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Abstract: Machine learning-based methods are commonly used for landslide susceptibility mapping.
Most of the recent publications focused on quantitative analysis, i.e., improving data processing
methods, comparing and perfecting the data-driven model itself, but rarely taking the qualitative
aspects of the local landslide occurrences into consideration and the further analysis of the key
features was always lacking. This study aims to combine qualitative and quantitative analysis and
examine its effect on mapping accuracy; based on the feature importance ranks and the related
literature, the key features for identifying landslide/non-landslide points of different sub-zones were
further analyzed. Before modeling, the study area Yunyang County, Chongqing City, China, was
manually divided into four sub-zones based on the information from geological hazards exploration
in Chongqing, including the mechanism of landslide formation and sliding failure and geomorphic
unit characteristics. Upon the qualitative analysis basis, five grid searches tuned random forest models
(one for the whole region and four for the sub-zones independently) were established by 1654 data
points and 20 conditioning features. Compared with the conventional data-driven method, the
integrated quantitative evaluation based on the qualitative analysis results showed higher reliability,
which not only improved the mapping accuracy but also increased the AUC values of all four sub-
models, which were 8.8%, 2.3%, 1.9% and 9.1% higher than that of the parent model. Moreover,
the quantitative evaluation based on the qualitative analysis revealed the key factors affecting local
landslide formation. Therefore, qualitative analysis is recommended in future landslide susceptibility
modeling with the additional combination of data-driven methods.

Keywords: landslide susceptibility mapping; random forest model; qualitative analysis; quantitative
evaluation; Yunyang County

1. Introduction

Landslides are one of the most destructive geological hazards, which not only cause
enormous damage to houses and infrastructure, such as bridges and roads, but also lead
to loss of life [1]. According to the World Health Organization, approximately 4.8 million
people were affected, and more than 18,000 deaths were caused by landslides between
1998 and 2017. Specifically, as one of the countries with a high incidence of landslides,
China suffered severe loss of life [2,3]. The China Statistical Yearbook indicates that during
2000 to 2015, 373,630 landslides occurred in this country, killing 10,996 people, which is
approximately 690 landslide-related deaths per year [4]. To mitigate the serious social
impact caused by landslides, constructive and productive activities should be avoided in
areas with high susceptibility to landslides. Therefore, developing an efficient method
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to distinguish landslide-prone zones is an essential need for both local governments and
research institutes [5]. Landslide susceptibility describes the likelihood that a landslide
will occur in a certain area based on local terrain conditions [6]. Landslide susceptibility
mapping (LSM) is one of the most widely used assessment methods, it visualizes the
spatial distribution of zones with different probabilities of occurrence of landslides in a
certain area.

Various methods such as probabilistic analysis, statistical analysis, analytic process,
and weighted overlay were widely applied to LSM by researchers in the early stages. With
the development of Artificial Intelligence (AI) and Geographic Information System (GIS),
machine learning-based methods, with the capability of solving complex nonlinear prob-
lems, are becoming increasingly popular compared to opinion-driven models and statistical
learning, making the accuracy and precision of susceptibility models evolve rapidly [7,8].
Huang et al. [9] adopted logic regression (LR), support vector machine (SVM), and random
forest (RF) on LSM for model comparison. He et al. [10] used RF in the global assessment
of earthquake-induced landslide susceptibility. Sun et al. [11] applied the Bayes algorithm
to optimize the hyper-parameters of the RF model for LSM. Smith et al. [12] compared
the effect of landslide inventories assembled by different methods on the performance
of RF and LF for LSM. Lim et al. [13] applied the RF model to estimate the probability
of a landslide. Nhu et al. [14] investigated and compared the Logistic Model Tree, LR,
NBTress, Artificial Neural Network (ANN), and SVM in the shallow landslide susceptibility
mapping for Bijar City in Kurdistan City. Zhang et al. [15] used the predictive performance
of RF, XGBoost, SVM, and LR on landslide susceptibility mapping in Yunyang County.
Hu et al. [16] compared the effect of different non-landslide sampling methods on the
performance of SVM and NB for LSM. Zhou et al. [17] applied GeoDetector and RFE for
factor optimization and then used the selected factors as inputs to train an RF model to
obtain the LSM of Wuxi County. Sun et al. [18] proposed a hybrid landslide warning
model based on RF susceptibility zoning and precipitation. Zhou et al. [19] constructed an
interpretable model for the susceptibility to rainfall-induced shallow landslides based on
SHAP and XGBoost.

