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A comprehensive study for the identification of landslide susceptible zones using landslide frequency
ratio and fuzzy logic in GIS environment is presented for Tehri reservoir rim region (Uttarakhand,
India). Temporal remote sensing data was used to prepare important landslide causative factor layers
and landslide inventory. Primary and secondary topographic attributes namely slope, aspect, relative
relief, profile curvature, topographic wetness index, and stream power index, were derived from digital
elevation model. Landslide frequency ratio technique was adopted to correlate factors with landslides.
Further, fuzzy logic method was applied for the integration of factors (causative factor) to map landslide
susceptible zones. Normalized landslide frequency ratio value was used for the fuzzy membership function
and different fuzzy operators were considered for the preparation of landslide susceptibility/hazard index
map. The factors considered in this study were found to be carrying a wide range of information.
Accordingly, a methodology was evolved to integrate the factors using combined fuzzy gamma and fuzzy
OR operation. Fuzzy gamma integration was performed for six different gamma values (range: 0–1).
Gamma value of 0.95 was selected for the preparation of final susceptibility map. Landslide susceptibility
index map was divided into the following five hazard zones – very low, low, moderate, high, and very high –
on the basis of natural break classification. Validation of the model was performed by using cumulative
percentage curve technique. Area under curve value of cumulative percentage curve of proposed landslide
susceptibility map (gamma = 0.95) was found to be 0.834 and it can be said that 83.4% accuracy was
achieved by applying combined fuzzy logic and landslide frequency ratio method.

1. Introduction

Landslide is the result of a wide variety of geo-
environmental processes which involve geological,
meteorological and human factors. The main fac-
tors which influence landsliding were discussed by
Varnes (1984) and Hutchinson (1995). Most impor-
tant inherent factors are bedrock geology (lithology,
structure, degree of weathering), geomorphology
(slope gradient, aspect, and relative relief), soil
(depth, structure, permeability, and porosity),
land use/land cover, and hydrologic conditions.
Landslides are triggered by many extrinsic

causative factors such as rainfall, earthquake,
blasting and drilling, cloudburst, and flashfloods.
Tehri reservoir (67 km long) was developed due

to the construction of a 260.5 m high dam across
the confluence of Bhagirathi and Bhilangana rivers
on the highly rugged Lesser Himalayan terrain.
Several studies have indicated that impoundment
of the reservoir has induced negative impacts on
the surrounding geoenvironmental system (AHEC
2008). A number of villages are situated all around
the rim of the reservoir. Due to readjustment of
slopes during drawdown conditions of the reser-
voir, the slopes on which villages are located have
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been rendered unstable in many areas in addition
to loss of huge areas of farm land. Geoenviron-
mental factors such as slope, relative relief, hydro-
geological condition, lithology, and structural
discontinuity are responsible for the slope insta-
bility in the reservoir rim region. Characterization
of landslide causative factors and a comprehensive
landslide probability mapping are the most impor-
tant planning strategies for mitigation. Identifica-
tion of the landslide probable zones are based on
the assumption that landslides in the future will
be more likely to occur under those condi-
tions which led to the past and present instabi-
lity (Varnes 1984; Carrara et al. 1995; Guzzetti
et al. 1999; Kanungo et al. 2006). ‘Landslide suscep-
tibility zonation’ (LSZ) term adheres to principles
of landslide hazard zonation (LHZ) and landslide
susceptibility mapping (LSM). For landslide study,
Varnes (1984) defined zonation as division of the
land surface into areas and ranking these areas
according to the degree of actual or potential hazard
from landslides or other mass movement on the
slopes. On the other hand, Brabb (1984) introduced
the term ‘landslide susceptibility’, which is the spa-
tial probability of occurrence of landslide based on
a set of geoenvironmental factors. Both terminolo-
gies have been extensively used in landslide hazard
study (Anbalagan 1992; Pachauri and Pant 1992;
Nagarajan et al. 1998; Gupta et al. 1999; Saha
et al. 2002; Lee et al. 2002, 2005; Arora et al. 2004;
Sarkar and Kanungo 2004; Ayalew and Yamagishi
2005; Akgun et al. 2008; Yilmaz 2009; Das et al.
2010; Hasekioğullari and Ercanoğlu 2012; Kayastha
et al. 2013a, b; Kumar and Anbalagan 2013). A
vast group of authors have been using the term
‘landslide hazard mapping’ in which they follow the
definition of natural hazard given by Varnes (1984)
and accordingly probability of occurrence of a land-
slide within a given time is considered. Time fac-
tors related to events such as rainfall, earthquake
or temperature variation are incorporated as input
parameters to predict landslide hazard (Guzzetti
et al. 1999, 2005; Van Westen et al. 2003; Ghosh
et al. 2009). Since absolute time factors are diffi-
cult to predict, they are often incorporated hypo-
thetically rather than based on active ground data.
Hence, in the present study LSZ, LSM and LHZ
are considered to convey the same meaning.
Remote sensing provides effective means to map

landslides in a highly inaccessible terrain. Temporal
capability of remote sensing data offers coverage of
a landslide-prone area prior to rainfall and after
rainfall. Remote sensing has also proven its capabi-
lity in the mapping of landslide causative factors.
GIS provides a platform for the spatial data extrac-
tion, analysis and integration. Remote sensing and
GIS have been extensively used in landslide suscep-
tibility studies. For LSZ mapping, weighing/ratings

