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Abstract. Case studies of landslide tsunamis require integra-

tion of marine geology data and interpretations into numer-

ical simulations of tsunami attack. Many landslide tsunami

generation and propagation models have been proposed in re-

cent time, further motivated by the 1998 Papua New Guinea

event. However, few of these models have proven capable

of integrating the best available marine geology data and

interpretations into successful case studies that reproduce

all available tsunami observations and records. We show

that nonlinear and dispersive tsunami propagation models

may be necessary for many landslide tsunami case studies.

GEOWAVE is a comprehensive tsunami simulation model

formed in part by combining the Tsunami Open and Progres-

sive Initial Conditions System (TOPICS) with the fully non-

linear Boussinesq water wave model FUNWAVE. TOPICS

uses curve fits of numerical results from a fully nonlinear po-

tential flow model to provide approximate landslide tsunami

sources for tsunami propagation models, based on marine ge-

ology data and interpretations. In this work, we validate GE-

OWAVE with successful case studies of the 1946 Unimak,

Alaska, the 1994 Skagway, Alaska, and the 1998 Papua New

Guinea events. GEOWAVE simulates accurate runup and in-

undation at the same time, with no additional user interfer-

ence or effort, using a slot technique. Wave breaking, if it

occurs during shoaling or runup, is also accounted for with

a dissipative breaking model acting on the wave front. The

success of our case studies depends on the combination of

accurate tsunami sources and an advanced tsunami propaga-

tion and inundation model.

1 Introduction

Submarine Mass Failures (SMF), or underwater landslides,

are related terms that sometimes encompass submerged rock

slides, reef failures, and many forms of sediment failure,
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inertial or not. SMF classification can be made on the ba-

sis of landslide morphology, material, or kinematics (Hamp-

ton et al., 1996; Turner and Schuster, 1996; Keating and

McGuire, 2000). During an earthquake, water waves can

be generated by both coseismic displacement and multiple

SMFs during a single geological event. Likewise, we at-

tribute all water waves, regardless of the possible sources,

to a single tsunami event (Watts, 2001). The respective water

wave features can be quite different for coseismic displace-

ment and SMF tsunami sources. Coseismic displacement, or

vertical seafloor deformation, often generates tsunamis with

longer wavelengths and longer periods than those generated

by SMFs, because of what is often a larger source area (Ham-

mack, 1973; Watts, 1998, 2000). Specifically, the wave-

length at the source is the horizontal extent of coseismic dis-

placement on account of the presumably rapid bottom mo-

tion. Coseismic displacement generates tsunami amplitudes

that correlate with earthquake magnitude (Hammack, 1973;

Geist, 1998); SMFs produce tsunamis with amplitudes lim-

ited only by the vertical extent of center of mass motion or

the water depth (Murty, 1979; Watts, 1998). SMF tsunamis

therefore pose one of the greatest tsunami hazards to coastal

population and infrastructure. Watts (2003), for instance,

shows that roughly 30% of Pacific Basin tsunamis involve

SMFs that have tsunami amplitudes higher than can be ex-

plained by an earthquake tsunami alone.

In this work, we demonstrate a hydrodynamic modeling

strategy for SMF tsunamis (see Tappin et al., 1999, 2001;

Watts et al., 2002) and we apply the strategy to historical

case studies. Our modeling strategy is based on the tradi-

tional view of tsunamis involving three steps: generation,

propagation, and inundation. In the case studies, little is usu-

ally known about the exact nature of the SMF that caused

the tsunami. Hence, for simplicity, we only consider two

idealized forms of SMFs as possible tsunami sources: un-

derwater slides and underwater slumps. Underwater slides

refer to thin, translational, failures that travel long distances,

while underwater slumps refer to thick, rotational, failures,
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Fig. 1. Schematic diagram of model problems, for underwater

slides and slumps, with 10 fold vertical exaggeration of the free

surface amplitude.

which occur with minimal down-slope displacement (Prior

and Coleman, 1979; Edgers and Karlsrud, 1982; Schwab et

al., 1993). We are well aware that a whole spectrum of SMF

mechanisms, combining slides and slumps, can occur in var-

ious situations, and specific features of a particular SMF can

only be inferred from the detailed knowledge of local ma-

rine geology, sediment characteristics, and triggering mecha-

nism. We will show, however, that our admittedly crude ide-

alizations of SMF shape and motion, when combined with

realistic field data from marine geology surveys and accu-

rate hydrodynamic modeling, can simulate observed tsunami

features and coastal runup of historical case studies with a

considerable degree of accuracy, perhaps even improving on

results from other models.

Our proposed modeling strategy combines three different

models. (1) Wavemaker model: a model for the center of

mass motion of SMFs (slides or slumps) and possible defor-

mation rate around this center, as a function of material, geo-

metrical, and hydrodynamic parameters. (2) Tsunami gener-

ation model: a model for tsunami generation due to the speci-

fied SMF shape and motion, based on results of both two- and

three-dimensional (3-D) fully nonlinear potential flow mod-

els. (3) Tsunami propagation and inundation model: a model

for tsunami propagation and inundation, based on extended

fully nonlinear Boussinesq equations. The combined model,

referred to as GEOWAVE, is applied to historical case stud-

ies, and results are compared to tsunami observations and

records. A new name such as GEOWAVE is necessary to rec-

ognize that our modeling strategy involves creating an over-

arching superstructure that is more than just a combination

of three existing models.

