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The MW?7.8 14 November 2016 Kaikoura earthquake generated more than 10000
landslides over a total area of about 10000 km2, with the majority concentrated in a
smaller area of about 3600 km2. The largest landslide triggered by the earthquake had
an approximate volume of 20 (x2) M m3, with a runout distance of about 2.7 km,
forming a dam on the Hapuku River. In this paper, we present version 1.0 of the
landslide inventory we have created for this event. We use the inventory presented in
this paper to identify and discuss some of the controls on the spatial distribution of
landslides triggered by the Kaikoura earthquake. Our main findings are: 1) the number
of medium to large landslides (source area 210000 m2) triggered by the Kaikoura
earthquake is smaller than for similar sized landslides triggered by similar magnitude
earthquakes in New Zealand; 2) seven of the largest eight landslides (from 5 to 20 x
106 m3) occurred on faults that ruptured to the surface during the earthquake; 3) the
average landslide density within 200 m of a mapped surface fault rupture is three times
that at a distance of 2500 m or more from a mapped surface fault rupture ; 4) the
"distance to fault" predictor variable, when used as a proxy for ground-motion intensity,
and when combined with slope angle, geology and elevation variables, has more
power in predicting landslide probability than the PGA or PGV variables typically
adopted for modelling; and 5) for the same slope angles, the coastal slopes have
landslide point densities that are an order of magnitude greater than those in similar
materials on the inland slopes, but their source areas are significantly smaller.
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Abstract

The Mw 7.8 14 November 2016 Kaikoura earthquake generated more than 10000 landslides over
a total area of about 10000 km?, with the majority concentrated in a smaller area of about 3600
km?. The largest landslide triggered by the earthquake had an approximate volume of 20 (¥2) M
m?, with a runout distance of about 2.7 km, forming a dam on the Hapuku River. In this paper,
we present version 1.0 of the landslide inventory we have created for this event. We use the
inventory presented in this paper to identify and discuss some of the controls on the spatial
distribution of landslides triggered by the Kaikoura earthquake. Our main findings are (1) the
number of medium to large landslides (source area >10000 m?) triggered by the Kaikoura
earthquake is smaller than for similar sized landslides triggered by similar magnitude
earthquakes in New Zealand; (2) seven of the largest eight landslides (from 5 to 20 x 10°® m?)
occurred on faults that ruptured to the surface during the earthquake; (3) the average landslide
density within 200 m of a mapped surface fault rupture is three times that at a distance of 2500 m
or more from a mapped surface fault rupture ; (4) the “distance to fault” predictor variable, when
used as a proxy for ground-motion intensity, and when combined with slope angle, geology and
elevation variables, has more power in predicting landslide probability than the modelled peak
ground acceleration or peak ground velocity; and (5) for the same slope angles, the coastal slopes
have landslide point densities that are an order of magnitude greater than those in similar

materials on the inland slopes, but their source areas are significantly smaller.

I ntroduction

The Mw 7.8 14 November 2016 Kaikoura earthquake in New Zealand occurred at 12:03 am local
time (Kaiser et al. 2017). The epicentre was located about 4 km from the rural town of Waiau

(population 250) in North Canterbury (Figure 1), with rupture initiation at a shallow depth of



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

14.1 km (Nicol et al., this issue). Large, shallow earthquakes in mountain chains typically trigger
substantial numbers of landslides (Hovius et al., 1997; Parker, 2013; Hancox et al., 2014; 2016;
Xu et al., 2016). The Kaikoura earthquake (Dellow et al., 2017) triggered more than 10000
landslides over an area of about 10000 km?, with the majority being focused in an area of about
3600 km? (Figure 1). Fortunately, the area affected by landslides is comparatively remote and
sparsely populated such that only a few dwellings were impacted by landslides, and there were
no recorded landslide-related fatalities (Stevenson, 2017). However, the landslides dammed
rivers, blocked roads and railways, and disrupted agricultural land throughout this region.
Landslides along the coast caused substantial damage to both State Highway (SH) 1 and the
northern section of the South Island Main Trunk Railway, blocking both in multiple locations
(Davies, 2017). At the time of writing, the section of SH1 north of Kaikoura is due to reopen on

15 December 2017, over a year after the earthquake.

The long-term stability of damaged but as yet unfailed slopes is a cause for concern in light of
the risk of future strong earthquakes and significant precipitation events. This has been
exemplified by debris flows and floods that occurred during rain associated with cyclones
Debbie (23 March to 7 April 2017) and Cook (14 April 2017), which caused several of the dams
to breach, releasing debris flows and floods that travelled several kilometres downstream. Debris
flows were also triggered on the steep coastal cliffs north and south of Kaikoura, leading to the

intermittent closures of the reopened portion of SH1 south of Kaikoura.