of factors and their attributes are most important
prerequisites. Data integration of landslide causa-
tive factors is an indispensible requirement for the
LSZ mapping. A number of qualitative and quanti-
tative weighting/rating and data integration tech-
niques have been in practice for the LSZ in GIS
environment. It can be broadly classified into the
following three groups – heuristic/qualitative, semi
quantitative and quantitative/statistical methods.
Heuristic methods assume subjective knowledge
of professionals to weight factors affecting land-
slide (Saha et al. 2002; Sarkar and Kanungo 2004).
Quantitative methods consider correlation of land-
slide inventory with concerned factors. These are
data-driven methods which require a comprehen-
sive landslide inventory and can further be divided
into bivariate and multivariate statistical categories.
Bivariate statistical method assumes landslide as
the dependent variable and causative factors as in-
dependent variables. Association of each factor
with the landslides is individually computed on the
basis of landslide density (Lee et al. 2002; Saha et al.
2005; Dahal et al. 2008; Mathew et al. 2009; Ghosh
et al. 2009; Pradhan et al. 2010; Kayastha et al.
2012). In the multivariate approach, combined im-
pact of factors on the dependent variable is com-
puted and, at the same time, weights of individual
factor can also be derived (Ayalew and Yamagishi
2005; Lee 2005; Guzzetti et al. 2005; Yilmaz 2009;
Das et al. 2010, 2012; Pradhan et al. 2010; Kundu
et al. 2013). Another quantitative technique, deter-
ministic model is based on the slope geometry,
geological discontinuity and other geotechnical pro-
perties of the rocks. It gives results in terms of factor
of safety (Sharma et al. 1994; Chakraborty and
Anbalagan 2008; Singh et al. 2008). Semi-quanti-
tative methods are based on weighing and rating
such as AHP (analytical hierarchy process) approach,
fuzzy logic approach, combined landslide frequency
ratio and fuzzy logic and weighted linear combination
(WLC) (Ercanoglu and Gokceoglu 2004; Kanungo
et al. 2006; Champatiray et al. 2007; Ercanoglu
et al. 2008; Yalcin 2008; Pradhan et al. 2009;
Mondal and Maiti 2012; Kayastha et al. 2013a, b).
Different researchers attempted to evolve tech-

niques on LSZ by using different methods in the
Himalayan region. Sharma et al. (1994), Anbalagan
et al. (2008) and Singh et al. (2008) used determin-
istic approach by considering geotechnical param-
eters on local scale. Anbalagan (1992) used slope
facet as a terrain unit and landslide hazard evalua-
tion factor (LHEF) as ratings criteria to evolve hazard
zones. GIS based subjective approach was carried
out by Gupta et al. (1999), Saha et al. (2002), and
Sarkar and Kanungo (2004) in different parts of the
Himalayan terrain. Arora et al. (2004) introduced
artificial neural network method for LHZ mapping
in the Ganga valley of the Himalayas. Spatial data
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analysis for landslide hazard was carried out by
Sarkar et al. (2008). Mathew et al. (2007) used
weights of evidence technique to assign weights
to different landslide causative factors. Empirical
modelling for landslide susceptibility in Darjeeling
Himalaya was attempted by Gosh et al. (2011).
Das et al. (2010) had applied multivariate logistic
regression technique to identify landslide hazard
zones in Indian Himalayas. Fuzzy logic approach
was applied in Himalayan terrain by Kanungo et al.
(2006), Champatiray et al. (2007) and Kayastha
et al. (2013a, b).
Literature review of LSZ practices in the

Himalayan region has reflected that less importance
was given to the feasibility of the factors used
in susceptibility model. Apart from the inherent
landslide causative factors, a number of topo-
graphic indices were used for LSZ mapping;
whereas, use of secondary topographic indices such
as topographic wetness index (TWI) and stream
power index (SPI) were found to be lacking. The
secondary topographic indices are important fac-
tors, because they give an idea about the role
of topography in the distribution of vegetation,
water, mass movement, and solar radiation (Wilson
2011). Characterization of reservoir induced terrain
changes was found to be another important scope
of study. Few authors applied fuzzy logic approach
for LSZ in Himalayan terrain. Optimum use of
different fuzzy operators for factors representing
a wide variety of information and suitability of
fuzzy logic method in present terrain condition are
presented in this study.

2. Study area

A 260.5 m high Tehri dam, which became oper-
ational in the first decade of this century is one
of the biggest dams of the world. It is located in
Garhwal Himalaya in the Lesser Himalayan ter-
rain (30◦22′40′′N/78◦28′50.4′′E). The construction
of the dam has resulted in the formation of a huge
reservoir (67 km) in Bhagirathi and Bhilangana val-
ley. Maximum reservoir level (MRL) is 830 m and
dead storage level (DSL) is 740 m. The reservoir
water fluctuates between MRL and DSL during
the draw down condition. When the reservoir is
at maximum level, it saturates the valley slopes.
When the water level goes down, it considerably
saturates side slopes, which often become unsta-
ble and may create slope instability problem in a
number of places. The instability problem varies
from place to place depending on: (a) type of slope
material, (b) geometry of rock slope, (c) vegeta-
tion cover, and (d) human interference within the
reservoir rim boundary. The drawdown condition
of the reservoir has a distinctly adverse impact

on the stability of the reservoir rim area, which
is manifested in the form of landslides. Reservoir
rim area characterized by rocks does not show
instability problem in general. The landslide which
is caused within the loose unconsolidated mate-
rial has affected civil structures located within the
area: namely houses, school, government offices,
and other such structures. Figure 1 refers to the
study area.

