1 Landslides, threshold slopes, and the survival of relict

2 terrain in the wake of the Mendocino Triple Junction

3 Georgina L. Bennett^{1*}, Scott R. Miller², Joshua J. Roering¹, and David A. Schmidt³

4 ¹Department of Geological Sciences, University of Oregon, 1275 E 13th Ave, Eugene,

- 5 Oregon 97403-1272, USA
- 6 ²Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Salt Lake
- 7 City, Utah 84112-0102, USA

8 ³Department of Earth and Space Sciences, University of Washington, 4000 15th Avenue,

9 Seattle, Washington 98195-1310, USA

10 *Current address: Department of Geosciences, Colorado State University, 1482 Campus

11 Delivery, Fort Collins, Colorado 80523-1482, USA

12 ABSTRACT

13 Establishing landscape response to uplift is critical for interpreting sediment 14 fluxes, hazard potential, and topographic evolution. We assess how landslides shape 15 terrain in response to a wave of uplift traversing the northern California Coast Ranges 16 (United States) in the wake of the Mendocino Triple Junction. We extracted knickpoints, 17 landslide erosion rates, and topographic metrics across the region modified by 18 Mendocino Triple Junction migration. Landslide erosion rates mapped from aerial 19 imagery are consistent with modeled uplift and exhumation, while hillslope gradient is 20 invariant across the region, suggesting that landslides accommodate uplift, as predicted 21 by the threshold slope model. Landslides are concentrated along steepened channel reaches downstream of knickpoints generated by base-level fall at channel outlets, and 22

limit slope angles and relief. We find evidence that landslide-derived coarse sediment
delivery may suppress catchment-wide channel incision and landscape denudation over
the time required for the uplift wave to traverse the region. We conclude that a landslide
cover effect may provide a mechanism for the survival of relict terrain in the northern
Californian Coast Ranges and elsewhere over millennial time scales.

28 INTRODUCTION

29 While landsliding is commonly identified as the dominant erosional process in 30 mountainous settings (Hovius et al., 1997; Bennett et al., 2012), we lack regional data 31 sets of landslide erosion rates with which to constrain the response of landslides to 32 tectonic uplift as well as their potential role in landscape evolution (Korup et al., 2010). 33 Landslide deposits may dam rivers and even suppress upstream base-level transmission 34 (Ouimet et al., 2007), but the long-term efficacy of hillslope-channel feedbacks and their 35 influence on topographic response to uplift are poorly known (Egholm et al., 2013). 36 Transient landscapes in which the process rates and topography evolve across an 37 uplift gradient are valuable for deciphering potential hillslope-channel feedbacks in 38 landscape response to uplift (Miller et al., 2013). Commonly used channel incision 39 models (e.g., Wobus et al., 2006) predict that channels respond to base-level fall via a 40 wave of incision that sweeps upstream via knickpoint retreat. Knickpoints separate the 41 actively adjusting channel commonly bounded by steep slopes and active landslides (e.g., 42 Gallen et al., 2011) from gentler "relict" upstream terrain that has yet to experience base-43 level adjustment (Willenbring et al., 2013). In the simplest case, the stream power model, 44 vertical and horizontal migration of knickpoints is predicted to be proportional to the rock 45 uplift rate and the erodibility constant, K, respectively (Niemann et al., 2001). However,

46	DOI:10.1130/G37530.1 the model does not consider the role of sediment in modulating channel response (Sklar
47	and Dietrich, 2001). Sediment cover may slow knickpoint retreat, delaying catchment
48	denudation in response to base-level fall relative to the surrounding landscape (DiBiase et
49	al., 2014). Alternatively, sediment may act as a tool, enhancing channel incision and
50	landscape denudation (Sklar and Dietrich, 2001). The role of landslides in landscape
51	response to uplift is important to elucidate, considering that landslides dominate sediment
52	supply in mountainous settings and thus provide a potential feedback on landscape
53	response rates (Egholm et al., 2013).
54	In this contribution, we investigate landscape response to a wave of transient
55	uplift migrating northward through northern California (United States) in the wake of the
55 56	uplift migrating northward through northern California (United States) in the wake of the Mendocino Triple Junction (MTJ) (Furlong and Govers, 1999). This tectonic setting
56	Mendocino Triple Junction (MTJ) (Furlong and Govers, 1999). This tectonic setting
56 57	Mendocino Triple Junction (MTJ) (Furlong and Govers, 1999). This tectonic setting enables us to observe the initiation of landsliding in response to fluvial incision on the
56 57 58	Mendocino Triple Junction (MTJ) (Furlong and Govers, 1999). This tectonic setting enables us to observe the initiation of landsliding in response to fluvial incision on the leading edge of the uplift field, as well as landslide feedbacks on channel incision and