Both the number of landslides and the area affected are much less than expected based on
worldwide observations for an earthquake of this magnitude (Keefer, 2002; Malamud et al.
2004). To investigate the reason for this, we analyse an inventory we are creating of landslides

triggered by this earthquake; our analysis relates the spatial distribution and size characteristics
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of the triggered landslides to geology, topography, strong shaking, and other geologic factors.
The objective of this paper is to describe these characteristics of the triggered landslides and

quantify their relationship to the various causative factors.

A broad-based investigation of the triggered landslides began immediately following the
earthquake. Dellow et al. (2017) provide a preliminary description of the landslides triggered by
this earthquake and the immediate response to document them and evaluate related hazards.
Jibson et al. (2017) give an overview of landslide types and distribution accompanied by
illustrations of the triggered landslides. In this paper, we present version 1.0 of the landslide
inventory we have created for this event, which builds on the earlier preliminary inventories
presented by Rathje et al. (2016) and Dellow et al. (2017). Refer to the Data and Resources
section of this paper for instructions about how to access this dataset. We present these findings
as a preliminary account of the potential controls we have observed on the landslide distribution
triggered by this event. It is version 1.0, because mapping is ongoing in those areas where the
landslide distribution was initially mapped from satellite images. The high-resolution
orthorectified aerial photographs that have been used to map much of the distribution were not

available in these areas at the time of publication.

Detailed Landslide Inventory from Mapping

Previous studies of worldwide earthquakes have related earthquake magnitude to the number of
landslides. For a Mw 7.8 earthquake, the relationship of Malamud et al. (2004) predicts about
25000 landslides; Keefer’s (2002) relation predicts about 60000 landslides. Both relations are
based solely on magnitude and do not consider other factors such as earthquake depth, distance

to fault, topography, rock type, climate, and vegetation that contribute to landslide occurrence.
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These estimates based on worldwide earthquakes are two to six times higher than the

approximate 10000 landslides mapped thus far from the Kaikoura earthquake.

The Version 1.0 landslide inventory contains 10195 coseismic landslides (Figures 1 and 2).
These landslides are inferred to have been triggered by the Kaikoura earthquake and associated
aftershocks as no major rain events occurred in the period between the earthquake and the first
low-level aerial photograph survey after the earthquake, dated December 2016, used to map the

distribution.

To map the distribution, we have primarily used post-earthquake 0.3 m ground resolution
orthorectified air photographs, and digital surface models derived from them, alongside digital
elevation models from post-earthquake airborne Light Detection and Ranging (lidar) surveys,
and other pre- and post- Kaikoura earthquake imagery and lidar data (these data sets are
described in Table A1). Landslides were manually digitised directly into a GIS. This was done
because the outputs from the automated landslide detection tools we ran generally performed
poorly. They: 1) wrongly identified areas of high albedo (in the images) as landslide sources e.g.,
identified bare farmland; 2) created multiple landslide source regions for individual landslide
sources and vice versa where large sources were in fact multiple individual landslides; and 3)
required significant time to manually edit. Several authors have shown how landslide mapping
can influence an inventory and therefore the results of any analyses of it. For example, Parker et
al. (2011) report more than 56000 landslides for the Mw 7.9 2008 Wenchuan earthquake, China,
but Xu et al. (2014; 2016) report 196007 mapped landslides and Li et al. (2014) report 57150
landslides. Li et al. (2014) attribute their increase in numbers over Parker et al. (2011) to them
separating individual landslides from amalgamated clusters. This change increased the number of