SMF tsunami events often require considerable marine ge-

ology data to produce realistic case studies. For example, un-

derwater slide motion is characterized by at least a specific

density γ , a landslide length along the incline b, a thickness

T , a width w, and an incline angle θ . Most of these SMF

quantities can be estimated from bathymetry data acquired

during a marine survey of suspected tsunami sources. In ad-

dition, underwater slumps require a radius of curvature R and

a shear strength Su to describe motion, because the highly

restrained motion of a slump is dominated by basal friction,

contrary to many slides with deposits situated far from the

slide scar. Field measurements of these two quantities re-

quire more sophisticated seismic reflection and core sam-

pling tools. In either case, it should be pointed out again that

marine geology surveys conducted by experienced field ge-

ologists are essential for understanding, and eventually sim-

ulating, tsunamis generated by SMF (e.g. Tappin et al., 1999,

2001, 2002).

In the following, we briefly present features of our three

model components and we then apply the combined model

to three historical case studies.

2 Wavemaker model

A SMF is a wavemaker whose shape and motion must be pre-

scribed. Following Grilli and Watts (1999), we idealize SMF

geometry as a mound with elliptical cross-section translating

along a straight incline with angle θ from horizontal (Fig. 1).

The mound has a maximum thickness T in the middle, a to-

tal length b along the down-slope axis, a total width w along

the cross-slope axis, and an initial vertical submergence d

at the middle of the landslide. Following Grilli and Watts

(2001) and Grilli et al. (2002), we further assume an ellipti-

cal planform, b by w, for the SMF. The result is a realistic

SMF shape that can be described by relatively few parame-

ters. In particular, we can reproduce the long and thin na-

ture of most SMF shapes, and thereby attribute the effect of

realistic SMF length and thickness on tsunami generation.

We clearly assume that the SMF moves as a single coherent

event, although our analyses could equally well be applied to

separate pieces of a retrogressive landslide.

A deforming body, such as a SMF, possesses a center of

mass motion that defines the starting point in any motion

analysis. Watts (1997) showed in laboratory experiments that

the center of mass of a deforming material landslide moves

in a manner almost identical to that of a solid block. Watts

and Grilli (2003) further showed that SMF deformation is

driven by SMF center of mass motion. Earlier computations

(not detailed here) performed with our two-dimensional (2-

D) tsunami generation model (Fig. 2) showed that reasonably

rapid SMF deformation about the center of mass appears to

be a second order phenomenon in terms of tsunami gener-

ation. Hence, for the cases studied here, we assume that

tsunami effects attributed to SMF deformation are negligible

during the tsunami generation phase, i.e. b(t) = bo and so on.

Using the wavemaker formalism of Watts (1998), we derive

center of mass motions that are specific to mass failure type

(i.e. slide or slump) and geometry. For many SMF tsunami

case studies, these simple center of mass motions will pro-

vide a degree of sophistication that is commensurate with the

available marine geology data and, as we will see, accurate

enough to reproduce tsunami observations and records. For

example, these center of mass motions reproduce the accel-

eration from rest that occurs for actual SMFs, and almost all

tsunami generation occurs during this early acceleration mo-

tion.
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Fig. 2. Nondimensional characteristic tsunami amplitude η′ =
η/(so sin θ) for: (——-) solid; and (- - - - -) deforming slide, dis-

played as a function of nondimensional time t ′ = t
√

g/b.

We model an underwater slide as a rigid body moving

along a straight incline (Fig. 1) with center of mass motion

s(t) parallel to the incline and subject to external forces from

added mass, gravity, and dissipation. If we assume a specific

density γ ∼= 1.85, a negligible Coulomb friction coefficient

Cn
∼= 0, an added mass coefficient Cm

∼= 1, and a drag coef-

ficient Cd
∼= 1, then we can describe underwater slide motion

with

s(t) = so ln

[

cosh

(

t

to

)]

(1a)

ao
∼= 0.30 g sin θ (1b)

ut
∼= 1.16

√

b g sin θ (1c)

so ≡
u2

t

ao

∼= 4.48 b (1d)

to ≡
ut

ao

∼= 3.87

√

b

g sin θ
, (1e)

where ao is the initial acceleration, ut is the theoretical ter-

minal velocity, so denotes a characteristic distance of motion,

and to denotes a characteristic time of motion (see Watts,

1998, 2000; Grilli and Watts, 1999).

The dynamical coefficients are constrained by experimen-

tal work (e.g. Watts, 1997; Grilli and Watts, 2001; Grilli et

al., 2002; Enet et al., 2003) and reasonable values do not

have a strong impact on center of mass motion, nor by ex-

tension on tsunami generation. The values proposed here are

well within the accepted range of well known and long ago

published values. We note that the drag coefficient Cd is

based on landslide thickness (or cross-sectional area) rather

than on landslide length (or surficial area). Watts and Grilli

(2003) showed that many underwater slides can be expected

to experience negligible Coulomb friction because gravita-

tional forcing scales with SMF volume whereas basal fric-

tion scales with SMF area, drastically reducing the effect of

Coulomb friction on the motion of tsunamigenic slides. Re-

gardless, the effect of Coulomb friction can be folded into an

effective incline angle θ without changing Eq. (1).

We model an underwater slump as a rigid body moving

a small angle 1φ along a circular failure plane, subject to

external moments from added mass, buoyancy, gravity, and

shear stress summed over the failure plane. Multiplying this

solution by the radius of curvature R from the slump center

of rotation C to the center of mass (Fig. 1) gives the slump

tangential motion along the failure arc. Using similar coeffi-

cient values as for slides, we find

s(t) = so

[

1 − cos

(

t

to

)]

(2a)

ao
∼= 0.15 g1φ (2b)

umax
∼= 0.271φ

√

R g (2c)

so ≡
umax

2

ao

∼= 0.50 R1φ (2d)

to ≡
umax

ao

∼= 1.84

√

R

g
(2e)

where 1φ = φf − φi is the difference in slump angular po-

sition. We note that Eq. (2a) produces a maximum velocity

during the middle of slump motion, for t = πto/2, before

returning to rest at the end of motion, t = πto. This occurs

because the rotational slump works against gravity. More-

over, the basal shear strength Su along the failure plane that

controls slump motion is implicitly contained in the angular

difference 1φ swept by the slump.