2.1 Geological setting

Several geological studies have been carried out
in the present study area. The most prominent
study was carried out by Valdiya (1980). The whole
study area is a part of the broader physiographic
entity called Lesser Himalaya and comprised of
inner as well as outer Lesser Himalaya. The rocks
exposed in the study area belong to the inner as
well as the outer Lesser Himalaya. The inner Lesser
Himalaya, in the study area is represented by the
rocks of Rautgara Formation of Damtha Group,
Deoban and Mandhali Formation of Tejam Group,
and Berinag Formation of Jaunsar Group. On the
other hand, the rocks exposed in the outer Lesser
Himalaya belong to the Chandpur and Nagthat
Formation of Jaunsar Group and Blaini Formation
of Mussoorie Group. The stratigraphic succession
of the study area is shown in table 1 and the dis-
tribution of different formations belonging to the
various groups is shown in figure 2. The central part
of the area is represented by Chandpur Formation.
Rocks of Chandpur Formation are low grade meta-
morphosed lustrous phyllites and highly weathered
quartzites. Nagthat rock formation is found in the
western part of the study area. Rocks of Nagthat
Formation are characterized by white, purple, and
green coloured quartzites with subordinate inter-
calation of grey and olive green slates with silt-
stones. In the eastern part of the study area, North
Almora Thrust (NAT) separates Jaunsar Group of
rocks from Damtha Group (Rautgara Formation).
Rocks of Rautgara Formation comprise purple,
pink, and white coloured, well jointed, medium
grained quartzites, minor slates and metavolcanics.
Deoban Formation is found in eastern and north-
eastern parts of the study area. It is sandwiched
between Rautgara Formation and Berinag Forma-
tion in the south. Deoban Formation consists of
fine grained dolomitic limestone with minor phyl-
litic intercalations. These rocks are mainly found at
the higher ridges. Rocks of Berinag Formations are
exposed in the eastern part of the area. It is sepa-
rated by Berinag thrust at its base. These rocks are
mostly quartzites. Bliani Formations are found in
the western part of the study area. This formation
comprises quartzites, slates and carbonate rocks.
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Figure 1. Study area.

Table 1. Stratigraphic succession of the study area.

Inner Lesser Himalaya Outer Lesser Age Himalaya

Group Formations Rock type

Mussoorie Blaini Neoproterozoic Quartzite, limestone, slates, phyllites

and conglomerate

Jaunsar Berinag Nagthat Mesoproterozoic Weathered quartzite intercalated

with slate

Chandpur Mesoproterozoic Low grade lustrous phyllites

Tejam Deoban Mandhali Mesoproterozoic Dolomitic limestone with phyllitic

intercalations

Damtha Rautgara Mesoproterozoic Quartzite, slate, metavolcanic rocks

(>1300 my)

Major as well as minor structures have been
observed in the study area. The major structural
features include the NAT, exposed in the north-
eastern region. The south-easterly dipping NAT
separates the Chandpur phyllites from the Raut-
gara Formation towards north (figure 2). A num-
ber of antiforms and synforms in the central and
south-western regions, which together form a part
of the Mussoorie syncline (Valdiya 1980) have been
observed. A number of shear zones of varying shapes
and sizes were observed during the field work.

3. Data preparation

Raw remote sensing (ASTER) multispectral data
was processed with ENVI 4.5 software. Different

bands were extracted and georeferenced to UTM
WGS 1984 Zone 44. VNIR (Visible Near Infrared)
bands were selected for the factor extraction.
Topo-normalization was performed on the basis of
ASTER DEM (Digital Elevation Model). ASTER
DEM and Cartosat-1 DEM data were subjected
to DEM enhancement techniques such as DEM
fill and sink removal. Ancillary data such as land-
slide inventory, geological map, soil map, and topo-
graphic map were acquired from different sources.
Processing of ancillary data involved rasterization
according to the unit grid size of 25 m × 25 m.
Co-registration of the remote sensing and ancil-
lary data were carried out to prepare a base map
of the study area. According to the base map,
13 factor maps were prepared in raster grid form.
Remote sensing data were used to acquire landslide
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Figure 2. Geological map of the Tehri reservoir rim area (after Valdiya 1980).

Table 2. Data used in the present study.

Data type Sensor Scale Data derivative

Image data ASTER 15 m×15 m grid LULC
Photo-lineament

World view - 2 0.5 m× 0.5 m grid Landslide inventory
DEM Cartosat 1 2.5 m× 2.5 m grid Slope

ASTER GDEM 15 m× 15 m grid Aspect
Relative Relief
Profile curvature
TWI
SPI
Drainage

Ancillary data 1:250000 Vector geology map
1:250000 Vector soil map
1:25000 Vector topographic map
1:25000 Vector landslide inventory

inventory, land use/land cover (LULC), and photo-
lineament by applying digital image processing
techniques such as NDVI, supervised classifica-
tion, band rationing, etc. Onscreen visualization
based on colour, tone, texture, pattern, shape,
and shadow were performed for the identifica-
tion of the landslide inventory. DEM was used for
the extraction of topographic attributes namely
slope, aspect, relative relief, profile curvature,
topographic wetness index, and stream power
index. Drainage map was also generated from the
DEM. Table 2 shows data used in the present
study.

3.1 Lithology

Lithological map of the area was prepared based
on the study of Valdiya (1980) and field studies
(figure 2). Seven different geological formations be-
longing to four different groups are represented
in the study area. Rocks of Chandpur Formation
are low grade metamorphosed lustrous phyllites
and highly weathered quartzites. These rocks are
highly vulnerable to sliding because of the presence
of well developed foliation plains and joints.
Nagthat Formation is found in the western part of
the study area. Rocks of Nagthat Formation are
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characterized by white, purple, and green coloured
quartzites with subordinate intercalation of grey
and olive green slates with siltstones. Different
patterns of weathering was observed in quart-
zites belonging to Nagthat Formation. Shearing
was found to be the common discontinuity in
those rocks. Rocks of Rautgara. Formation com-
prise purple, pink, and white coloured, well
jointed, medium grained quartzites, minor slates,
and metavolcanics. Deoban Formation is found in
eastern and north-eastern parts of the study area.
It is sandwiched between Rautgara Formation
and Berinag Formation in the southern part of the
study area. Deoban Formation consists of fine grai-
ned dolomitic limestone with minor phyllitic inter-
calations. These rocks are mainly found at the
higher ridges. Rocks of Berinag Formation are
exposed in the eastern part of the area. It is sepa-
rated by Berinag thrust at its base. These rocks are
mostly quartzites. Bliani Formations are found in
the western part of the study area. This formation
comprises quartzites, slates, and carbonate rocks.
No substantial landslides are observed in rocks of
Mandhali Formation.