Among those methods, RF is the most commonly used method in large-scale mapping
and classification [20–22] due to its characteristics of low computational cost, low data
requirement, convenience of hyper-parameters tuning, and robustness in solving complex
nonlinear problems [23]. Previous work usually focused on quantitative analysis, such as
the selection and improvement of models and input features, but rarely took into account
the qualitative analysis of landslide areas. Actually, as one of the major geological haz-
ards, landslides are highly area dependent, the mechanism of landslide formation and its
corresponding triggering factors are undoubtedly different in distinct areas. The frequent
fluctuation of reservoir water seriously reduces the stability of the slopes in the reservoir
area, making them prone to landslides [24]. For mountainous areas, however, rainfall is the
major triggering factor for the occurrence of landslides [25]. With increased population,
human activities have become the major issue that accelerates landslide formation in areas
with high population density. Therefore, manually dividing a relatively large region into
different sub-zones according to the qualitative analysis of the landslide formation and geo-
morphic unit characteristics will theoretically improve mapping accuracy. This paper aims
to use the 827 historical landslide data points in Yunyang County and the 20 conditioning
factors to build 5 RF models, including an RF model (referred to as the parent model
below) for the whole region and four RF models for the divided four sub-zones (referred
to as sub-model one to sub-model four below). Then, the feature importance and the
performances of the parent model and the four sub-models are analyzed and compared to
verify the effectiveness of applying experience-based zonation before modeling.

2. Study Area

Chongqing City is located in the mountainous area around the eastern Sichuan basin
and the slope area of the basin margin. It spans two tectonic units, namely the Yangtze
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quasi-platform and the Qinling fold system. The landscape of Chongqing City is mainly
mountains and hills, which make up 92% of its total area. There are many adverse geologi-
cal conditions accelerating the formation of landslides, dangerous rock collapse, ground
collapse, debris flow, and other geological disasters, including developed surface water
networks, strongly cut terrain, complex rock and soil structure, and geological structure,
making it one of the cities with the highest geological disaster frequency in the country.

The spatial distribution of geological hazards in Chongqing City shows a certain
degree of concentration and can be concluded as a striped distribution and vertical zonal
distribution; moreover, its temporal distribution presents a seasonal cluster pattern. Accord-
ing to the statistics, there are currently 14,926 geological hazard-prone points in Chongqing
City, of which 5776 (38.7%) are located in the 7 districts and counties of northeast Chongqing
City (Wanzhou, Kaizhou, Chengkou, Wuxi, Wushan, Fengjie, Yunyang), 1864 (12.49%)
are in the 5 districts and counties of southeastern Chongqing City (Wulong, Youyang,
Qianjiang, Pengshui, Xiushan), and 1320 (8.84%) are in the 11 districts of the main city.
Therefore, northeast Chongqing City is the key area with a high probability of potential
geological disasters.

As one of the seven districts and counties in the northeast of Chongqing City (Figure 1),
Yunyang County (spans 108◦24′37′′–109◦14′47′′ E and 30◦34′59′′–31◦26′28′′ N) is located
in the middle of the Three Gorges Reservoir Project area, being the important hub of the
ecological and economic zone along the Yangtze River. According to the announcement of
the Chongqing Forest Bureau, while the forest area of Chongqing city reaches 54.5%, that of
Yunyang County exceeds 58.5%, making it one of the greenest counties in China. Based on
the Seventh National Census of China, there were 929,034 long-term residents (48% of them
are urban residents) in this area in the year 2020. Yunyang County is crossed by twelve
major folds, namely Changdianfang Syncline (1), Macaoba Anticline (2), Qvmahe Syncline
(3), Tiefengshan Anticline (4), Yangliuwan Syncline (5), Dongcun Anticline (6), Xinchang
Anticline (7), Huangpoxi Syncline (8), Guling Syncline (9), Fangdoushan Anticline (10),
Ganchang Syncline (11), and Longjukan Syncline (12). Under the subtropical monsoon
climate, Yunyang County has an average annual rainfall of 1123.7 to 1264.8 mm and an
average annual temperature from 10.2 to 18.5 ◦C.