Our SMF motion assumptions need only be valid for short

times, defined here as t < to, which can be verified with

Eqs. (1) and (2) to correspond to a center of mass displace-

ment s < 0.5 so along the incline. Among other things,

we feel free to assume a planar incline because the details

of nearby bathymetry may not enter into tsunami generation

at such short times. Likewise, our force balances are suffi-

ciently detailed to produce a reasonable initial acceleration

for the SMF center of mass, which is our primary objective.

More details about the derivation of Eqs. (1) and (2) can be

found in Watts (1998) and Watts et al. (2002), respectively.

3 Tsunami generation model

The first step in the traditional view of tsunamis is gen-

eration, for which we have several dedicated and accurate

models. We calculate tsunami generation due to underwa-

ter slides moving according to Eq. (1) and due to under-

water slumps moving according to Eq. (2) using the two-

dimensional model of Grilli and Watts (1999) or the three-

dimensional model of Grilli et al. (2002). These tsunami
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generation models are based on fully nonlinear potential flow

equations solved with a Boundary Element Method (BEM),

and have been independently validated both numerically and

experimentally. SMF tsunami simulations can be performed

with either tsunami generation model for a variety of SMF

geometry and bottom slopes, i.e. the SMF parameters b, d ,

T , w, θ .... However, such simulations are computationally

intensive, particularly in three dimensions, and, in those case

studies that lack detailed marine geology data, may have to

be repeated for a number of combinations of the SMF pa-

rameters. Another approach, followed here, is to compute

once and for all tsunami features, such as wavelength and

amplitude, as a function of a range of parameter values, and

to express the features in the form of empirical relationships.

These relationships can then be used for a rapid prediction

of tsunami sources in lieu of running the BEM models. This

is the basis of the predictive tool referred to as the Tsunami

Open and Progressive Initial Conditions System (TOPICS).

To begin this process, we select the minimum surface de-

pression above the middle of the initial slide or slump posi-

tion as a characteristic SMF tsunami amplitude. We choose

the minimum surface depression because it characterizes

the depression wave situated above the SMF, which is per-

haps the clearest and simplest measure of tsunami generation

(Watts, 1997). Based on 2-D computations with the Grilli

and Watts (1999) model, we find, for translational slides (and

γ ∼= 1.85)

λo ≡ to
√

g d ∼= 3.87

√

b d

sin θ
(3a)

η2d
∼= 0.2139 T

(

1 − 0.7458 sin θ + 0.1704 sin2 θ
)

(

b sin θ

d

)1.25

(3b)

for characteristic wavelength and 2-D amplitude, respec-

tively. Similarly, we find the equations predicting tsunami

wavelength and 2-D amplitude for rotational slumps as

λo ≡ to
√

g d ∼= 1.84
√

R d (4a)

η2d
∼= 0.0654T 1θ1.39 (sin θ)0.22

(

b

d

)1.25 (

R

b

)0.37

(4b)

also with γ ∼= 1.85. In contrast with earthquake tsunamis,

the wavelength depends on the duration of SMF motion, be-

cause there is usually ample time for water waves to propa-

gate entirely out of the generation region while tsunami gen-

eration occurs (Watts, 1998).

We note that there have been other analytical estimates of

SMF tsunami amplitude. One of two semi-empirical equa-

tions proposed by Striem and Miloh (1976) is reproduced by

Murty (1979). The theoretical equation of Pelinovsky and

Poplavsky (1996) was shown to produce reasonable tsunami

amplitude predictions by Watts et al. (2000). These equations

were all developed in two dimensions for landslides acceler-

ating from rest. No tsunami wavelength estimate was pro-

vided. In contrast, the works of Grilli and Watts (1999) and

Goldfinger et al. (2000) provide predictive equations that are

precursors to Eqs. (3) and (4) presented here. Ward (2001) as

well as Tinti et al. (2001) develop tsunami generation equa-

tions for constant depth channels.

The ability to predict tsunami features such as wavelength

and amplitude with Eqs. (3) or (4) enables one to construct

SMF tsunami sources in a given situation, as a function of the

SMF shape and motion parameters. This process essentially

reconstructs the original BEM results from which Eqs. (3)

and (4) were derived and so retains much of the original ac-

curacy. To produce a tsunami source, we need to construct

a realistic free surface elevation as an initial condition for

the tsunami propagation model. The 3-D model of Grilli et

al. (2002) enables us to relate the 2-D tsunami amplitudes

predicted by Eqs. (3b) and (4b) to a 3-D tsunami amplitude

ηo found by the BEM model. Furthermore, the 3-D lateral

spreading of waves as a function of landslide width w enables

the reconstruction of tsunami sources simply by using analyt-

ical functions of the horizontal coordinates. When the pieces

of this puzzle are finally assembled, we find that we can con-

struct 3-D landslide tsunami sources without any need for

running either of the BEM models. When looking at Eqs. (3)

and (4), we see that any explicit dependence of tsunami gen-

eration on SMF motion has apparently been lost. In reality,

the SMF motion that produces the tsunami is implicit through

use of the same SMF parameters as found in Eqs. (1) and (2)

and as used for both 2-D and 3-D computations. Validation

of this procedure can be achieved by running the 3-D model

for the specific case under consideration and comparing the

result with our analytical prediction.