3.2 Land use/land cover (LULC)

LULC pattern of the terrain has a huge influence
on landslide susceptibility study. Five categories
of LULC namely dense forest, open/scrub forest,
agricultural land, settlement/barren land and
water body were derived from the combination of

topographic map and satellite imageries (figure 3).
LULC maps were prepared from ASTER multispec-
tral data of 15 m spatial resolution by performing
NDVI (Normalized Difference Vegetation Index)
and supervised classification. Vegetation thresholds
were obtained from NDVI and other classes from
supervised classification. Reasonable accuracy (78%)
was achieved for LULC mapping.

3.2.1 Soil cover

Soils of the area consist of alluvial, sandy loam,
skeletal, forest soil and red soil. Soil quality varies
with the relief/elevation and annual rainfall. Ele-
vation varies roughly from 500 to 2600 m. Rain-
fall varies according to the aspect of slope faces
(source – published report of Watershed Manage-
ment Directorate, Dehradun). At lower elevations
(600–1000 m), mainly alluvial mixed with boulders
are present. In 1000–1500 m range, sandy loamy
soils are present. Above 1500 m, red/black forest
soils are present. Each category of soil has analo-
gous influence on landslides. Forest soil is relatively
less prone to weathering. Alluvial and loose boul-
ders are highly prone to mass movement. Sandy
loamy soil is also weathering prone.

3.2.2 Structure and photo-lineament analysis

The area falls under Lesser Himalayan terrain.
A number of geological discontinuities like faults,
thrusts, folds and joints of varying shape and size

Figure 3. LULC map of the Tehri region.
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can be seen in large numbers in the area. Two
major synclines and North Almora Thrust (NAT)
are the major regional structural features present
in the area (figure 2). Minor to major depres-
sions are seen along the axial zone of synclines in
the area. NAT crosses through eastern and north
eastern sides of the area, crossing the reservoir at
Chham where it forms visible scrap faces on the left
bank adjoining the river course. Moreover, since
the trend of NAT is nearly parallel to the river
course (now reservoir), where it crosses the reser-
voir, the scrap face extends over a long distance.
Linear geological discontinuities can be delineated
from multispectral image and DEM, accordingly
a photo-lineament map of the area was prepared.
Landslides are associated with the proximity to
lineament (Gupta et al. 1999). A distance to lin-
eament map (also called lineament buffer map)
covering 50, 100, 150 and 200 m distances was pre-
pared complying with field evidences of landslides.
More landslides were observed in areas closer to
the photo-lineaments.

3.2.3 DEM derivatives

Primary topographic attributes, such as slope,
aspect, relative relief, and curvature, were derived
from DEM data. Secondary topographic attributes
can be computed from two or more primary
attributes, and are important because it gives
an idea about the role of topography in distri-
bution of water and solar radiation which fur-
ther has great importance in vegetation and mass
movement process (Wilson 2011).

3.2.3.1 Primary topographic attributes

Topographic slope, aspect, relative relief, and cur-
vature were derived from DEM by using Arc GIS
9.3 software. Slope was in the range of 0◦–70◦.
Slope was divided into five classes according to
its inherent influence on the landslide. It has
been widely perceived that area with higher slope
gradient is more prone to landslides, whereas area
having low slope gradient is less prone (Anbalagan
1992; Gupta et al. 1999; Saha et al. 2005;
Kayastha et al. 2013a, b). Five slope categories
namely very low (0◦–8◦), low (8◦–18◦), mod-
erate (18◦–30◦), high (30◦–42◦), and very high
(>42◦) were categorised from the ordered data.
Topographic aspect influences landslide probabil-
ity. Aspect of a slope face determines concentration
of sun rays, which is associated with temper-
ature and related climatic condition. In the
Himalayan region, influence of aspect on the ter-
rain can be seen, with south-facing slopes being
warm, wet and forested, whereas north-facing
slopes are cold, dry and glaciated. Southfacing

slopes of Himalayan terrain are more susceptible
to landslides. In the present study, aspect was
divided into 10 classes. Another important DEM
derivative is relative relief which is the differ-
ence between maximum and minimum elevation
point within a facet or area (Gupta et al. 1999).
In the present study, relative relief was found
to be varying between 0 and 367 m. Following
five classes of relative relief: very low relief (0–
30 m), low relief (30–60 m), moderate relief (60–
100 m), high relief (100–150 m), and very high
relief (>150 m) were considered for the LSZ. Field
observations have suggested that terrains hav-
ing high relative relief are more prone to land-
slide compared to low relative relief. Together
with the other factors, slope curvatures control
the flow of water in and out of slopes and
are, therefore, important in the study of land-
slides (Ayalew and Yamagishi 2005). Profile curva-
ture was considered for this study. Profile curvature is
computed parallel to the direction of the maximum
slope in which, a negative value indicates that the
surface is upwardly convex at that cell; a positive
profile indicates that the surface is upwardly con-
cave at that cell and a value of zero indicates that
the surface is linear (ESRI 2012). Profile curva-
ture affects the acceleration or deceleration of flow
across the surface and it may be associated with
mass movement/erosion processes. Accordingly a
profile curvature map was prepared, showing con-
cave and convex profiles.