The northern Californian Coast Ranges are modified by geodynamic processes associated with the northward migration of the MTJ, which marks the transition from a subduction zone to a transform plate boundary along the western margin of North America (Fig. 1). MTJ migration is associated with regional changes in crustal thickness, heat flow, and volcanism associated with the formation of a slab window in the wake of the triple junction. A geodynamic model of this process, referred to as the Mendocino crustal conveyor (MCC), predicts a crustal thicknesing rate of ~8 mm yr⁻¹ just to the south

69	of the MTJ and crustal thinning of up to ~6.5 mm yr ⁻¹ farther south (Fig. 2A; Furlong and
70	Govers, 1999, their figure. 3). Assuming local isostasy and density variations between
71	mantle and crust (Lock et al., 2006), these rates translate into a rock uplift rate of ~ 1.2
72	mm yr ^{-1} and subsidence rate of ~ 1 mm yr ^{-1} , respectively. Integrating rates of thickening
73	and thinning through space and time produces a pattern of crustal thickness variation,
74	which can be converted into a pattern of cumulative surface uplift over the past ~8 m.y.
75	(Fig. 2B; Furlong and Govers, 1999, their figure. 3).
76	Past geomorphologic studies have found evidence for drainage capture and
77	reorganization (Lock et al., 2006), knickpoint migration (Willenbring et al., 2013), and
78	spatially variable erosion rates (Balco et al., 2013) attributed to MTJ migration. Studies
79	of landsliding in the region have revealed pockets of pervasive earthflow erosion
80	particularly within the mechanically weak Franciscan Mélange unit (KJf) making up the
81	central belt of the Coast Ranges Franciscan Complex (Kelsey, 1978; Mackey and
82	Roering, 2011). However, few have addressed hillslope-channel coupling (Roering et al.,
83	2015), and more importantly, previous analysis has been spatially restricted, precluding a
84	systematic comparison with the regional uplift pattern.
85	METHODS
86	We measured landslide erosion rates through mapping of debris slides and
87	earthflows from imagery in Google Earth [™] spanning A.D. 1988–2014 (Table DR1 in the
88	GSA Data Repository ¹). Debris slides are instantaneous failures that leave easily
89	detectable scars in the landscape (Fig. DR2 in the Data Repository). Earthflows are slow-
90	moving landslides that exhibit flow-like features (Fig. DR3).

91	DOI:10.1130/G37530.1 Where present, we identified features on sequential images to measure earthflow
92	velocity. We assigned the mean velocity (1.44 m yr ^{-1} ; Fig. DR4) to active earthflows
93	with unconstrained velocities, as well as to dormant earthflows on the supposition that
94	these features were active in the recent past based on their morphologic signature
95	(Mackey and Roering, 2011). Earthflow width and depth were estimated from area using
96	empirical scaling relationships (Handwerger et al., 2013; Fig. DR5). Finally, the
97	earthflow sediment flux into the channel network was converted into a bedrock erosion
98	rate following Mackey and Roering (2011).
99	We calculated debris-slide volume from mapped area using an empirical scaling
100	relationship for landslides in northern California (Larsen et al., 2010). Volume was
101	converted into annual flux to the channel network using the estimated age of debris-slide
102	scars. We determined that 10-30 yr is required to revegetate debris scars, enabling us to
103	estimate a range of debris-slide erosion rates (Fig. DR2).
104	We calculated topographic slope and local relief with a 10 m U.S. Geological
105	Survey (USGS) National Elevation Dataset (NED) digital elevation model, and extracted
106	normalized channel steepness index (k_{sn}) (e.g., Kirby and Whipple, 2012) using a
107	reference concavity index of 0.55 (Shi, 2011). We developed an automated technique to
108	map migratory knickpoints, calibrated on knickpoints in the southern part of the study
109	area (Shi, 2011). To avoid anchored knickpoints, we omitted knickpoints within 1 km of
110	a geological contact (Fig. DR1) and those associated with reservoirs.
111	We analyzed our data by swath along the MCC model transect (Fig. 1) and by
112	subcatchment (Fig. DR8) for comparison with published cosmogenic nuclide (CN) and
113	suspended sediment erosion rates and modeled uplift. In order to detect any lithological