The duration of landslide acceleration to is also the dura-

tion of tsunami generation (Watts, 1998). During tsunami

generation, almost all of the far-field wave energy is invested

in potential energy above the SMF (Watts, 2000). The direct

implication is that there is very little propagating wave en-

ergy invested in kinetic energy above the SMF. So, while the

water column may be perturbed by SMF motion, the result-

ing water velocities remain insignificant for the purpose of

tsunami generation. It is only during wave propagation in the

far-field that an equi-partition of wave energy is approached,

as about half of the potential energy is shunted into kinetic

energy (Watts, 2000). These basic facts allow us to neglect

water velocity at t = to and focus solely on the free surface

shape, as reconstructed from the characteristic wavelength

and amplitude given by Eqs. (3) or (4). Thus, TOPICS pro-

vides an ad hoc analytical free surface shape, from curve fits

made at time t = to as if the free surface results from the

3-D model of Grilli et al. (2002) were being transferred di-

rectly to a tsunami propagation model at that instant of time.

The proper test of TOPICS is its ability to perform successful

case studies, as we endeavor to demonstrate below.

TOPICS is currently able to produce tsunami sources for

earthquakes, underwater slides, underwater slumps, debris

flows, and pyroclastic flows. We consider the first three

tsunami sources in this work. In order to compare SMF re-

sults to vertical coseismic displacement results, TOPICS de-

fines earthquake tsunami sources from the half-plane solu-
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tion of an elastic dislocation problem (Okada, 1985). A pla-

nar fault of length L and width W is discretized into many

small trapezoids and the point source solution of Okada

(1985) is used to sum the contributions made by each trape-

zoid to vertical coseismic displacement, based on the actual

depth of the trapezoid. The shear modulus µ can be spec-

ified based on the depth of the earthquake centroid as well

as other seismic and geological descriptors. TOPICS out-

puts a characteristic wavelength λo that is the larger of the

fault dimensions L or W , and a characteristic tsunami am-

plitude ηo that is the minimum depression found from the

coseismic displacement. The seismic moment Mo is propor-

tional to but slightly less than µLW1 because a Gaussian

slip distribution is assumed about the centroid, where there is

a maximum slip 1. TOPICS currently allows for the super-

position of up to nine fault planes, which can be assembled

into complex fault structures or slip distributions. More in-

formation on TOPICS and the software licensing agreement

can be found at www.tsunamicommunity.org.

4 Tsunami propagation and inundation model

The second and third steps in the traditional view of tsunamis

are propagation and inundation, which can be accurately sim-

ulated with a single model. The greatest advantage in using

a distinct tsunami propagation and inundation model is that

it can be applied accurately over a much larger surface area

than an accurate 3-D tsunami generation model. We simu-

late tsunami propagation and inundation using the long wave

propagation model FUNWAVE (Chen et al., 2000; Kennedy

et al., 2000) based on fully nonlinear Boussinesq equations,

with an extended dispersion equation (Wei et al., 1995; Wei

and Kirby, 1995), in the sense that it matches the linear dis-

persion relationship for deep water waves. FUNWAVE in-

cludes a breaker model and can simulate inundation of dry

land. We had to make significant modifications of FUN-

WAVE in order to simulate an arbitrary tsunami initial con-

dition over an arbitrary bathymetry.

The primary benefit of a Boussinesq wave propagation

model over traditional nonlinear shallow water wave mod-

els is that horizontal velocities are no longer constrained to

have a constant value over depth. During propagation and in-

undation, nonuniform horizontal velocity profiles over depth

are most often encountered (i) when water waves propagate

in deep water, (ii) when water waves runup onto a shoreline

of intermediate slope, or (iii) when water waves become sig-

nificantly nonlinear. A Boussinesq model enables accurate

vertical tsunami runup and horizontal tsunami inundation in

one simulation without the need for any user intervention.

FUNWAVE uses the slot method to treat runup. In addition,

while keeping all the nonlinear terms within the order of ap-

proximation, the dispersive properties of the fully nonlinear

Boussinesq model allow for a more accurate representation

of dispersive wave behavior occurring (a) during propaga-

tion from deep water, (b) during propagation of an undular

bore (Mei, 1983), and (c) during propagation of edge waves

(Liu et al., 1998). Many of these wave phenomena can be

seen on animations of our work that can be downloaded from

www.tsunamicommunity.org.

The surface elevation of the SMF tsunami source pre-

dicted by TOPICS is introduced as an initial condition into

FUNWAVE, at the characteristic time to after the landslide

starts moving inertially. The time at which the propagation

model begins is thus fixed by SMF dynamics that are spe-

cific to each event. We demonstrate our simulation tech-

nique with three case studies that are by necessity quite brief.

Our use of GEOWAVE simulations distinguishes this work

from purely analytical estimates made for similar case stud-

ies. GEWOAVE has been designed to output numerical wave

gauges, Lagrangian markers, free surface snapshots, wave

amplitudes, wave timing, water velocities, water fluxes, and

more in an effort to model many aspects of tsunami attack.

We will not endeavor to do justice to these many outputs

here, in part because we wish to compare our simulation

results with known observations and records. Due to the

brevity of each case study presented here, further details re-

garding our simulation results can be found in the literature

cited in each section.