mapped landslides but decreased the total volume reported, e.g., see Li et al. (2014). Because of
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such issues, we did not use the results of any of the automated landslide-detection algorithms.
Low-level orthorectified aerial photographs taken in 2015, before the earthquake, were used to
identify the many pre-earthquake landslides in the region, to ensure that such landslides were not
attributed to the earthquake. We also relied on the geotagged oblique air photos taken from
multiple post-earthquake helicopter reconnaissance missions to support and verify mapping in
areas of complex terrain. The landslide mapping was carried out by experienced landslide
researchers using the scheme outlined by Dellow et al. (2017). Where possible, we have
separated the landslide source area from the debris trail to allow more accurate estimates of
landslide size. This was done using a combination of aerial images, pre-and post-earthquake
ground surface difference models derived from lidar and photogrammetry, and shade models
generated from them, which helped to define landslide morphology. We used the scheme of
Hungr et al. (2014) to classify the landslides by their mechanism and dominant material type. To
date, the smallest mapped landslide source area is about 5 m? and the largest about 550,000 m>.
Refinement of the inventory, in particular at the lower end of the size range, is ongoing. The
number of mapped landslides (frequency) with source areas of a given size has been binned
using source area bin widths that are equal in logarithmic space (Figure 2a). As expected, the
areas of the landslide sources generated by this event exhibit characteristic power-law scaling
(Figure 2b) (e.g., Hovius et al., 1997; Guzetti et al., 2002; Malamud et al., 2004; Parker et al.,

2015), defined by:

= L v
p(AL) - NLT ISAL

)

where p(AvL) is the probability density of a given area within a near complete inventory—defined

as the frequency density of landslides of a given source area bin (Av), divided by the total
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number of landslides in the inventory—NLr is the total number of landslides in the inventory, and
ONL is the number of landslides with areas between Ar and AL + JAr. For the landslide area bins,
we adopted bin widths (6Ar) that increased with increasing landslide source area (Ar), so that bin
widths were equal in logarithmic space. The position of the characteristic rollover (Figure 2b),
for smaller landslides occurs at a landslide source area of about 50-100 m?. The frequency-area
distributions of most landslide inventories exhibit a rollover at smaller landslide sizes for various

reasons, one of which is mapping resolution (Stark and Hovius, 2001).

The power-law scaling exponent (a) of 1.88, fitted to the Kaikoura landslide distribution using
the method of Clauset et al. (2009), with xmin = 500 m?, falls within the range of previously
observed values of landslide inventories (1.4 to 3.4), but it is below the central tendency of 2.3 to
2.5 (Van Den Eeckhaut et al., 2007; Stark and Guzzetti, 2009). Figure 2 shows the landslide
frequency and probability density versus area distributions for comparable inventories of
landslides triggered by other notable earthquakes in New Zealand. These are: 1) the 1929 Mw 7.8
Murchison earthquake (Hancox et al., 2016), where Nir= 6104, xmin = 10000 m?and a = 2.62;
and 2) the 1968 Mw 7.1 Inangahua earthquake (Hancox et al., 2014), where NLr= 1199, Xmin =

10000 m?and o = 2.71.

Our results suggest that the number of large landslides >10000 m? generated by this earthquake
are less than those generated by the similar magnitude Mw 7.8 1929 Murchison earthquake in
New Zealand, but are instead more comparable to those triggered by the smaller magnitude Mw
7.1 1968 Inangahua, New Zealand earthquake. (Figure 2a). Nevertheless, the lower a-value
suggests that a higher number of larger landslides were triggered than would typically be
expected given the number of smaller landslides. Such comparisons, however, do not consider
differences in the physiographic setting, which could affect the numbers of landslides generated.

7
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Although a more detailed comparison of the landslides from these different earthquakes is

warranted, it is currently outside the scope of this paper.

The Geology and Topography of the Study Area

The region in which most of the landslides occurred can be subdivided into four main geological
units (Figure 1b and Table 1). These are described by Rattenbury et al. (2006), and their
descriptions are summarised here in order of oldest to youngest: 1) Lower Cretaceous Torlesse
(Pahau terrane) “basement” rocks formed primarily of greywacke; 2) Upper Cretaceous and
Paleogene limestones, siltstones, conglomerates and minor volcanic rocks; 3) Neogene
limestones, sandstones and siltstones; and 4) Quaternary sands, silts and gravels. These materials
and their properties tend to control the types of landslides that occurred within them. For
example, the greywacke is highly jointed, and most landslides appear to be debris avalanches,
controlled by multiple intersecting joint blocks, which limit the volume of such failures.
Conversely the Upper Cretaceous and Neogene sandstones and siltstone tend to be massive with
highly persistent bedding planes and clay seams, which allow the development of large

translational debris slides and slumps. These relationships are explained further in Table 1.

