4 %, 19.3 % and 4.8 % of the total area fall into moderate, high and very high landslide susceptibility classes, respectively. 

As designated in Table 3, 5.4% and 14.7% of the landslide fall in very low and low susceptibility classes of the study area, 

respectively. The remaining 19.5%, 43.7%, and 16.7% of landslides fall into moderate, high, and very high landslide 
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susceptibility classes, respectively. For the three models, greater than 60% of validation landslides fall in high and very high 

susceptibility classes, which is again, confirms that models have very good accuracy (Fig. 10). 

Table 3 Statistical results of landslide susceptibility map produced by frequency ration, information value, and certainty factor methods 

In
fo

rm
a

ti
o
n

 v
a

lu
e 

m
et

h
o
d

 

LSI Value LSI 
Factor class 

area (%) 

Validation 

data set (%)  

Training data set 

(%) 

AUC for 

validation 

landslide 

AUC for 

training 

landslide 

-0.5-0.9 VLS 15.5 3.9 6.3 

0.848323 0.808265 

0.9-1.5 LS 24.3 7.9 11.8 

1.5–2 MS 31.5 20.1 23.8 

2.0-2.6 HS 21.1 40.8 31.8 

2.6-4.1 VHS 7.6 27.3 26.3 

C
er

ta
in

ty
 F

a
ct

o
r 

(C
F

) 

-2.2- -0.97 VLS 17.8 4.7 6.0 

0.870348 0.871933 

-0.97- -0.47 LS 31.0 12.3 16.4 

-0.47-0.04 MS 28.8 17.5 24.8 

0.04-0.74 HS 19.0 34.8 33.0 

0.74-2.61 VHS 3.4 30.7 19.7 

F
re

q
u

en
cy

 R
a
ti

o
 

(F
R

) 

3.1-4.3 VLS 22.7 5.4 9.3 

0.888337 0.832718 

4.3-4.8 LS 30.8 14.7 17.8 

4.8-5.3 MS 22.4 19.5 20.0 

5.3–6 HS 19.3 43.7 35.0 

6-7.7 VHS 4.8 16.7 17.8 

LSI is landslide susceptibility index, VLS is very low susceptibility, LS is low susceptibility, MS is moderate susceptibility, HS is high 
susceptibility, VHS is very high susceptibility and AUC is the area under the curve 

 

 

 

 

 

 

 

 

 

 

 

a b c 

Fig. 9  Landslide Susceptibility Maps of a) Frequency Ratio b) Certainty Factor and c) Information Value methods 
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Fig. 10 Spatial distribution of predicted and observed landslides 

Model Validation 

Model validation is the last step in landslide susceptibility mapping, which helps to evaluate the accuracy of the model, 

generated using different statistical methods. Various model validation techniques are available like success and predictive 

rate curve, landslide relative density index (R – index), receiver operating characteristic curve (ROC), and area under the 

curve (AUC). However, in the present research work, the receiver operating characteristics curve and the area under the 

curve used to evaluate the accuracy of the landslide susceptibility model generated by frequency ratio, information value, 

and certainty factor methods. The three models validated by the researcher experience in the area and comparing the existing 

training and validation landslide data sets with the produced landslide susceptibility maps. Both the success rate and 

prediction rate curves were generated using training landslide data sets and validation/testing landslide data sets, 

respectively. The success rate curve can show how well the models classified the region based on the existing landslide 

events (Meten et al. 2015; Silalahi et al. 2019). The prediction rate curve show how well the models can predict the unknown 

forthcoming landslide events (Mezughi et al. 2011; Silalahi et al. 2019). In this study, the success rate and prediction rate 

curve calculated by reclassifying the landslide susceptibility index values into 100 for all cells and sorting in descending 

order and compare with both training and validation landslide data sets. Finally, the AUC and ROC curve for the three 

models were calculated using Real Statistics software in add to excel. As the results of the analysis shown in Fig 11 and 

Table 3, the closer the ROC curve to the left of the top of the curve, indicating the higher the accuracy of the model. As 

indicated in Table 3, the AUC value is closer to one, indicating the higher accuracy of the model. The AUC value for CF is 

0.870 and 0.872 of the predicted rates and Success rate curve, respectively. This means more or less the AUC value for two 

data set indicated closer to each other. In the case of FR, the AUC value is 0.888 and 0.833 for the predictive rate curve and 
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the success rate curve, respectively. The AUC value for IV is 0.848 and 0.808 for the predictive rate curve and the success 

rate curve. These results indicated that the FR, CF, and IV models have successfully estimated the landslide susceptibility 

classes of the region, and these models, which have employed in this study, have reasonable accuracy in predicting the 

landslide susceptibility classes of the study area. However, based on AUC values CF and FR models revealed that a little 

better result than the IV model for landslide susceptibility mapping in the study area (Fig. 11). 