5 The 1946 Unimak, Alaska tsunami

The 1 April 1946 Alaskan tsunami remains an enigma for

several important reasons. First, an apparent underwater

landslide scar at least 40 km long exists in the suspected re-

gion of tsunami generation, although the GLORIA data on

which this observation is based leaves a lot to be desired

when compared to modern sonar techniques. Second, the

earthquake source mechanism has undergone many revisions

over time that have tended to increase the main shock mag-

nitude from around M ≈ 7 to M ≈ 8 (Johnson and Satake,

1997). These revisions may have been made to help explain

the devastating transoceanic tsunami that resulted from this

event, by first assuming an earthquake source for the tsunami

and then by amplifying the seismic energy to explain tsunami

observations. Third, Mader and Curtis (1991) needed verti-

cal coseismic displacement of 20 m to explain the large runup

observed in Hawaii. This magnitude of displacement is diffi-

cult to reconcile with current marine geology interpretations

and typical seismological parameters. Fourth, the earthquake

magnitude versus maximum runup produces the largest dis-

parity of any tsunami during the 20th century, larger than

even the 1998 Papua New Guinea catastrophe, which sug-

gests a SMF tsunami source. Fifth, despite the large local

and transoceanic tsunami damage, there was a very rapid

drop in tsunami surface elevation away from a Great Circle

axis connecting Unimak Island to the Marquesas Islands and

onward to Antarctica. A large earthquake can produce far-

field wave energy directivity as if emanating from a very long

line source, but only an underwater landslide can produce

both near-field and far-field wave energy directivity along its

axis of failure (Iwasaki, 1997; Watts, 2001). For large earth-

quakes, the hypothetical line source perceived in the far-field
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Table 1. Unimak, Alaska tsunami source parameters: The inputs for

TOPICS are, in descending order, the specific density γ , the initial

landslide length b, the maximum initial landslide thickness T , the

maximum landslide width w, the mean initial landslide depth d , and

the mean initial incline angle θ . The outputs from TOPICS are the

slide initial acceleration ao, the theoretical slide terminal velocity

ut , the characteristic distance of slide motion so, the characteristic

time of slide motion to, the characteristic wavelength λo, and the

characteristic tsunami amplitude ηo from the depression wave at

time t = to

Quantities Complete slide

γ 1.85

b (km) 40

T (m) 300

w (km) 20

d (m) 1700

θ (degrees) 4.3◦

ao (m/s2) 0.22

ut (m/s) 199

so (km) 179

to (s) 903

λo (km) 117

ηo (m) −64

would usually be oriented parallel to the subducting trench

axis; whereas, for a typical underwater landslide, the water

waves would be generated along a line parallel to the axis of

failure and usually oriented perpendicular to the subducting

trench axis. The landslide width will affect tsunami ampli-

tude in the far-field, but not the geometry of tsunami genera-

tion described here.

Using the combined model GEOWAVE, we can test the

hypothesis that the observed underwater landslide scar can

account for the tsunami period of 15 min, which could also

be indicative of a massive earthquake in the 7 km deep wa-

ters of the Aleutian Trench. The inputs selected for the SMF

tsunami source and basic outputs from TOPICS are given

in Table 1. SMF parameters are based on GLORIA sides-

can images, properly located ship track data, and ETOPO2

bathymetry. We use Eq. (1e) to take the tsunami period

to ≈ 15 min and infer a slide length b ≈ 40 km. We find that

the predicted slide length agrees with the observed length

of the underwater landslide scar. Because the earthquake

was in fact relatively weak, probably too weak to explain ei-

ther near-field or far-field observations, the tsunami appears

to have been generated exclusively by a SMF. We specu-

late that the underwater slide occurred along a weak layer in

glacial outwash. The apparent slide thickness T ≈ 300 m is

consistent with typical thickness to length ratios of around

T/b ∼= 0.01 found for most underwater slides (Prior and

Coleman, 1979). The underwater slide appears to have had

sufficient space along the continental slope to approach ter-

minal velocity, which Eq. (1c) indicates is large on account

of the SMF length, a scaling between velocity and length that

Fig. 3. Maximum tsunami elevation in meters above sea level at

any time during a numerical simulation of the 1946 Unimak, Alaska

event with an underwater slide tsunami source. North is oriented up.

Contours are at 1000 m intervals. Simulated on a 300 m grid.

has been verified by Watts and Grilli (2003). The large pre-

dicted characteristic tsunami wavelength λo ≈ 117 km in Ta-

ble 1 shows that the SMF tsunami would propagate as a shal-

low water wave almost anywhere within the Pacific Basin.

The characteristic tsunami amplitude ηo ≈ −64 m is the min-

imum surface depression of the tsunami source at time t = to
as given by TOPICS.

Figure 3 depicts the GEOWAVE simulation results. The

SMF has a headwall located near longitude −164.2◦ and

latitude 53.7◦, at the current shelf break. The character-

istic tsunami wavelength on the shelf, with typical depth

h ≈ 100 m, is λo

√
h/d ≈ 28 km, which gives rise to an

Ursell parameter U ≈ 25 000 that indicates highly nonlinear,

shallow water waves. We therefore know that Scotch Cap

lighthouse was attacked by a very steep wave traversing the

continental shelf, quite possibly in the form of a bore. This is

supported by the fact that a wave in excess of 40 m in surface

elevation is propagating in water of depth less than 100 m in

depth over considerable distances, greater than 70 km. The

wave breaking model in FUNWAVE is therefore a necessary

feature of our simulation, a fact that is confirmed by the dark

colored fingers in Fig. 3, left behind by breaking waves prop-
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Fig. 4. Maximum tsunami elevation in meters above sea level at any

time during a numerical simulation of the 1994 Skagway, Alaska

event with Slide C in Table 2 as the tsunami source. North is ori-

ented up. The grid is in meters with an arbitrary grid origin. Con-

tours are at 20 m intervals. Simulated on a 10 m grid.