Mountainous areas are generally susceptible to mass movements due to preparatory
and triggering causal factors [26]; not only the weathering effects but anthropogenic
activities in the region also commonly accelerate the formation of unstable areas on both
the earth material and on hill slopes [27]. As a part of Chongqing City, Yunyang County
has always been a significant hotspot for landslide occurrences. There are a total of
836 historical landslides recorded in the dataset; 827 data points are left after data cleaning.
A total of 28.2% of them are small landslides, 51.8% are medium landslides, and 20% are
large landslides. Among them, trust-load-caused landslides accounted for 53.7%, and
loosen-caused landslides and multi-caused landslides accounted for 14.5% and 31.8%,
respectively. To build sub-models, we manually divided the study area into four different
sub-zones (Figure 2) based on the information from the exploration of geological hazards
in Chongqing City, such as the mechanism of landslide formation and sliding failure and
the geomorphic unit characteristics. Among the four sub-zones, sub-zone II contains all the
strip-distributing landslides along the mainstream of the Yangtze River, so it can also be
called the Yangtze River mainstream zone. From a larger scope, a part of Yunyang County
belongs to the low-hills section that crosses Yunyang, Fengjie, and Kaizhou; this area is
classified as sub-zone IV. Sub-zone I (south of sub-zone II) is crossed by the main highway
called S305, and the main area of sub-zone III (between sub-zone II and IV) is crossed by
the S103 and S305. Similarly, the density of the road network is also at a high stage in the
other two parts of sub-zone III. The landslides that occurred in these two sub-zones are
found to be mainly along the roads (Figure 3). After zonation, 89 landslides are located in
sub-zone I, 285 of them are in sub-zone II, sub-zone III contains 44 landslides, and with the
largest area, 408 of the historical landslides occurred in sub-zone IV.
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Figure 1. Location, landslide distribution and tectonic map of the study area. (1) Changdianfang
Syncline, (2) Macaoba Anticline, (3) Qvmahe Syncline, (4) Tiefengshan Anticline, (5) Yangliuwan
Syncline, (6) Dongcun Anticline, (7) Xinchang Anticline, (8) Huangpoxi Syncline, (9) Guling Syncline,
(10) Fangdoushan Anticline, (11) Ganchang Syncline, and (12) Longjukan Syncline.

As one of the typical landslides in the Three Gorges Reservoir area, the Jiuxianping
landslide (in sub-zone II) is located on the left bank of the Yangtze River (Figure 2b). After
the Three Gorges Reservoir project, the fluctuation of the Three Gorges Reservoir water
level restarted the displacement and deformation of the ancient landslide, making this area
more prone to geological hazards. A subsidence of about one meter occurred on a roadway
in the middle of the landslide body after heavy rain in 2003 and 2004, causing the roadway
to be abandoned. With the impact of continuous heavy rain, landslides occurred in the back
accumulation of Jiuxianping on 19 and 22 June 2007, causing the houses of the villagers
to collapse, and the mountain body cracked. On 9 June 2009, the back-accumulation of
Jiuxianping deformed again under the impact of heavy rain, causing cracks on both the
accumulation body and the houses of the villagers. Recently, under the continuous effect of
the Three Gorges Reservoir, this area has been in the overall creep deformation stage for
years, especially the cliffs near the river, which often suffer from local collapse and damage.
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Figure 2. Zonation and typical landslides: (a) Longjiao Landslide, (b) Jiuxianping Landslide,
(c) Mawangmiao Landslide, (d) Tuantan Landslide.

The continuous heavy rains from 30 August to 1 September 2014 made the accumu-
lated rainfall in Jiangkou Town more than 300 mm. The day after that, the Tuantan landslide
(Figure 2d) occurred on the back mountain and on the left side of the Yongfa Coal Mine staff
dormitory in Tuantan village, Jiangkou Town, Yunyang County (in sub-zone IV). Although
the employees were notified to evacuate from the area subjected to the massive landslide,
twelve of them were buried on the spot. Unfortunately, only one of the twelve was saved.

Typically, in sub-zone I, under the impact of rainfall, a landslide occurred on the S202
Highway in the direction from Longjiao to Rucao (Figure 2a) on 13 July 2021. Similarly,
there was a 10,000 cubic-meter landslide triggered by heavy rainfall in the area of Mawang
Temple (Figure 2c), which trapped two four-wheel cars and a motorcycle, and blocked the
highway section for five days.
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3. Method Explanation
3.1. Random Forest

As one of the most popular classification methods, RF was first proposed by Breiman [28]
and Cutler [29]. During its training process, different data subsets obtained by random
sampling are used to train multiple decision trees as independent estimators; each of them
is only allowed to fit the data based on the part of the input features, and the final output
of the RF model is based on the voting results of the constructed estimators. With the
double randomness, those estimators will be trained as distinct ones, and such a special
structure makes RF less sensitive to noise and outliers, less likely to overfit and has a
lower dependency on feature selection, but more robust and can provide more accurate
predictions compared with the other machine learning models.

The RF training process can be concluded as the flowing three simple steps (Figure 4):
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Bootstrapping: To build M decision trees (estimators), M subsets will be generated as
training sets from the original dataset by sampling with replacement.