3.2.3.2 Secondary topographic attributes

Topographic wetness index (TWI) and stream
power index (SPI) were the two secondary topo-
graphic units considered for the landslide suscep-
tibility study. TWI considers catchment area and
slope gradient (Wilson 2011). It can be calculated
from the following formula:

TWI = ln
CA

tan slp
(1)

where CA stands for catchment area and slp for
slope gradient of the area. TWI is associated with
flow accumulation at the given terrain. It is effec-
tively used to understand the soil moisture con-
dition and other related phenomenon. With the
increase of catchment area and decrease of slope
gradient, soil moisture content and TWI of a ter-
rain increases. Flow accumulation in a terrain is
controlled by TWI. Other parameters such as dis-
tribution of water saturation zones, water table,
evapotranspiration, silt and sand content, and
vegetation are associated with TWI. In a reservoir
rim environment, fluctuation of reservoir water
between MRL and FRL induces water satura-
tion in side slopes, which reduces its stability.
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Determination of TWI is helpful in delineating
saturation zone and water table conditions. TWI
value (on log scale) was found to vary in a range of
5–19, which was further classified into four classes
as referred in the figure 4(a).
SPI also takes into account catchment area and

slope gradient. It shows the erosive power of the
stream. It can be calculated by using the following
formula:

SPI = ln(CA× tan slp) (2)

SPI is directly proportional to catchment area and
slope gradient. Increase in catchment area and
slope gradient increases the erosion potential of a
stream. The Tehri reservoir rim area has very high
stream density, which triggers a number of land-
slides during monsoon season. SPI resulted in the
erosive power of the streams of the area. SPI was
found to range between 1.5 and 15. Higher values
are associated with number of landslides. SPI
values were categorized into five types (figure 4b)
by applying natural break classifier (ESRI 2012).

3.3 Buffer layers

Apart from lineament, reservoir, road and drainage
buffer maps were prepared in view of proximity
of landslides. Reservoir water fluctuation (up to
50 m), saturates side slopes (banks), which causes
landslides. A number of landslides are reported
from the adjoining areas also. Field observations
suggest frequency of landslide along the reservoir
rim region (figure 5), accordingly reservoir multi-
buffer map (100, 200, 300, 400 and 500 m) was pre-
pared. Very high number of landslides was observed
along the roads which were constructed by cutting
the slopes randomly. Cut slopes along the road
network were found to be standing steeply and

sometimes overhanging. Most of the cut slopes
observed were kept untreated. During monsoon,
these cut slopes fail frequently and obstruct trans-
portation. Most of the failed slopes are progres-
sive in nature as observed in the field. Road
multibuffer (50, 100, 200 m) layer was prepared in
view of landslide proximity to roads.

3.4 Drainage

Drainage map was derived from ASTER DEM in
Archydro tool of ESRI GIS package. High drainage
density was observed from DEM analysis with up
to 5th order stream present. Highly undulating
terrain of the area supports a number of small
drainages. Drainage network has compelling rela-
tion with the landslides. In hilly regions, streams
continuously erode its banks and create steep side
slopes, which are highly prone to failures. A
number of such failures were observed during field
investigation. These failures are also progressive
in nature. More landslides were observed closer to
streams. For assessment of landslide susceptibility,
drainage buffer maps (50, 100, 150 and 200 m) were
prepared complying with field evidences.

4. Fuzzy modelling

Fuzzy set theory was introduced by Zadeh (1965).
It facilitates analysis of non-discrete natural pro-
cesses as mathematical formulae (Zimmermann
1996). According to this theory, membership value
of elements (x) has varying degrees of support and
confidence (f(x )) in the range (0, 1) (Ercanoglu
and Gokceoglu 2002). A fuzzy set can be described
by the below formula as:

A = {x, fA (x)} , x ǫ R. (3)

Figure 4. (a) TWI map and (b) SPI map.
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Figure 5. (a, b and c) reflects the landslides due to the reservoir induced side slope saturation, (d) refers to the settlements
situated (at risk) around the rim of reservoir, (e and f) show the consequence of unplanned road construction.

where A is a fuzzy set, x is an element of universal
set R, and f(x) is the fuzzy membership function.
A crisp set range (0, 1) has either membership
value of 1 or non-membership value of 0, whereas
a fuzzy set inherits continuous membership in
the range (0, 1). Landslide susceptibility map-
ping requires determination of fuzzy membership
function of causative factors. Fuzzy membership
function can be determined subjectively or objec-
tively. There is no universal approach available for
the determination of fuzzy membership function.
A suitable and universally acceptable approach
may enhance information accuracy (prediction
capability). For LSZ, several authors have used
a knowledge-based approach for assigning fuzzy

Table 3. Different units considered for different fuzzy operation.

Units Fuzzy

considered Factors operation

Inherent unit LULC, soil, geology Fuzzy γ

Topographic unit Slope, relative relief, Fuzzy OR
curvature, aspect,
TWI, SPI

Proximity unit Drainage buffer, road Fuzzy γ

buffer, reservoir buffer,
lineament buffer

membership function (Chung and Fabbiri 2002;
Champatiray et al. 2007). Depending upon the
data type (ordered or categorical), a membership
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Table 4. Frequency ration and fuzzy membership values for different attributes.

Factors and Percentage of No. of Percentage of Frequency Fuzzy member-

attributes domain landslides landslides ratio ship function

Geology

Blaini Formation 8.69 3 2.58 0.297 0.049

Nagthat Formation 21.8 20 17.241 0.790 0.131

Chandpur Formation 35.47 72 62.058 1.74 0.291
Berinag Formation 13.87 11 9.48 0.683 0.113
Deoban Formation 6.84 3 2.58 0.378 0.063
Mandhali Formation 0.135 0 0 0 0
Rautgara Formation 5.72 7 5.2 0.87 0.133

Soil type
Alluvial/sandy loam 19.685 72 62.068 3.152 0.477
Forest soil/black clay 47.827 6 32.758 1.008 0.152
Sandy loam 32.486 38 5.172 0.108 0.016

Relative relief
Very low 4.747 0 0 0 0
Low 28.426 3 2.586 0.09 0.013
Moderate 49.817 51 43.965 0.882 0.133
High 15.256 56 48.275 3.164 0.48
Very high 1.751 6 5.172 2.953 0.447

Slope category
0◦–8◦ 13.818 0 0 0 0
8◦–18◦ 27.442 2 1.724 0.062 0.009
18◦–30◦ 40.383 30 25.862 0.64 0.097
30◦–42◦ 17.687 82 70.689 3.996 0.605
>42◦ 0.667 2 1.724 2.581 0.391