agating towards Unimak Bight, along the southern edge of

Unimak Island. We simulate runup of 36 m at Scotch Cap

lighthouse, which is almost precisely the recorded maximum

runup at that location (Lander, 1996). Likewise, the maxi-

mum surface elevations off Sanak Island are consistent with

local observations. The maximum runup elevation is 108 m

above sea level along Unimak Bight. More important, a

beam of tsunami energy with maximum elevation of about

20 m is projected south towards Hawaii and the Marquesas

Islands (Fig. 3). This far-field beam could be predicted on

the basis of the landslide velocity in Table 1, which almost

matches the long wave celerity above the 7300 m deep Aleu-

tian trench. These results confirm that large underwater land-

slides can generate deadly transoceanic tsunamis. While the

comparison of our results with all known observations and

records is still under way (see Fryer et al., 2003), every com-

parison made so far has been successful.

6 The 1994 Skagway, Alaska tsunami

On 3 November 1994, a partially subaerial landslide in Sk-

agway, Alaska, caused a tsunami that destroyed the southern

300 m of the railway dock and claimed the life of one con-

struction worker (Kulikov et al., 1996; Campbell and Not-

tingham, 1999). No seismic activity was recorded but, about

30 min following low tide, loose alluvial sediment slid down

the fjord at various locations within Taya Inlet, a fjord termi-

nus within the Alaskan Panhandle (Campbell, 1995; Corn-

forth and Lowell, 1996). Various estimates of maximum sur-

face elevations caused by the tsunami include 9 m at the rail-

way dock, 3 m at the ore dock, and 11 m at the ferry dock

(Watts and Petroff, 1995; Lander, 1996). Figure 4 indicates

the locations of these docks within Skagway Harbor. The

Table 2. Skagway, Alaska tsunami source parameters: The inputs

for TOPICS are, in descending order, the specific density γ , the ini-

tial landslide length b, the maximum initial landslide thickness T ,

the maximum landslide width w, the mean initial landslide depth d ,

and the mean initial incline angle θ . The outputs from TOPICS are

the slide initial acceleration ao, the theoretical slide terminal veloc-

ity ut , the characteristic distance of slide motion so, the character-

istic time of slide motion to, the characteristic wavelength λo, and

the characteristic tsunami amplitude ηo from the depression wave

at time t = to

Quantities Slide A Slide B Slide C

γ 1.85 1.85 1.85

b (m) 600 215 180

T (m) 15 15 20

w (m) 340 390 330

d (m) 150 95 26

θ (degrees) 9◦ 22◦ 26◦

ao (m/s2) 0.46 1.10 1.29

ut (m/s) 35 33 32

so (m) 2690 964 807

to (s) 77 30 25

λo (m) 2936 904 400

ηo (m) −0.54 −2.06 −17.3

tsunami source is visible as the dark region offshore at the

approximate location (2600, 2200). The longshore middle

of the partly subaerial landslide is indicated by the text on

Fig. 4.

Factors that may have contributed to failure include an

exceptionally low tide, recent rip-rap overburden, pile re-

moval operations, artesian water flow through the adjacent

mountain, and recent sedimentation from the Skagway river.

The Skagway river delta is comprised of fjord walls cov-

ered with glacial outwash either from direct emplacement or

from sedimentation. This silty sediment is often sensitive to

shear waves and can experience an almost total loss of shear

strength when disturbed (Bardet, 1997). Therefore, we can

expect nearly frictionless underwater slides that are able to

trigger further mass failure by undercutting slopes or by ret-

rogressive failure (Bjerrum, 1971).

To simplify this problem, we study three underwater slides

in isolation that we think may have been associated with this

event: Slide A along the front of the Skagway river delta,

Slide B southwest of the railway dock, and Slide C at the

railway dock (see Table 2 and Fig. 4). We believe that either

Slide A or Slide B failed first, although the order does not

particularly matter because either one could have triggered

the other. The important observation is that retrogressive fail-

ure from one or the other slide led up the fjord floor to Slide

C (Campbell, 1995; Plafker et al., 2000). The last line on

Table 2 indicates that the majority of wave generation may

have occurred around the partly subaerial Slide C, in agree-

ment with the simulation results of Thomson et al. (2001).

The analyses in Table 2 are understood to provide a relative



398 P. Watts et al.: Landslide tsunami case studies

Table 3. Papua New Guinea tsunami source parameters: The inputs

for TOPICS are, in descending order, the longitude of the earth-

quake centroid xo, the latitude of the earthquake centroid yo, the

centroid depth d, the fault strike φ, the fault rake λ, the fault dip

δ, the maximum slip 1, the fault length along rupture L, the fault

width across rupture W , and the shear modulous µ. The outputs

from TOPICS are the seismic moment Mo, the characteristic wave-

length λo, and the characteristic tsunami amplitude ηo

Quantities Thrust

xo (longitude) 142.16◦

yo (latitude) −2.88◦

d (km) 10

φ (degrees) 112◦

λ (degrees) 261◦

δ (degrees) 4◦

1 (m) 1.2

L (km) 40

W (km) 20

µ (Pa) 4 × 1010

Mo (J) 3.5 × 1019

λo (km) 40

ηo (m) −0.3

comparison between tsunami generation by the three slides

considered solely in isolation. We note here that these re-

sults are obtained without having to run a tsunami propaga-

tion and inundation model, which is a potentially useful fea-

ture of TOPICS. Our results indicate that all of these poten-

tial slides generate dispersive water waves within the fjord,

given a maximum depth of Taya Inlet of around h ≈ 220 m.