114	control on landscape response to uplift, we also separated data by geology, differentiating
115	between the KJf unit prone to earthflows (Fig. 1A) and other predominantly sandstone
116	units making up the coastal belt of the Coast Ranges that we collectively refer to as non-
117	KJf (Fig. DR1).
118	RESULTS
119	We mapped 122 knickpoints (Fig. 1B), 1600 debris slides, 246 active earthflows
120	(174 with measured velocities), and 324 dormant earthflows across the study area (Fig.
121	1A). Taken together, these two styles of landsliding denude the study area at an average
122	rate of $0.18 \pm 0.04 \text{ mm yr}^{-1}$ (Table DR2).
123	Mean hillslope gradient (~20°) is relatively invariant across the zone of uplift,
124	while landslide erosion rates are highly variable and broadly reflect modeled uplift and
125	exhumation (Fig. 2).
126	Our landslide erosion rates broadly correspond with published CN erosion rates
127	(Balco et al., 2013; Willenbring et al., 2013; Roering et al., 2015) and suspended
128	sediment erosion rates (Wheatcroft and Sommerfield, 2005) (Fig. 2E; Fig. DR9),
129	suggesting persistence of the present-day spatial pattern of landsliding over cosmogenic
130	(100–1000 yr) time scales.
131	Comparison of subcatchment-averaged hillslope gradient and k_{sn} (Fig. 3A; Fig.
132	DR8) reveals that hillslope gradient becomes insensitive to further increases in k_{sn} (and
133	by inference, uplift) (Ouimet et al., 2009) at 15–20°. The coincidence of threshold
134	hillslopes with the highest density of active earthflows suggests that earthflows are
135	responsible for maintaining this gradient.

136	Faster landslide erosion rates coincide with higher k_{sn} (Fig. 3B), particularly
137	below knickpoints (e.g., Fig. 3C; Roering et al., 2015). Analysis of the Mad River on the
138	leading edge of the uplift wave reveals a concentration of landslides along a steep
139	knickzone with high k_{sn} and hillslope relief containing several knickpoints (Figs. 4A–4E).
140	Similar patterns are found along other channels within unit KJf lithology (Figs. DR10 and
141	DR11). We consider lower-relief terrain above these knickzones to be "relict" topography
142	yet to experience the observed pulse of erosion (Figs. 1B and 4).
143	We observe that subcatchment-averaged landslide erosion rates correlate with k_{sn}
144	$< 400 \text{ m}^{1.1}$ (Fig. 3B); this correlation may disappear for steeper channels. We observe a
145	similar relationship of CN erosion rates with k_{sn} (Fig. 3C) and note that streams in unit
146	KJf are steeper for a given erosion rate than streams in non-KJf units, suggesting that the
147	former have a lower erosional efficiency. We also observe that landslide erosion rate
148	peaks in non-KJf units ~ 0.5° in latitude to the south (Fig. 2E), i.e., farther upstream,
149	compared to the parallel KJf domain, suggesting a shorter erosional response time in non-
150	KJF watersheds.