Lineament buffer
0–50 m 6.082 2 1.724 0.283 0.042
50–100 m 6.532 5 4.31 0.66 0.099
100–150 m 13.435 11 9.482 0.705 0.106
150–200 m 12.652 34 29.31 2.316 0.351
>200 m 61.297 64 55.172 0.9 0.136

Drainage buffer
0–50 m 3.17 10 8.62 2.718 0.412
50–100 m 3.217 8 6.896 2.143 0.324
100–150 m 6.351 12 10.344 1.628 0.246
150–200 m 6.183 30 25.862 4.182 0.633
>200 m 81.077 56 48.275 0.595 0.09

LULC type
Dense forest 5.854 0 0 0 0
Scrub forest 7.476 19 16.379 2.19 0.331
Agricultural land 33.044 67 57.758 1.747 0.264
Settlement/fallow land 24.498 30 24.137 0.985 0.149
Water body 29.126 0 0 0 0

Aspect
North 14.783 14 12.068 0.816 0.123
Northwest 11.47 4 3.448 0.3 0.045
West 9.593 7 6.034 0.629 0.095
Southwest 12.702 14 12.068 0.95 0.143
South 12.874 40 34.482 2.678 0.405
Southeast 12.771 20 17.241 1.349 0.204
East 10.26 10 8.62 0.84 0.127
Northeast 12.667 7 6.034 0.476 0.072
Flat 2.876 0 0 0 0

TWI
5–8 61.907 39 33.62 0.543 0.082
8–12 35.035 55 47.413 1.353 0.205
12–16 2.612 20 17.241 6.6 1
16–19 0.444 2 1.724 3.882 0.588
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Table 4. (Continued.)

Factors and Percentage No. of Percentage of Frequency Fuzzy member-

attributes of domain landslides landslides ratio ship function

SPI

1.5–3 67.143 47 40.517 0.603 0.091

3–6 28.043 59 50.103 1.813 0.274

6–9 4.434 10 8.62 1.944 0.294

9–12 0.215 0 0 0 0

12–15 0.163 0 0 0 0

Profile curvature

Concave 51 56 48.27 0.946 0.1433

Convex 49 60 51.73 1.055 0.159

Road buffer

0–50 m 4.2 32 27.58 6.56 1

50–100 m 5 24 20.68 4.136 0.62

100–200 m 10.8 16 13.79 1.27 0.19

>200 m 80 44 37.93 0.47 0.071

Reservoir buffer

100 3.24 30 20 6.17 0.93

200 3.78 30 20 5.29 0.80

300 4.47 15 10 2.23 0.33

400 5.22 5 3.3 0.63 0.095

500 6.14 10 6.6 1.07 0.162

>500 77.15 60 40 0.51 0.077

function can be assigned quantitatively by using
mathematical formulae. In the present study,
13 categorical layers were considered for fuzzy
integration. Mathematical methods of fuzzy mem-
bership determination are not fit for categorical
data. Landslide factors were compared with land-
slide inventory and the correlation between them
were quantitatively analyzed by landslide fre-
quency ratio method. Landslide frequency ratio
can be calculated by ratio of percent domain of
a factor class and percent landslide in that class
(Lee and Sambath 2006; Poudyal et al. 2010;
Pradhan 2010; Pourghasemi et al. 2013). Nor-
malized value of landslide frequency ratio was
used as fuzzy membership function by Pradhan
et al. (2010). In this study also, frequency ratio
results were normalized in the range (0, 1). Table 4
depicts frequency ratio and fuzzy membership
value of each attribute.
Next step of fuzzy logic technique is fuzzy opera-

tion. Fuzzy OR, fuzzy AND, fuzzy algebraic sum,
fuzzy algebraic product and fuzzy gamma operator
are important fuzzy operators (Chung and Fabbiri
2002). In the case of fuzzy OR and fuzzy AND, only
one of the contributing fuzzy set has an effect on
resultant value. The fuzzy algebraic sum and fuzzy
algebraic product operators make the resultant set
larger than or equal to the maximum value and
smaller than or equal to the minimum value among
all fuzzy sets respectively (Chi et al. 2002). Fuzzy

gamma (γ) operator calculates values which range
between fuzzy algebraic product and fuzzy
algebraic sum. γ value has a range between 0 (no
compensation) and 1 (full compensation). Deter-
mination of optimum γ value is dependent on
the degree of compensation between two extreme
confidence levels.
Use of suitable fuzzy operator for the data inte-

gration is required to achieve optimum result in
landslide prediction studies. Choice of a fuzzy oper-
ator depends upon the types of spatial data to be
integrated (Choi et al. 2000). All the 13 factors
used in the present study were carrying vary-
ing degrees of information. Depending upon the
character of spatial data, data integration can be
carried out by using several different fuzzy opera-
tors separately or a combination of operators
(Moon 1998). In this study, factors were grouped
into following three units: topographic, proximity,
and inherent (table 3). Topographic units which
included slope, aspect, relative relief, profile curva-
ture, SPI, and TWI were subjected to fuzzy OR
operator using the following formula

fOR (xt)=MAX [fslope (x) , faspect(x),

frelative relief (x) , fprofile curvature(x),

fTWI (x) , fSPI (x)] (4)

Proximity unit included all buffer layers and inhe-
rent units included soil, LULC and geology layers.
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Both were subjected to fuzzy γ operation using the
formula given below

fγ(xp)=(FuzzyAlgebraic Sum)γ

×(FuzzyAlgebraic Product)1−γ (5)

fγ(xi)=(FuzzyAlgebraic Sum)γ

×(FuzzyAlgebraic Product)1−γ) (6)

FuzzyAlgebraic Product =
n∏

i=1

Ri (7)

FuzzyAlgebraic Sum = 1−

n∏

i=1

(1−Ri) (8)

where x i, x p and x t denote membership functions
of inherent, proximity and topographic units