Therefore, any numerical simulation of tsunami propagation

that lasts long enough for water waves to traverse the fjord

and return to Skagway Harbor should be dispersive.

So far, however, numerical simulations of the Skagway

tsunami have been made with propagation models based on

(non-dispersive) shallow water wave equations (Raichlen et

al., 1996; Kulikov et al., 1996; Kowalik, 1997; Mader, 1997;

Fine et al., 1998; Thomson et al., 2001). In most cases, sim-

ulation results have not been able to accurately reproduce all

of the observed maximum surface elevations. Regardless

of the dynamical and spatial complexities associated with

tsunami generation in Skagway, we find that simulations for

the idealized Slide C, using GEOWAVE, reproduce the 9 m

elevation of a barge located next to the railway dock, as well

as the 11 m elevation of the floating ferry terminal dock. In

our work, the sequence of events reported in eyewitness ac-

counts (see Campbell and Nottingham, 1999) is reproduced

by the wave that reflects off the shoreline of the destroyed

railway dock and then propagates northeast along the shore-

line as a highly nonlinear edge wave. The edge wave is repre-

sented in Fig. 4 by the dark region near the shoreline that runs

from the partially subaerial landslide to the ferry dock. This

distinguishes our work from that of Thomson et al. (2001),

for instance, who attempt to reproduce the observed wave

Fig. 5. Maximum elevation in meters above sea level at any time

during a numerical simulation of the earthquake source of the 1998

Papua New Guinea event. North is oriented up. Contours are at

500 m intervals. Simulated on a 100 m grid.

heights with the elevation wave generated by Slide C, rather

than from the reflected wave following the depression wave

at the shoreline. The model used by these authors does not

generate an appreciable reflected wave, and hence the edge

wave is largely absent along the railway dock, contrary to

eyewitness accounts. Hence, in our opinion, Thomson et

al. (2001) predict wave events earlier than they actually oc-

curred, and underpredict maximum surface elevations by up

to 50% or more near the railway dock, where the edge wave

is responsible for maximum surface elevations. For more

details regarding the comparison of results or regarding our

own case study, we suggest consulting Watts et al. (2003).

7 The 1998 Papua New Guinea tsunami

An earthquake of magnitude MW
∼= 7 struck the northern

coast of Papua New Guinea (PNG) in July, 1998 and gen-

erated a large tsunami that inundated the coast near Sissano

Lagoon, inflicting more than 2000 casualties. The tsunami

elevation at the shoreline, over 10 m above sea level, time of

arrival at the shoreline, and longshore distribution of max-

imum runup are incommensurate with the epicentral loca-

tion and magnitude of the main shock (Kawata et al., 1999;

Tappin et al., 1999). In basic terms, any simulated wave di-

rectly generated by the main shock appears to have been too

small and too early to relate to eyewitness accounts. The

large observed waves can be better explained in terms of a

tsunami caused by a sizeable SMF triggered about 12 min

following the earthquake. (Such delays in mass failure are

not uncommon, and generally indicate that the causal link

between ground motion and failure is complicated.) Here,

we test this hypothesis by first simulating the tsunami caused

by the shallow dipping subduction zone earthquake and then

simulating the tsunami caused by an underwater slump that

accounts for both marine geology and water wave observa-

tions.
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Table 4. Papua New Guinea tsunami source parameters: The inputs

for TOPICS are, in descending order, the specific density γ , the ini-

tial landslide length b, the maximum initial landslide thickness T ,

the maximum landslide width w, the mean initial landslide depth

d, and the mean initial incline angle θ . The outputs from TOPICS

are the slump initial acceleration ao, the maximum slump velocity

umax, the characteristic distance of slump motion so, the character-

istic time of slump motion to, the characteristic wavelength λo, and

the characteristic tsunami amplitude ηo from the depression wave

at time t = to

Quantities Complete slump

γ 2.15

b (km) 4.5

T (m) 760

w (km) 5

d (m) 1500

θ (degrees) 12◦

ao (m/s2) 0.36

umax (m/s) 11.6

so (km) 375

to (s) 32

λo (km) 7.8

ηo (m) −25

The earthquake tsunami initial condition provided by

TOPICS (see Table 3 for a summary) matches the offshore

bathymetry and onshore topography, meaning that elevated

locations such as the offshore “uplifted block” experienced

uplift, and a submerged reef as well as Sissano Lagoon expe-

rienced subsidence. In other words, coseismic displacement

correlated with bathymetry, as one would expect, because

vertical relief is presumably a long term expression of similar

tectonic processes. In particular, our coseismic displacement

reproduces the approximately 15 cm of subsidence observed

around Sissano Lagoon (McSaveny et al., 2000). This sug-

gests that we have interpreted the correct earthquake centroid

mechanism and chosen a reasonable earthquake epicenter.

Results of the corresponding GEOWAVE simulation are de-

picted in Fig. 5. Tsunami runup rarely exceeds 1 m above sea

level, and maximum surface elevations occur about 15 min

before the second, larger set of water waves struck, as recon-

structed from eyewitness accounts.