151 **DISCUSSION**

Our results suggest that the northward-migrating increase in crustal thickness predicted by the MCC model is accommodated by increased landslide erosion rather than hillslope steepening, lending support to the threshold slope model (Burbank et al., 1996; Larsen and Montgomery, 2012). We find that landsliding is driven by focused channel incision downstream of knickpoints that were initiated by uplift and relative base-level fall at channel outlets. The prevalence of threshold hillslopes and existence of scattered knickpoints and landslides above the zone of rapid erosion (e.g., Fig. 4) may result from

159	either previous waves of erosion (e.g., Grimaud et al., 2015) or background erosion
160	processes. We may also be observing remnants of past divide migration and internal
161	drainage reorganization (Lock et al., 2006). We thus use the term "relict" topography to
162	describe relatively low-relief topography at the heads of our catchments yet to experience
163	the current pulse of erosion.
164	We find evidence for a profound lithological control on landscape response to
165	uplift, though one that counters expectations. If we consider that the relationship between
166	erosion rate and k_{sn} (Fig. 3C) is a function of K (erodibility) and Q_s (sediment supply)
167	(Gasparini et al., 2006), this implies either a difference in lithology or the role of
168	sediment (i.e., tools/cover effect) between KJf and non-KJf units, given a constant
169	climate. Catchments within unit KJf, dominated by highly sheared mudstones, might be
170	expected to have a greater erosional efficiency than those in non-KJf units of
171	predominantly sandstone, given the higher relative erodibility of mudstone (Sklar and
172	Dietrich, 2001). However, KJf catchments exhibit lower erosional efficiency and a longer
173	response time. We observe prevalent channel reaches mantled by boulders (commonly
174	>10 m) within unit KJf, particularly at earthflow toes (Figs. DR2A and DR12), that are
175	not apparent in channels within non-KJf units. We suggest that resistant blocks eroded
176	from the mélange by earthflows armor the channel bed and have a negative feedback on
177	ongoing landscape response to uplift, i.e., slowing channel incision and knickpoint
178	propagation and ultimately retarding landscape denudation (DiBiase et al., 2014). This
179	would imply that the current pulse of erosion may be stalled on the frontal edge of the
180	uplift wave in unit KJf, providing an appealing explanation for the long-lived nature of

- 181 the landslide erosion pattern we infer from the close correspondence of landslide and
- 182 cosmogenic erosion rates.

183	It remains to be seen whether the observed pulse of erosion will continue to
184	migrate up the channel network in the time it takes for the uplift wave to pass through the
185	region in the wake of the MTJ at 50 km m.y. ^{-1} (Furlong and Govers, 1999), i.e., ~2 m.y.
186	If not, the landslide cover effect described here may provide a mechanism for the survival
187	of relict terrain at the head of unit KJf-dominated catchments in this landscape and more
188	broadly in active tectonic landscapes over million-year time scales (e.g., Egholm et al.,
189	2013; Yang et al., 2015).
190	SUMMARY
191	We observe a complex landscape response to uplift associated with the passage of
192	the MTJ. Landslide erosion rates estimated from aerial imagery are consistent with the
193	modeled uplift field, while hillslope gradient is invariant across the region of uplift,
194	providing strong support for the threshold slope model. We observe the initiation of
195	landslide erosion and concomitant attainment of threshold slopes downstream of
196	migratory knickpoints on the leading edge of the uplift wave. However, our data further
197	suggest that through the delivery of megaclasts to channel beds, landslides may have a
198	negative feedback on ongoing channel incision, landslide erosion, and landscape
199	denudation in the wake of knickpoints. Thus we suggest that some parts of the landscape
200	may temporarily escape adjustment to increased uplift, providing a mechanism for the
201	preservation of relict terrain in the landscape.
202	ACKNOWLEDGMENTS