 

Fig. 11 Receiver Operating Characteristics Curve (ROC) 

Discussion 

Landslide susceptibility maps can forecasting/providing important information where the landslides occur in a region. This 

is a function of the relationship between preexisting landslide and the environmental condition of the area. These maps also 

show the spatial distribution of predicted landslides where it will have occurred. However, the maps could not be forecasting 

the volume of material to displace, the time, and how often the landslide will occur. Nevertheless, the predictive models can 

be important for the regional land use planning of landslide hazard mitigation and prevention relief (Fell et al. 2008; Oh et 

al. 2009; Yilmaz and Kskin 2009; Mezughi et al. 2011; Das and Lgcha 2019; Mandal and Mondal 2019; Silalahi et al. 2019). 

The landslide susceptibility maps of the study area classified into fivefold classification schemes of very low, low, moderate, 

high and very high susceptibility classes using natural break method, which is applicable to classify unevenly distributed 

data, and it is capable of classifying landslide susceptibility index map into different categories considering the inherent data 

value similarity. The resulted maps were validated using training and testing/validation landslide data sets through the 

success rate curve and predictive rate curve. The success rate curves for the three models generated from the training 
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landslide data sets through combining tools with Landslide susceptibility classes, which used to evaluate how well the 

models classified the region based on the existing landslide events (Meten et al. 2015; Silalahi et al. 2019). While the 

prediction rate curve for the three models was generated from the validation landslide data sets through combining tools 

with landslide susceptibility classes which are used to evaluate how well the models can predict the unknown forthcoming 

landslide events (Mezughi et al. 2011; Silalahi et al. 2019). High and very high susceptibility classes in the region are falling 

in a steep slope, which covered with very lose shallow soil deposit, closer to the stream, agricultural land on a steep slope, 

active gully erosion and concave slope shapes while the moderate susceptibility class is fall in the area of highland 

landscapes. Low and very low susceptibility of a region falls in the area of low plain landscapes and areas, which have 

covered by massive weathering resistant rock masses. 

Although the three models commonly applied in landslide susceptibility mapping, comparison among them did not work 

yet. There is some literature regarding the comparison of the frequency ratio method with the information value method, the 

certainty factor method with the information value method, and the certainty factor method with the frequency ratio method. 

Zine et al (2019) state that the information value and frequency ratio methods shown a closer high prediction accuracy (AUC 

= 89.05 %) and AUC = 85.57 %, respectively). Similarly, in this study, the frequency ratio method has shown better 

performance for both success rates (AUC =83.27%) and predictive rate curve (AUC= 88.8 %) more or less similar to the 

information value methods with success rate curve (AUC = 80.8%) and predictive rate curve (AUC = 84.8%).  Even though 

the frequency ratio model showed a little bit different in AUC value in general, the accuracy of the two models falls in the 

same ranges, which is a very good performance. As shown from the work of Qiqing et al. (2019), the certainty factor model 

showed a high predictive accuracy of AUC value of 75 % compared to the information value model with prediction rate 

curve value (AUC = 64.08%), but their accuracy value is fall in the same ranges which is a good performance. Similarly, in 

the present model, the certainty factor model also showed a relatively higher prediction rate value (AUC = 87.03 %) than 

the information value model with relatively low prediction rate value (AUC = 84.8%), but they have same accuracy range 

which is a very good performance. From the work of Haoyuan et al (2016), based on the predictive rate value of the area 

under the receiver operating characteristic curve (AUC), the frequency ratio and certainty factor models have shown more 

or less similar predictive capacity, which is 81.18% for the certainty factor model and 80.14% for the frequency ratio model. 