Marine surveys, seismic records, and acoustic records in-

dicate that a large SMF occurred, around twelve minutes af-

ter the main shock, along the southern edge of an arcuate

amphitheater (Tappin et al., 2001). Sediment piston cores,

remotely operated vehicle dives, and manned submersible

dives confirm the presence of stiff marine clays deposited

along a sediment starved margin (Tappin et al., 2002). The

tsunami source region has been identified by offshore sur-

veys (Tappin et al., 2001, 2002) and confirmed by numer-

ical simulations (Heinrich et al., 2000). With a thickness

to length ratio T/b ∼= 0.17 and the presence of stiff clays,

the SMF was apparently a typical underwater slump that ad-

Fig. 6. Maximum elevation in meters above sea level at any time

during a numerical simulation of the underwater slump source of

the 1998 Papua New Guinea event. North is oriented up. Contours

are at 500 m intervals. Simulated on a 100 m grid.

vanced only 15% of its length. The angular displacement

was at least two times less than expected for a continental

margin covered by stiff clay, which may suggest the involve-

ment of pressurized water in mass failure, in order to mobi-

lize during a transient pulse what should otherwise not have

failed (Sibson, 1981; Tappin et al., 2001, 2002). The wa-

ter pressure would have a tectonic origin and water would

have traveled along existing faults, as opposed to pore wa-

ter pressure, which would be related to sediment strain and

would diffuse extremely slowly in stiff clay. Table 4 provides

estimated parameters for the underwater slump, provided as

inputs for TOPICS, and the corresponding outputs describing

the tsunami source. Near the region of tsunami generation,

the waves propagate in a manner between deep water waves

and shallow water waves (Watts, 2000). The Ursell param-

eter for this tsunami in an open ocean with depth h ≈ 4 km

is approximately U ≈ 0.0024 , which indicates linear, dis-

persive wave propagation (Mei, 1983; Watts, 2000). Clearly,

the use of a Boussinesq propagation model is in order for

simulations of this event. Figure 6 depicts the GEOWAVE

simulation results for the underwater slump tsunami source

described in Table 4. The SMF is located near longitude

142.25◦ and latitude −2.85◦, along the edge of an amphithe-

ater.

A comparison of our simulation results with those of spe-

cific nonlinear shallow water wave models is quite instruc-

tive. We consider only those simulations based on the ma-

rine geology evidence for the underwater slump discussed

here. Tappin et al. (2001) used the shallow water wave model

TUNAMI-N2 combined with a tsunami source based on 2-

D BEM simulations. Watts et al. (2002) used the shallow

water wave model MOST combined with the same tsunami

source. While there are modest differences between the two

models, the similarities are far more striking. For both mod-

els, the maximum surface elevations occur well offshore,

whereas the sand spit fronting Sissano Lagoon barely gets
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covered by water, if at all, in complete contradiction of the

onland survey results (Kawata et al., 1999). Synolakis et

al. (2002) reinforce our point by repackaging the original

work of Watts et al. (2002). We documented significant ele-

vation wave mass loss with TUNAMI-N2, along with some

wave reflection, in the region of wave breaking predicted by

GEOWAVE. The net result is so pronounced that almost no

wave reaches shore. We are not certain as of now if these re-

sults are specific to the two shallow water wave models used.

Based on this discussion, our current results represent a sig-

nificant improvement over previous simulations made with

an earlier tsunami source and (non-dispersive) shallow water

wave tsunami propagation models.

Our GEOWAVE results reproduce the correct times of

tsunami arrival relative to two strong aftershocks that oc-

curred roughly 20 min after the main shock. The two strong

aftershocks are the only temporal anchors of the near-field

timing of this event. Moreover, we find that the highly non-

linear wave shoaling towards and converging onto Sissano

Lagoon broke offshore (see Fig. 6), producing the loud bang

and spray on the horizon reported by some people living at

Arop village (Watts, 2001). Our results reproduce the ob-

served distribution of maximum runup documented along the

affected shoreline (see Kawata et al., 1999) and can also ex-

plain the differing accounts as to the number of water waves

approaching the shoreline. Those shoreline locations fronted

by deep water experienced more than one wave, likely due to

increased wave dispersion. Our simulations also demonstrate

that survivors from the sand spit would have been swept into

the mangrove swamp behind Sissano Lagoon, as actually

happened. We find that our use of marine geology informa-

tion has produced a successful numerical simulation, one that

should perhaps be contrasted with similar efforts by other

tsunami scientists (e.g. Titov and Gonzalez, 2001; Imamura

et al., 2001).

8 Conclusions

We proposed a novel modeling strategy and applied soft-

ware called GEOWAVE to tsunami generation by two types

of SMFs: underwater slides, and underwater slumps, each

representing approximately 50% of all SMFs (Schwab et

al., 1993). Earlier results showed that reasonable rates of

SMF deformation have little effect on major tsunami fea-

tures. Hence, we only simulate solid (i.e. non-deforming)

SMFs. We provide approximate SMF motions as well as

tsunami wavelength and amplitude predictions, all of these

for both underwater slides and slumps. Tsunami features are

in essence transferred from the models of Grilli and Watts

(1999) and Grilli et al. (2002) into analytical approximations

of tsunami sources by TOPICS. This technique reconstructs

an initial condition from SMF tsunami generation to be used

with existing tsunami propagation and inundation codes, just

like it is customary to treat tsunami generation by coseismic

displacement as an initial condition. We conclude that land-

slide shapes, motions, and tsunami sources are reasonable in

our work, because tsunami observations and records are cor-

rectly simulated for three independent and very different (in

both scale and mechanism) historical case studies, and repro-

ducing observations and records is perhaps the most funda-

mental measure of successful scientific work. In addition to

accurate SMF tsunami sources from TOPICS, we attribute

the successful outcome of our case studies to the inclusion

of essential geological data and interpretation, as well as the

physical capabilities of the Boussinesq propagation model

FUNWAVE. Our work demonstrates that the combined soft-

ware GEOWAVE can produce successful tsunami case stud-

ies when provided sufficient geological inputs. We therefore

consider to have validated beyond reasonable doubt the tech-

niques and models demonstrated in this work.
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