Figure 6. LSZ map of Tehri reservoir rim region based on different fuzzy γ operation. (a) γ = 0.70, (b) γ = 0.75, (c) γ =
0.80, (d) γ = 0.85, (e) γ = 0.90 and (f) γ = 0.95.
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respectively and also (x i, x p and x t)ǫ x. Ri denotes
fuzzy membership function of ith map, i = 1,
2, . . . , n. Landslide susceptibility index (LSI) map
was prepared by subjecting results of equations (4,
5 and 6) to fuzzy gamma operator. Following six γ
values: 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95 were cho-
sen to prepare six different LSI maps. Another LSI
map was prepared by subjecting fuzzy OR oper-
ation to the three units considered (table 3). LSI
maps are ordered and continuous raster data in
which each grid/cell depicts degree of landslide sus-
ceptibility quantitatively. Fuzzy operators quantify
LSI in a range of (0, 1). These LSI maps were
categorized into the following five classes: very
low, low, moderate, high, and very high suscep-
tibility by applying Jenk’s Natural Break (ESRI
2012) classification and accordingly LSZ maps were
prepared.
Quantitative prediction accuracy based on

cumulative percentage curve and area under curve
(AUC) technique was carried out for each land-
slide susceptibility map. Resulting LSI maps were
sliced into 25 equal LSI classes and compared with
the landslide data meant for validation. Accord-
ingly, cumulative percentage curves were gener-
ated and the value of area under curves (AUC)
was calculated using simple trapezium method.
AUC was then converted into percent prediction
accuracy.

5. Results and discussion

5.1 Landslide frequency ratio

Landslide frequency ratio was used as fuzzy mem-
bership function. Results of frequency ratio have
been presented in table 4. Analysis of landslide
frequency ratio suggests the importance of land-
slide causative factors and their classes on land-
slides. Primary topographic attributes are found to
be an important landslide causative factor. Among
the slope categories, high landslide frequency ratio
is observed in high slope (30◦–42◦) and very high
slope category (>42◦). High and very high rel-
ative relief categories have resulted in high fre-
quency values. Topographic aspect is also found to
be an important landslide conditioning factor in
the present area. Southern aspect, which receives
excessive sun radiation and high rainfall, is more
prone to landslides. Very high frequency ratio; 0.9,
2.6 and 1.34 are found for southwest, south and
southeast aspect, respectively. Secondary topo-
graphic attributes are also found to be important
causative factors. High frequency ratio is found in
the case of higher ranges (8–12, 12–16, 16–19) of
TWI. In case of SPI, high frequency value is found
in 50, 50–100, 100–150, 150–200 and >200 m. Fre-
quency ratio for the range: 0–50, 50–100 and 100–
150 m are found to be high in case of drainage

Figure 7. LSZ map of Tehri reservoir rim region based on fuzzy OR operation.
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buffer and lineament buffer classes. Lithology of the
area belongs to different formations as mentioned
in the previous section. Each formation is repre-
sented by characteristic rock type, which might
govern landslide incidence. Frequency ratio results
of geology layer has reflected that rocks of Chand-
pur and Nagthat formations are more prone to
landslides as they have resulted in high frequency
ratio values. Blaini, Mandhali, and Deoban for-
mations constitute slate, quartzite, siltstone, and
carbonate rocks, which have resulted in low fre-
quency ratio value. Among the soil categories, allu-
vial/sandy loam has resulted in high frequency
value. Alluvial soil has been observed at lower
elevations along the drainage network.
Forest soil and sandy loam has resulted in

low frequency ratio values. Reservoir buffer area
is mainly formed of different grades of phyllite
rocks. Reservoir multi-buffer has reflected progres-
sive decrease of frequency ratio value from 100 m
buffer to 500 m buffer. Road buffer layers have
also shown substantial decrease in frequency ratio
value from 0–50 m buffer to 200 m buffer. Within

Table 5. LSI range acquired for different fuzzy operations.

Fuzzy operator Factors involved Range

1 Fuzzy γ, γ = 0.7 Inherent unit, proximity 0–0.789

unit, buffer unit

2 Fuzzy γ, γ = 0.75 Same as above 0–0.821

3 Fuzzy γ, γ = 0.8 Same as above 0–0.854

4 Fuzzy γ, γ = 0.85 Same as above 0–0.888

5 Fuzzy γ, γ = 0.9 Same as above 0–0.924

6 Fuzzy γ, γ = 0.95 Same as above 0–0.961

7 Fuzzy OR Same as above 0.14–1

the LULC classes, high landslide frequency value
is observed in scrub forest, agricultural land, and
settlement/fallow land classes.

5.2 Landslide susceptibility mapping

Landslide susceptibility maps were prepared by
classifying LSI map. Each cell of LSI map contains
susceptibility information in ordered form of range
(0, 1). A statistical classification based on Jenk’s
Natural breaks method was used for LSI maps.
Natural breaks classes are based on natural clustering
inherent in the data. Class breaks are identified
that best group similar values and that maxi-
mize the differences between classes (ESRI 2012).
Six different LSI maps were prepared by applying
different gamma operators (figure 6). Fuzzy OR
operation was used to integrate inherent, proxi-
mity, and buffer units (figure 7). Table 5 depicts
the fuzzy operation (including γ values), factors
considered and resultant LSI range. For different
input gamma values different LSI range values
were observed. 0–0.789, 0–0.821, 0–0.854, 0–0.888,
0–0.924, and 0–0.961 range values were observed
for γ value of 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95
respectively whereas 0.14–1 range was observed in
case of fuzzy OR operation. The range of LSI is
strictly an ordered value which represents degree of
susceptibility and disregards its (value’s) numeric
meaning. Natural break classification of LSI maps
had resulted threshold values (table 6) based on
which very low, low, moderate, high, and very high
landslide susceptible zones were acquired. These
threshold values indicate ascending tendency of
ranges as the γ value increases. Fuzzy OR operator
has resulted in all nonzero values. Table 7 shows

Table 6. Threshold values of LSZ classes for LSI computed from different fuzzy operation.