Modeling: Each subset obtained by bagging is used to train the corresponding esti-
mator. Similarly, for the purpose of getting estimators as distinct as possible, the available
features for each estimator are also randomly chosen from the entire feature list.

Voting: Each estimator will output a result independently, then the final result of the
model will be generated based on the voting results (Equation (1)).

f(x) =
1
M ∑M

m=1 fm(x) (1)

where f(x) represents the final output, and fm(x) means the output of the mth tree.

3.2. Grid Search

As pre-set parameters, hyper-parameters play a crucial role in model performance,
and there are rare algorithms that are hyper-parameter-free [30]. Therefore, proper hyper-
parameter tuning is essential for improving model performance. Grid search, as one of the
conventional automatic hyper-parameter tuning methods, is widely used because of its
simple operation. Its basic idea is to choose the best hyper-parameter combination by enu-
merating and iterating over all possible combinations. Although it is computationally ex-
pensive because of the exhaustive search process, grid search suits random forest very well,
as random forest is a hyper-parameter tuning friendly model; only two hyper-parameters
are to be tuned in our case.

3.3. Performance Measure

For classification problems, accurate-oriented modeling sometimes ends up with
“rabid” models that tend to classify all samples as a certain type, especially for unbalanced
datasets. Therefore, the confusion matrix is introduced in this case (Table 1).



Forests 2022, 13, 1055 8 of 20

Table 1. Confusion matrix.

Predicted Values Actual Values

Positive Negative
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

According to Table 1, the true positive rate, also called the recall, is defined as
TPR = TP/(TP + FN), and the false positive rate is defined as FPR = FP/(FP + TN). Af-
ter model establishment, its corresponding TPR versus FPR at different cutoff values can
be plotted, which is called as receiver operation characteristic (ROC) curve and can be used
to represent the predictive ability of the model. The area under the ROC curve (AUC) is
commonly used as an index that represents the true classification accuracy of the model.

4. Methodology
4.1. Data Collection and Preparation

Data collection and data cleaning are of the top importance in machine learning
applications; high-quality data is the foundation of accurate prediction models. Model
perfection also plays a vital role; choosing appropriate hyper-parameters will help models
to extract useful information from input data more effectively and precisely. In this section,
we will introduce the procedure for data preparation and model establishment. The analysis
of the performance and the factor importance of different models will be presented in the
following sections. The flowchart for this study is shown in Figure 5.
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Triggered by the joint effects of natural factors and human activities, the mechanism
of the occurrence of landslides is very complex [5]. Based on the assumption that future
landslides will occur under the same conditions as past landslides [31], evaluating these
factors and analyzing their relationships with historically recorded landslides can contribute
to forming the basis for the prediction of future landslides in an area [32,33]. However,
after reviewing the studies related to the evaluation of landslide sensitivity from 1983
to 2016, Reichenbach et al. [34] found that there was a total of 596 different factors that
affected landslide formation, considering all of them will be laborious and time-consuming.
According to previous articles, topography, hydrology, geology, land cover, and natural
and human-related factors are generally used for landslide susceptibility analysis [14,17].
Therefore, in this study, topographical factors (aspect, elevation, plane curvature, profile
curvature, relief amplitude, slope), hydrological factors (aridity, distance from rivers, index
of moisture (IM), and topographic wetness index (TWI)), geological factors (lithology,
distance from anticline axis, distance from syncline axis), factors related to land cover
(namely land use and normalized difference vegetation index (NDVI)), human factors (such
as human activity intensity of land surface (HAILS), distance from road, and population),
and natural factors (average annual temperature, average annual rainfall) are all considered
(Figure 6).
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As the grid data layers cannot be directly used for model training, the Yunyang County
fishnet with a cell size of 25 × 25 m was created for the purpose of data extraction for
model training and measuring the distances from specific structures/natural sources, the
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total number of cells is 5,831,382. The secondary data includes aspect, plane curvature,
profile curvature, relief amplitude, slope, distance from rivers, TWI, distance from anticline
axis, distance from syncline axis, and distance from road. Among them, TWI, aspect,
plane curvature, profile curvature, relief amplitude, and slope were obtained by ArcGIS
processing of DEM. The characteristics associated with distances (i.e., distance from rivers,
distance from anticline axis, and distance from syncline axis) were obtained by applying
the near function of ArcGIS to the corresponding primary data (i.e., the river network
of Chongqing City, the road network of Chongqing City, and the geological structure of
Yunyang County) and the created fishnet of Yunyang County. The ranges and categories of
the 20 characteristics are summarized in Table 2.