203	We thank O. Korup, Ben Crosby, and an anonymous reviewer for very helpful
204	and encouraging reviews, and the editor J. Spotila. This research was funded by NASA
205	grant NNX12AL93G. We are grateful to Wolfgang Schwanghart and Dirk Scherler for
206	help adapting TopoToolbox2, and Gene Humphreys for helpful discussions.
207	REFERENCES CITED
208	Balco, G., Finnegan, N., Gendaszek, A., Stone, J.O.H., and Thompson, N., 2013,
209	Erosional response to northward-propagating crustal thickening in the coastal ranges
210	of the U.S. Pacific Northwest: American Journal of Science, v. 313, p. 790-806,
211	doi:10.2475/11.2013.01.
212	Bennett, G.L., Molnar, P., Eisenbeiss, H., and McArdell, B.W., 2012, Erosional power in
213	the Swiss Alps: Characterization of slope failure in the Illgraben: Earth Surface
214	Processes and Landforms, v. 37, p. 1627–1640, doi:10.1002/esp.3263.
215	Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R., and
216	Duncan, C., 1996, Bedrock incision, rock uplift and threshold hillslopes in the
217	northwestern Himalayas: Nature, v. 379, p. 505–510, doi:10.1038/379505a0.
218	DiBiase, R.A., Whipple, K.X., Lamb, M.P., and Heimsath, A.M., 2014, The role of
219	waterfalls and knickzones in controlling the style and pace of landscape adjustment
220	in the western San Gabriel Mountains, California: Geological Society of America
221	Bulletin, v. 127, p. 539–559, doi:10.1130/B31113.1.
222	Egholm, D.L., Knudsen, M.F., and Sandiford, M., 2013, Lifespan of mountain ranges
223	scaled by feedbacks between landsliding and erosion by rivers: Nature, v. 498,
224	p. 475–478, doi:10.1038/nature12218.

- 225 Furlong, K.P., and Govers, R., 1999, Ephemeral crustal thickening at a triple junction:
- The Mendocino crustal conveyor: Geology, v. 27, p. 127–130, doi:10.1130/0091-
- 227 7613(1999)027<0127:ECTAAT>2.3.CO;2.
- 228 Gasparini, N., Bras, R., and Whipple, X.K., 2006, Numerical modeling of non-steady-
- state river profile evolution using a sediment-flux-dependent incision model, *in*
- 230 Willett, S.D., et al., eds., Tectonics, Climate, and Landscape Evolution: Geological
- 231 Society of America Special Paper 398, p. 127–141, doi:10.1130/2006.2398(08).
- 232 Gallen, S.F., Wegmann, K.W., Franke, K.L., Hughs, S., Lewis, R.Q., Lyons, N., Paris, P.,
- 233 Ross, K., Bauer, J.B., and Witt, A.C., 2011, Hillslope response to knickpoint
- 234 migration in the Southern Appalachians: Implications for the evolution of post-
- orogenic landscapes: Earth Surface Processes and Landforms, v. 36, p. 1254–1267,
- doi:10.1002/esp.2150.
- 237 Grimaud, J.-L., Paola, C., and Voller, V., 2015, Experimental migration of knickpoints:
- 238 Influence of style of base-level fall and bed lithology: Earth Surface Dynamics
- 239 Discussions, v. 3, p. 773–805, doi:10.5194/esurfd-3-773-2015.
- 240 Handwerger, A.L., Roering, J.J., and Schmidt, D., 2013, Controls on the seasonal
- 241 deformation of slow-moving landslides: Earth and Planetary Science Letters, v. 377,
- 242 p. 239–247, doi:10.1016/j.epsl.2013.06.047.
- 243 Hovius, N., Stark, C.P., and Allen, P.A., 1997, Sediment flux from a mountain belt
- 244 derived by landslide mapping: Geology, v. 25, p. 231–234, doi:10.1130/0091-
- 245 7613(1997)025<0231:SFFAMB>2.3.CO;2.