Susceptibility class/

Fuzzy operator Very low Low Moderate High Very high

Fuzzy γ, γ = 0.70 0–0.068 0.068–0.186 0.186–0.287 0.287–0.424 0.424–0.789

γ = 0.75 0–0.084 0.084–0.218 0.218–0.322 0.322–0.457 0.457–0.821

γ = 0.80 0 0–0.271 0.271–0.395 0.395–0.542 0.542–0.854

γ = 0.85 0 0–0.313 0.313–0.428 0.428–0.571 0.571–0.888

γ = 0.90 0 0–0.376 0.376–0.500 0.500–0.641 0.641–0.924

γ = 0.95 0 0–0.437 0.437–0.565 0.565–0.712 0.712–0.961

Fuzzy OR 0.14–0.21 0.21–0.33 0.33–0.46 0.46–0.62 0.62–1

Table 7. Area frequency of LSZ classes resulted from different fuzzy operation.

Fuzzy operator/LSZ Fuzzy OR γ = 0.70 γ = 0.75 γ = 0.80 γ = 0.85 γ = 0.90 γ = 0.95

Very low 179.51 173 172.87 172.82 172.82 172.82 172.82

Low 141.36 154.63 148.349 87.20 137.19 130.68 104.50

Moderate 96.48 129.77 122.035 160.55 116.87 116.22 118.34

High 112.30 69.85 77.723 79.58 89.99 93.77 109.33

Very high 19.59 22 28.28 49.08 32.37 35.75 44.25
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area under susceptible classes observed for various
fuzzy operations.

6. Validation of landslide susceptibility
mapping

Validation was performed to obtain the accuracy of
landslide susceptibility zones. Accuracy of LSZ is
the capability of the map to delineate landslide free
and landslide prone areas. Comparison of different
models and model parameter variables can also
be done from validation (Begueria 2006). Accu-
racy and objectivity depend on the model accu-
racy, input data, experience of earth scientist, and
size of the study area (Soeters and Van Westen
1996). In the present study, cumulative percent-
age curve/success rate curve technique was used
to validate susceptible zones. Cumulative percent-
age curves were achieved by plotting cumulative
percent of LSI in descending order against cumu-
lative percent of landslide on X and Y axis respec-
tively. Example of the curve is given in figure 8.
Figure 8 indicates that 58% of the landslide falls

Figure 8. Cumulative percentage curve of LSI computed
from fuzzy OR operator.

Table 8. AUC values with respect to gamma (γ)
values.

AUC
Gamma (γ) values % Accuracy

0.95 0.834 83.45
0.90 0.821 82.1%
0.85 0.818 81.8%
0.80 0.80 80%
0.75 0.796 79.6%
0.70 0.778 77.8%
Fuzzy OR 0.74 74%

Figure 9. Cumulative percentage curves referring to com-
parison between LSI acquired by various gamma values.

under 10–90% of high susceptible classes whereas
12% landslide falls under 90–80% susceptible class,
and accordingly other values follow. In this way,
percentage cumulative curve clearly states the
accuracy of the LSZ. Further, AUC value of accu-
racy curves were calculated by simple trapezium
method. AUC value of 0.834, 0.821, 0.818, 0.80,
0.796 and 0.778 were achieved for γ value of 0.95,
0.9, 0.85, 0.80, 0.75, and 0.70, respectively, whereas
fuzzy OR operator resulted in AUC value of 0.74
(table 8). Henceforth, it can be said in percent-
age terms that 83.4% accuracy has been achieved
for γ value of 0.95 and so on. Higher γ values
have resulted in better accuracy, whereas fuzzy OR
operator has given least accuracy. Figure 9 refers
to comparison between results of different γ values
used in this study.

7. Conclusions

Fuzzy logic relations and fuzzy operation based
landslide susceptibility zonation have achieved
satisfying results. Fuzzy membership values were
determined by frequency ratio approach. Fre-
quency ratio of each factor’s attributes was deter-
mined. High frequency ratio values were observed
for primary topographic attributes. Slope and
relative relief were found to be major landslide
causative factors in Tehri reservoir rim area.
Within secondary topographic attributes, TWI
shows high frequency ratio results. Frequency ratio
results of SPI show substantial correlation with
landslide frequency in the present area. This study
shows that secondary topographic units play an
important role in landslide occurrences in the study
area. To perform fuzzy operation for 13 factors,
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which contain varying degrees of spatial informa-
tion, factors were grouped into inherent, topo-
graphic and proximity units. Fuzzy γ and fuzzy OR
operators were used to separately integrate factors
present in these units as mentioned in section 3.
Later these integrated units were subjected to
fuzzy γ and fuzzy OR operation separately. Com-
bined approach of fuzzy operation has enhanced
the prediction accuracy. Fuzzy gamma operators
were successfully applied for the generation of LSI
maps and consequent LSZ. The model suggests that
higher gamma values (0.95, 0.90) yield better pre-
diction of landslide susceptibility than low gamma
values (0.8. 0.75 and 0.70), whereas fuzzy OR had
given least accuracy. Results show increasing ten-
dency of susceptibility prediction corresponding
to increasing gamma values. Model accuracy was
performed using cumulative percentage curves.
Resulting smooth curves suggest good prediction
results, whereas AUC values of curves also indi-
cate better prediction. Gamma value of 0.95 was
chosen for the final landslide susceptibility map
generation. Hence it can be concluded that land-
slide causative factor’s integration using fuzzy logic
has yielded good results for Tehri reservoir rim
region. Frequency ratio method for determination
of fuzzy membership value has reduced subjectivity
in the model. It is also concluded that cumulative
percentage curves method has a strong validation
capability for a continuous susceptibility model.
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