Table 2. (a) Categories of conditioning factors. (b) Ranges of conditioning factors.

Feature ID Feature Name # of Classes Class Name

(a)

1 lithology 37

1. T1d3; 2. T1d4; 3. J2s2; 4. Ss; 5. T1J4;
6. T1j1; 7. T1j2; 8. J2s1; 9. J2x; 10. J1z1da;
11. J1z1m; 12. J1z1d; 13. J1z; 14. T1j3; 15.
T2b2; 16. T2b3; 17. T2b2; 18. T2b1; 19.
T3xj; 20. J1zlm; 21. J1zld; 22. J3sn; 23.
J3p2; 24. J3p; 25. T3xj3; 26. T3xj2; 27.
T3xj1; 28. J1zlda; 29. J1z1; 30. J2sn; 31.
T1d2; 32. T1d; 33. P3w2; 34. P3d; 35.
P2m− g; 36. P3wl; 37. P2q

2 landuse 15

1. Paddy filed; 2. Dry land; 3.
Forestland; 4. Shrub land; 5. Sparse
woods; 6. Other woods; 7. Grassland
with high coverage; 8. Grassland with
medium coverage; 9. Grassland with
low coverage; 10. Cannel; 11. Reservoir;
12. Urban land use; 13. Rural
settlements; 14. Other types of building;
15. Marshland

(b)

Feature ID Feature Name Value Range

3 Slope (◦) 0–67.0356
4 Average Annual Temperature (◦C) 10.2–18.5
5 Average Annual Rainfall (mm) 1123.7–1264.8
6 Aridity 0.698–0.952
7 IM 14.5–53.47
8 Population 88.8744–695.201
9 HAILS 0–78.2
10 NDVI −0.1372–0.8837
11 Distance from Syncline Axis (m) 0–19,026.1
12 Distance from Anticline Axis (m) 0–16,958.8
13 Distance from Road (m) 0–5994.47
14 Distance from Rivers (m) 0–17,236.8
15 Elevation (m) 76.0774–1794.29
16 Profile Curvature 0–44.2457
17 Aspect (◦) 0–360
18 Plane Curvature 0–360
19 TWI −0.82–30.1
20 Relief Amplitude 0–148.865

All 20 factors were visualized by ArcGIS with a resolution of 25 m (Figure 7). Then the
corresponding classes and rating values of the 20 factors were assigned to each cell of the
prepared fishnet.
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After obtaining the 827 historical landslide cells in the study area as positive samples
(1), the same number of non-landslide cells were randomly extracted from the landslide-free
areas as negative samples (0) [35,36]. To make sure that the sub-models can be constructed
with the same data as the parent model, the number of negative samples selected from
each sub-zone was determined by the number of the positive samples in the sub-zone (i.e.,
89 for sub-zone I, 286 for sub-zone II, 44 for sub-zone III, and 408 for sub-zone IV). Thus
the five sample datasets were formed (Table 3). Based on previous research [14,37], 80% of
each dataset was randomly selected to train the corresponding statistical model, and the
remaining 20% was used for validation purposes.

Table 3. The number of data points in different zonation and datasets.

Sub-Zone # of Possitive Samples # of Negative Samples Total Percentage of
Trainning Set # of Training Samples

I 89 89 178 80% 142
II 286 286 572 80% 457
III 44 44 88 80% 70
IV 408 408 816 80% 652

Whole
Region 827 827 1654 80% 1323

4.2. Model Development and Application

Five independent random forest-based models were established and validated based
on the sample datasets constructed before. The hyper-parameters of each model were tuned
by the grid search method. Being considered as the most straightforward optimization
method [38], the grid search method needs to iterate over the entire interval of each
hyper-parameter. Therefore, the number and the iterating interval of the tuned hyper-
parameters have an obvious impact on its search efficiency. The number of estimators
determines the stability of a random forest model, and adding more estimators will lower
its mean squared prediction delta (MSPD) and hence improve model stability [39], but will
increase computational cost [40]. The maximum depth of a tree controls the stability of a
random forest model in a different way. The stability will decrease as depth increases since
increasing the depth will make the model tend to just memorize the training data, but if
the forest is too shallow, the model will underfit, resulting in low AUC [39]. In this case,
the number of estimators and the maximum depth of a tree are the two hyper-parameters
to be tuned; the results are shown in Table 4.

Table 4. Hyper-parameters of models.