- 246 Kelsey, H.M., 1978, Earthflows in Franciscan melange, Van Duzen River basin,
- 247 California: Geology, v. 6, p. 361–364, doi:10.1130/0091-
- 248 7613(1978)6<361:EIFMVD>2.0.CO;2.
- 249 Kirby, E., and Whipple, K.X., 2012, Expression of active tectonics in erosional
- 250 landscapes: Journal of Structural Geology, v. 44, p. 54–75,
- 251 doi:10.1016/j.jsg.2012.07.009.
- 252 Korup, O., Densmore, A.L., and Schlunegger, F., 2010, The role of landslides in
- 253 mountain range evolution: Geomorphology, v. 120, p. 77–90,
- doi:10.1016/j.geomorph.2009.09.017.
- Larsen, I.J., and Montgomery, D.R., 2012, Landslide erosion coupled to tectonics and
- river incision: Nature Geoscience, v. 5, p. 468–473, doi:10.1038/ngeo1479.
- Larsen, I.J., Montgomery, D.R., and Korup, O., 2010, Landslide erosion controlled by
- hillslope material: Nature Geoscience, v. 3, p. 247–251, doi:10.1038/ngeo776.
- Lock, J., Kelsey, H., Furlong, K., and Woolace, A., 2006, Late Neogene and Quaternary
- 260 landscape evolution of the northern California Coast Ranges: Evidence for
- 261 Mendocino triple junction tectonics: Geological Society of America Bulletin, v. 118,
- 262 p. 1232–1246, doi:10.1130/B25885.1.
- 263 Mackey, B.H., and Roering, J.J., 2011, Sediment yield, spatial characteristics, and the
- long-term evolution of active earthflows determined from airborne LiDAR and
- 265 historical aerial photographs, Eel River, California: Geological Society of America
- 266 Bulletin, v. 123, p. 1560–1576, doi:10.1130/B30306.1.
- 267 Miller, S.R., Sak, P.B., Kirby, E., and Bierman, P.R., 2013, Neogene rejuvenation of
- 268 central Appalachian topography: Evidence for differential rock uplift from stream

- 269 profiles and erosion rates: Earth and Planetary Science Letters, v. 369, p. 1–12,
- doi:10.1016/j.epsl.2013.04.007.
- 271 Niemann, J.D., Gasparini, N.M., Tucker, G.E., and Bras, R.L., 2001, A quantitative
- evaluation of Playfair's law and its use in testing long-term stream erosion models:
- Earth Surface Processes and Landforms, v. 26, p. 1317–1332, doi:10.1002/esp.272.
- 274 Ouimet, W.B., Whipple, K.X., Royden, L.H., Sun, Z., and Chen, Z., 2007, The influence
- of large landslides on river incision in a transient landscape: Eastern margin of the
- 276 Tibetan Plateau (Sichuan, China): Geological Society of America Bulletin, v. 119,
- 277 p. 1462–1476, doi:10.1130/B26136.1.
- 278 Ouimet, W.B., Whipple, K.X., and Granger, D.E., 2009, Beyond threshold hillslopes:
- 279 Channel adjustment to base-level fall in tectonically active mountain ranges:
- 280 Geology, v. 37, p. 579–582, doi:10.1130/G30013A.1.
- 281 Roering, J.J., Mackey, B.H., Handwerger, A.L., Booth, A.M., Schmidt, D.A., Bennett,
- 282 G.L., and Cerovski-Darriau, C., 2015, Beyond the angle of repose: A review and
- 283 synthesis of landslide processes in response to rapid uplift, Eel River, Northern
- 284 California: Geomorphology, v. 236, p. 109–131,
- 285 doi:10.1016/j.geomorph.2015.02.013.
- 286 Shi, X., 2011, Transient channel incision in response to the Mendocino Triple Junction
- 287 migration, northern California [M.S. thesis]: University Park, Pennsylvania, The
- 288 Pennsylvania State University, 82 p.
- 289 Sklar, L.S., and Dietrich, W.E., 2001, Sediment and rock strength controls on river
- 290 incision into bedrock: Geology, v. 29, p. 1087–1090, doi:10.1130/0091-
- 291 7613(2001)029<1087:SARSCO>2.0.CO;2.