However, CF has shown a bit of little performance than the Frequency ratio model. In the present work, the two models 

showed almost similar AUC value of the prediction rate curve (87.03% for the certainty factor model and 88.8% for the 

frequency ratio model). Generally, the three bivariate statistical methods in literature and this study showed, the closer 

prediction capacity with AUC > 64% and AUC > 80%, respectively falls in the range of good and very good performance 

(Yesilnacar and Topal 2005). In this study, high and very landslide susceptibility class covered more than 20% of the study 

area (Fig. 9) and the percentages of high and very high susceptibility class of a region are more or less similar which are 

4.8%, 3.4%, 7.6%, 19.3%, 19% and 21.1% for FR, CF and IV methods, respectively. The landslide validation results for 

three models are closer to each other and it falls in the same range of very good performance. Besides this, the percent of 

landslides that fall in the high and very susceptibility classes are also more or less the same (60.4%, 65.5% & 68.1% for FR, 

CF, and IV, respectively). Therefore, from these results, the research work finds out that in landslide susceptibility mapping, 

the three models have equal potential to generate landslide-prone areas but factor selection should be playing a more 

important role than the methods. Nevertheless, in a specific case, the moderate, high, and very high susceptibility area 

coverage of the IV models showed few differences compared to the FR and CF methods. This is because of the problems 
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ascertained in IV during weight rating for each factor class i.e. when no landslide exists in a certain factor class, the results 

of IV becoming zero. This brings an impact on the overall accuracy of the model. Based on the prediction accuracy of AUC 

value, FR and CF models are relatively better for regional land use planning, landslide hazard mitigation, and prevention 

purposes.  

 

Conclusion  

The study area (Uatzau) is characterized by recent unconsolidated soil deposits, rugged topography, active gulley, and 

riverbank erosion, and improper land use practice which makes it very prone to different landslides, including soil slide, 

weathered rockslide, debris flow, earth flow, earth fall, and soil creep. A landslide can well be thought out the most serious 

natural hazards in the Uatzau basin. To determine the landslide susceptibility prone areas, Frequency ratio (FR), Certainty 

factor (CF), and information value (IV) models were applied. The landslide susceptibility maps of the Uatzau basin were 

categorized into very low, low, moderate, high and very high susceptibility classes.  The high and very high susceptibility 

classes are high in the seven villages including, Desa Enese, Moching, Yewebi Enefoch, Aratu Amba, Aba Libanos, Denba, 

and Kebi in order of decreasing the risk of landslide incidence due to the presence of active riverbank erosion; lose soil 

deposit, high concentration of stream density, and undulating topography. Therefore, these areas need to slope vegetation 

and water management tasks. The accuracy of the landslide susceptibility models evaluated using the receiver operating 

characteristics (ROC) curve through comparison of training and validation landslide raster with the models. The prediction 

rate curve value of AUC for three models is closing in 1, indicating very good accuracy of the models. Based on the AUC 

value of the results and > 60% of observed validation landslides which fall in high and very high susceptibility classes, the 

statistical methods can be proved the most economical and effective methods in landslide susceptibility mapping in the 

similar regions as the Uatzau area. The models, which generated using the three statistical models, can help to understand 

the landslide hazard problems in the study area. Although the resulting maps cannot forecast the time, and how often it can 

occur, it has provided the spatial distribution of landslide probability. These models can also provide important information 

to the researchers, local people, government, and planners to reduce the landslide hazard problems in the Uatzau basin. 

Therefore, the concerned bodies may at the Wereda/District, Zone, Region, and Federal levels take tangible activities to 

mitigate the landslide problem by afforestation of the high and very high regions with the integration of terracing and 

construction of check dams for streams, gabion and retaining walls along the riverbanks. 
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Location Map of the Study Area



Figure 2

Geographical map of the study area



Figure 3

Time series Google Earth Image show unfailed slope at Desa Enese village in 2018

Figure 4



Time series Google Earth Image shows failed slope at Desa Enese village in 2019

Figure 5

Time series Google Earth Image shows unfailed slope at Aba Libanos village in 2018

Figure 6

Time series Google Earth Image shows failed slope at Aba Libanos village in 2019



Figure 7

Landslide Inventory Map of the Study area
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General �ow-charts for the methodology of the study area

Figure 9

Landslide Susceptibility Maps of a) Frequency Ratio b) Certainty Factor and c) Information Value
methods



Figure 10

Spatial distribution of predicted and observed landslides
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Receiver Operating Characteristics Curve (ROC)