Model Number of Estimators Maximum Depth of a Tree

Parent Model 175 21
Sub-Model One 10 6
Sub-Model Two 95 12

Sub-Model Three 10 4
Sub-Model Four 100 12

After obtaining well-trained models, we used all 5,831,382 cells prepared in Section 4.1
as input to generate the landslide susceptibility maps for the study area.

5. Results

The landslide susceptibility maps generated by the parent model and sub-models
are displayed in Figure 8, where Figure 8a represents the map outputted by the parent
model, and Figure 8b is the map produced by sub-models, Figure 8c,d are the detailed
scopes for the part of both maps. The entire region is divided and classified into five zones
of susceptibility to different levels of landslides (very low, low, moderate, high, and very
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high) by the method of natural breaks method. From the result of the parent model in
Table 5, 14.6% of the whole area is classified as a very low landslide-prone zone, 22.8% as a
low landslide-prone zone, 25.23% as a moderate landslide-prone zone, 21.47% as a high
landslide-prone zone, and 15.90% as a very high landslide-prone zone. From the result of
the sub-models, their ratios are 16.42%, 20.81%, 22.56%, 21.54%, and 18.67%, respectively.
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Figure 8. Comparison between the landslide susceptibility mapping of the parent model and sub-
models: (a) Landslide susceptibility map generated by the parent model, (b) Landslide susceptibility
map generated by the sub-models, (c) Detailed view of landslide susceptibility map generated by the
sub-models, (d) Detailed view of landslide susceptibility map generated by the parent model.

Table 5. Statistic results of landslide susceptibility in different levels of different models.

Model Landslides
Susceptibility Level

Landslides Susceptibility
Threshold

Landslides
Ratio Area Ratio Landslides/Area

Ratio

Parent Model

Very Low 0.000–0.239 0.24% 14.60% 0.016
Low 0.239–0.408 2.18% 22.80% 0.096

Moderate 0.408–0.573 6.05% 25.23% 0.248
High 0.573–0.741 19.22% 21.47% 0.895

Very High 0.741–1.000 72.31% 15.90% 4.548

Sub-Models

Very Low - 0.12% 16.42% 0.007
Low - 1.21% 20.81% 0.058

Moderate - 4.48% 22.56% 0.199
High - 18.55% 21.54% 0.861

Very High - 75.64% 18.67% 4.051

Sub-Model
One

Very Low 0.000–0.235 0.00% 20.22% 0.000
Low 0.235–0.435 0.00% 23.88% 0.000

Moderate 0.435–0.631 8.99% 22.36% 0.402
High 0.631–0.831 25.84% 18.64% 1.386

Very High 0.831–1.000 65.17% 14.90% 4.374

Sub-Model
Two

Very Low 0.000–0.278 0.35% 15.14% 0.023
Low 0.278–0.435 2..46% 22.03% 0.112

Moderate 0.435–0.588 4.56% 24.99% 0.182
High 0.588–0.749 13.33% 22.45% 0.594

Very High 0.749–1.000 79.30% 15.39% 5.153
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Table 5. Cont.

Model Landslides
Susceptibility Level

Landslides Susceptibility
Threshold

Landslides
Ratio Area Ratio Landslides/Area

Ratio

Sub-Model
Three

Very Low 0.000–0.303 0.00% 13.68% 0.000
Low 0.303–0.421 0.00% 24.81% 0.000

Moderate 0.421–0.536 9.10% 25.78% 0.353
High 0.536–0.662 31.81% 22.06% 1.442

Very High 0.662–1.000 59.09% 13.67% 4.323

Sub-Model
Four

Very Low 0.000–0.227 0.00% 16.59% 0.000
Low 0.227–0.427 0.74% 16.20% 0.0457

Moderate 0.427–0.612 2.94% 19.38% 0.152
High 0.612–0.792 19.12% 22.26% 0.859

Very High 0.792–1.000 77.20% 25.57% 3.020

Logically, the landslides/area ratio should increase from a very low landslide-prone
zone to a very high landslide-prone zone, which is exactly what our models indicate.
According to the results of the parent model, the landslides/area ratio increases from 0.016
to 4.548, from a very low landslide-prone zone to a very high landslide-prone zone, and
that also increases from 0.007 to 4.051 from the results of the sub-models. Figure 9 displays
such a tendency, and it can be seen that the outputs of the sub-models have more obvious
gaps between the very low landslide-prone zone and the very high landslide prone-zone,
which reflects another merit of the sub-models compared with the parent model.
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Figure 9. Landslides/area ratio.