- 292 Wheatcroft, R.A., and Sommerfield, C.K., 2005, River sediment flux and shelf sediment
- 293 accumulation rates on the Pacific Northwest margin: Continental Shelf Research,
- v. 25, p. 311–332, doi:10.1016/j.csr.2004.10.001.
- 295 Willenbring, J.K., Gasparini, N.M., Crosby, B.T., and Brocard, G., 2013, What does a
- 296 mean mean? The temporal evolution of detrital cosmogenic denudation rates in a
- 297 transient landscape: Geology, v. 41, p. 1215–1218, doi:10.1130/G34746.1.
- 298 Wobus, C., Whipple, K.X., Kirby, E., Synder, N., Johnson, J., Spyropolou, K., Crosby,
- B., and Sheehan, D., 2006, Tectonics from topography: Procedures, promise and
- 300 pitfalls, *in* Willett, S.D., et al., eds., Tectonics, Climate, and Landscape Evolution:
- 301 Geological Society of America Special Paper 398, p. 55–74,
- 302 doi:10.1130/2006.2398(04)
- 303 Yang, R., Willett, S.D., and Goren, L., 2015, In situ low-relief landscape formation as a
- 304 result of river network disruption: Nature, v. 520, p. 526–529,
- doi:10.1038/nature14354.

306 FIGURE CAPTIONS

- 307 Figure 1. A: Regional and geological setting and landslides mapped within four study
- 308 catchments spanning Mendocino crustal conveyer (MCC) transect in B (northern
- 309 California, USA). B: Normalized channel steepness index, *k*_{sn}, and knickpoints mapped
- 310 across study catchments. MTJ—Mendocino Triple Junction; CA—California.
- 311
- 312 Figure 2. A: Predicted uplift rate calculated from crustal thickening rate as modeled along
- 313 Mendocino crustal conveyer (MCC) transect in Figure 1B. B: Observed elevation (*z*) and
- 314 modeled cumulative uplift as calculated from MCC-modeled crustal thickness variation.

315	C: Franciscan Mélange unit (KJf) swath-averaged hillslope gradient. D: Unit KJf
316	normalized channel steepness index, k_{sn} , averaged by swath and downstream of
317	knickpoints. E: Swath-averaged landslide erosion rates in KJf and non-KJf lithologies
318	compared to cosmogenic nuclide and suspended sediment erosion rates (latter converted
319	from catchment yields based on bedrock density of 2.5 g cm ^{-3}) and predicted exhumation
320	as depicted in A. Tails on cosmogenic nuclide and suspended sediment erosion rates
321	depict upstream area over which these rates integrate.
322	
323	Figure 3. A: Relationship between mean hillslope gradient and mean normalized channel
324	steepness index, k_{sn} , calculated for catchments with >50% Franciscan Mélange unit (KJf),
325	overlaid by kernel density of mean slope gradient and k_{sn} of active earthflows. The k_{sn} of
326	an earthflow is that of the closest 10 m channel node. Points are colored by subcatchment
327	average landslide erosion rate. B: Relationship of landslide erosion rate with k_{sn} . Gray
328	shading denotes potential cover effect at high k_{sn} by which landslide deposits limit further
329	channel incision and landslide erosion. C: Relationship of cosmogenic nuclide erosion
330	rate with k_{sn} showing decreased landslide erosion at high k_{sn} and also showing higher
331	erosional efficiency, K, in non-KJf compared to KJf catchments. Points 1 and 2 refer to
332	above and below the Kekawaka knickzone, respectively (Fig. DR11 in the Data
333	Repository [see footnote 1]).
334	
335	Figure 4. A: Landslides and knickpoints along Mad River, California (USA)a. Only
336	streams of order >2 are shown. Vertical lines depict landslide elevation range, with dots

337 denoting their median elevations. B: Mean normalized channel steepness index, k_{sn} ,

- 338 calculated in 100 swaths (~160 m) along channel. C: Mean relief calculated as difference
- between ridgeline and channel elevation. D: Mean hillslope gradient. E: Mean landslide
- 340 erosion rates. Gray shading denotes main knickzone.
- 341
- ¹GSA Data Repository item 2016xxx, Figures DR1–DR12 and Tables DR1 and DR2, is
- 343 available online at www.geosociety.org/pubs/ft2016.htm, or on request from
- 344 editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO
- 345 80301, USA.