The validation AUC values of the five models are shown in Figure 10; the AUC value
of the parent model is 0.872, while that of sub-model one to sub-model four are 0.949, 0.892,
0.889, and 0.951, respectively. All of the sub-models outperformed the parent model, which
proved the aforementioned hypothesis. However, the increases are not at the same level;
sub-model four achieved the highest improvement (9.1%), while the lowest improvement
is 1.9%, which was obtained by sub-model two.
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The importance of features generally represents how much a specific feature con-
tributes to the decision-making process of a model. In this case, the most important features
can be the key factors in identifying landslide/non-landslide points. As shown in Table 6
and Figure 11, the distance from syncline axis, aridity, elevation, distance from rivers, and
average annual temperature are of the highest importance for the parent model. NDVI,
average annual rainfall, distance from road, and elevation are the main features that are
associated with the formation of landslides in sub-zone I. For sub-model two, elevation is
the most important feature, which is followed by average annual rainfall, distance from
rivers, distance from anticline axis, and average annual temperature. Distance from road,
HAILS, elevation, plane curvature, and average annual temperature are the top features
for sub-model three. Last but not least, distance from syncline axis, average annual tem-
perature, elevation, aridity, and average annual rainfall play important roles during the
predicting process of sub-model four.

Table 6. Top five important factors in different sub-zones.

Zone
Feature Importance Rank

1st 2nd 3rd 4th 5th

Whole Region Distance from
syncline axis (m) Aridity Elevation (m) Distance from

rivers (m)
Average Annual

Temperature (◦C)

Sub-Zone I Distance from
syncline axis (m) NDVI Average Annual

Rainfall (mm)
Distance from

Road (m) Elevation (m)

Sub-Zone II Elevation (m) Average Annual
Rainfall (mm)

Distance from
rivers (m)

Distance from
anticline axis (m)

Average Annual
Temperature (◦C)

Sub-Zone III Distance From
Road (m) HAILS Elevation (m) Plane Curvature Average Annual

Temperature (◦C)

Sub-Zone IV Distance from
syncline axis (m)

Average Annual
Temperature (◦C) Elevation (m) Aridity Average Annual

Rainfall (mm)
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6. Discussion
6.1. Feature Importance Analysis

As indicated in Table 6, the distance from syncline axis is at the dominant place among
the twenty factors for the parent model, sub-model one, and sub-model four. Factors
associated with water, such as average annual rainfall and the distance from rivers, are
also important places. The triggering factors of shallow landslides are highly dependent
on the rainfall water infiltration and its further redistribution [41]. Due to its softening
effect and long-term erosion effect, the distance from rivers has a significant influence
on the development of landslides [42]. Temperature has a remarkable effect on landslide
formation; experimental results indicated that the shear strength of slip surface soils
reduces with decreasing temperature, which will negatively affect slope instability [43].
Therefore, obtained by the accumulated temperature and rainfall, aridity is also of great
importance. Although different plants generally have a different contribution of rainfall
to soil water [44], which will affect slope stability differently, on average, the effect of
water uptake from the plant cover makes the vegetated slopes averagely 12.84% drier,
and matric suctions three times higher than the fallow slope, which contributes to slope
stability [45]; so NDVI is taken as one of the main considerations. Unlike vegetation
cover, human-made land covers usually have negative influences on slope stability. The
development of new building areas can potentially increase susceptibility to landslides [46].
Road networks not only directly destabilize existing slopes by disturbing their original
structures during construction processes, but transport activities also have negative effects
on slope stability. Similarly, HAILS is another influential factor. For topological factors, the
two most important factors, in this case, are elevation and plane curvature.
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6.2. Model Comparison
6.2.1. Parent Model

When dealing with the whole region, the model tends to capture information that
is more general, and thus its feature importance has a higher universality. In our case,
six major synclines are lying in the whole domain, and their generally dominant effects
on identifying landslide/non-landslide points are successfully captured by the parent
model. Aridity, distance from rivers, and average annual temperature affect the formation
of landslides in meteorological and hydrological aspects. Although ranked fourth as the
most important one, elevation is the most important topological factor in the research area.

6.2.2. Sub-Models

After dividing the whole region into different sub-zones, the models will have the
chance to learn the knowledge that is specifically right for each sub-zone. Thus their
performances will be improved.

Sub-model One. Located in the south of Yunyang County, sub-zone I occupies 741.7 square
kilometers, which is only 20% of the entire research area. Nevertheless, it is crossed
by two of the six major synclines, which makes the syncline effect more obvious, and,
therefore, the distance from the syncline axis is still the most important factor for sub-zone I.
Similarly, the landslide susceptibility in sub-zone I is also affected by both hydrological and
topological factors, namely average annual rainfall and elevation. However, specifically, as
it is crossed by the major highway S305, land cover (NDVI) and human activities (distance
from road) are the other two main influential factors.

Sub-model Two. As we discussed before, sub-zone II is the most special sub-zone since
it is crossed by the Three Gorges Reservoir area, most of the landslides in Yunyang County
were impacted by water occurred here. Therefore, theoretically, the landslide formation
in sub-zone II is sensitive to hydrological factors. In this case, the average annual rainfall
and the distance from rivers are ranked as the second and the third-most important factors.
The reason why elevation is of the greatest importance is that lower places are usually
prone to the influence of the periodic variation of reservoir water level. Statistically, 76%
of the landslides impacted by water in sub-zone II occurred below the elevation of 249 m.
The tectonic action and natural factors also contribute a lot to the landslide formation in
sub-zone II; the distance from anticline axis and the average annual temperature are ranked
in fourth and fifth place, respectively.

Sub-model Three. For sub-zone III, specifically, its data points are relatively far away
from the major synclines, which mitigates the importance of the feature. Instead, as an area
crossed by major highways and dense road networks, human activities, including distance
from road and HAILS, are the two most important factors that have the main contribution
to the landslide formation of the sub-zone. Topographical factors, namely elevation and
plane curvature, are ranked in third and fourth place, respectively, and the average annual
rainfall is evaluated as the fifth-most important factor.

Sub-model Four. Crossed by three major synclines, the landslide identification in sub-
zone IV is also significantly dependent on the distance from the syncline axis. Furthermore,
since it is part of the low hills section crossing Yunyang, Fengjie, and Kaizhou, the formation
of landslides in this area is primarily influenced by the factors associated with the stability
of mountain bodies, such as the average annual temperature, elevation, aridity, and the
average annual rainfall.

7. Conclusions

In this study, Yunyang County is manually zoned into four parts based on the qualita-
tive analysis of geological hazards exploration in Chongqing City, including the mechanism
of landslide formation and sliding failure and geomorphic unit characteristics. Based
on the qualitative analysis result, five random forest landslide susceptibility models are
constructed using historical landslides data points and twenty relating factors for the fol-
lowing quantity analysis. These models, including a parent model and four sub-models,
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are optimized by the grid search method individually. A comparison between the parent
model and the combination of the sub-models is conducted. The following conclusions
are drawn:

The AUC value of the parent model achieves 0.872, which shows that the traditional
RF with the hyper-parameters tuned by the grid search method has a reliable performance
on landslide susceptibility mapping. In this study, synclines have the most important
effects on the formation of landslides in Yunyang County, followed by aridity, elevation,
distance from rivers, and average annual temperature.

However, more general information extracted from “mainstream” landslides would
usually cover that of the “minority” landslides when treating a large region equally, re-
sulting in low information utility and the inability to identify potential landslides under
special geological conditions. With enough data points, experience-based zoning before
modeling is proved to be an effective solution to the issue; the qualitative analysis serves the
purpose of pre-classification based on the information from geological hazards exploration,
which groups the landslides that occurred under similar geological conditions, and thus
enables the models to obtain the specific knowledge under each condition. Therefore,
in our case, while the traditional RF obtained the general prediction skill for the entire
region of Yunyang County, all the sub-models have become “experts” in their respective
sub-areas. The test AUC values of sub-model one to four are 8.8%, 2.3%, 1.9%, and 9.1%
higher than those of the parent model. Furthermore, the proposed method also contributes
to further revealing the key factors that include local landslide instability under specific
geological conditions, which can be used by planners and policymakers for a more specific
and accurate landslide control in certain areas, thus further improving the safety of life and
public property.

For sub-zone I, the top five conditioning factors are distance from syncline axis, NDVI,
average annual rainfall, distance from road, and elevation. For sub-zone III, without
the influence of major synclines, its top factors are distance from road, HAILS, elevation,
plane curvature, and average annual temperature. For sub-zone IV, the distance from
syncline axis becomes the most important factor again, and it is followed by average annual
temperature, elevation, aridity, and average annual rainfall.

Sub-zone II is crossed by the Three Gorges Reservoir area. Suffered by periodic
variation in reservoir water level and the impacts of other factors related to the reservoir
band, the modified method based on general conditioning factors has relatively less effect
on improving the accuracy of the mapping. The effect of more specific factors on the
formation of landslides on the banks of the reservoir will be analyzed in further research. In
the case of this paper, the results of sub-model two point out that elevation, average annual
rainfall, distance from rivers, distance from anticline axis, and average annual temperature
are the top five conditioning factors among the existing twenty factors for sub-zone II.
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