The earthquake mainly affected the northeastern portion of New Zealand’s South Island. This
area is dominated by the Kaikoura Ranges, which rise from sea level to a maximum elevation of
2885 m above mean sea level (AMSL) at Mount Tapuae-o-Uenuku. The Kaikoura Ranges are
predominantly formed of greywacke and are dissected by several large rivers. The long, straight
Clarence River valley separates the Seaward Kaikoura Ranges from the longer and steeper
Inland Kaikoura Ranges, including Mount Tapuae-o-Uenuku. Beyond the Inland Kaikoura
Range is the valley of the Awatere River, which runs parallel to that of the Clarence River. As

these rivers approach the coast, the slopes reduce in gradient, where they are predominantly
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formed of faulted slivers of Neogene rocks and Quaternary gravel, sand and silt. The township of
Kaikoura is the largest town in the area and is located on a rocky peninsula formed of Cretaceous
to Neogene sedimentary rocks and Quaternary marine terraces, about 70 km northeast of the
earthquake epicentre (Figure 1). The topography south and west of Kaikoura is relatively gentle
compared to the Inland and Seaward Kaikoura Ranges. The slopes have mainly been formed by
tectonically driven uplift and fluvial incision through the Neogene sandstones and siltstones,
which forms the main bedrock unit in the area. The climate across much of the area is temperate

and it typically experiences dry, cold winters..

Controlson the Spatial Distribution of Landdides

The landslide distribution does not represent a homogenous mass of landslides clustered around
the earthquake epicentre. Instead, the mapped distribution shows a long, generally linear pattern,
with many landslides occurring on either side of the faults that ruptured to the ground surface
(Figure 1), to the northeast of the earthquake epicentre. Many smaller landslides concentrate
along the coast and in discrete clusters on either side of the faults that ruptured. Many of the
larger landslides occurred on faults with surface ruptures that passed through their source areas
(Figure 3). Interestingly, the larger landslides, whilst also occurring in clusters along the faults,
do not appear to occur at the same locations as the clusters of smaller landslides. A comparison
of the mapped distribution with the bedrock geology shows that landslide occurrence is a
function of lithological variations across the area, and field observations suggest that such
variations control the nature and type of landslides triggered by the earthquake (Figure 1b, Table
1). For example, the landslide point density in the massive, but weaker Neogene sandstones and
siltstones is 5.5 landslides km™, compared to 2.5 landslides km™ in the stronger but closely

jointed greywacke (Table 1).



206  The dynamic response of a slope during an earthquake is not controlled solely by lithology but
207  comprises a complex interaction between seismic waves and the hillslope (e.g., Ashford et al.,
208 1997; Sepulveda et al., 2005; 2011; Massey et al., 2016; Rai et al., 2016). We have used our

209  mapped landslide distribution to explore the relationships between the occurrence of a landslide
210  and the variables that may control its occurrence (Table 2), which we have broadly grouped into:
211 1) predominantly landslide forcing variables representing the intensity of the event-specific

212 seismic ground motions and their proxies, for the Kaikoura earthquake; and 2) predominantly
213 landslide susceptibility variables that capture the strength of the hillslope materials at a regional

214  scale and the static shear stresses at the slope scale.

215  We used logistic regression (e.g., Von Ruette et al., 2011; Parker et al., 2015) to investigate the
216  influence that the variables listed in Table 2 have on the spatial distribution of coseismic
217  landslides attributed to the Kaikoura earthquake. The method models the influence of multiple

218  predictor variables on a categorical response variable Y (with possible values O or 1) using:

1
1+eXp(—(b0+b1x1+b2x2+b3x3...bnxn))

219 P(Y=1)=

(2)

220  where logistic regression is used to estimate the coefficients (b, by, ...) for predicting the
221  probability (Pis) that Y= 1, given the values of one or more predictor variables (x, x,, ... ). The
222 condition Y= 1 corresponds to the occurrence of a landslide within a sample grid cell. The

223 regression coefficients are estimated using a maximum likelihood criterion.

224 To undertake logistic regression, we have defined a sample grid at 32 m resolution, based upon
225  an 8 m ground resolution digital elevation model, resampled from the 2012 version of the Land
226  Information New Zealand (LINZ) digital elevation model for New Zealand. The 32 m grid mesh
227  1s much less than the typical hillslope lengths in the region, which can vary from 100 to >>1000

10



228  m. For this assessment, we have used only landslide source areas and not the debris trails.

229  Landslides with areas less than 50 m? were removed from our data set to eliminate sample bias,
230  because landslides smaller than this have not been systematically mapped and may be

231  underrepresented in the inventory. Thus we have assumed that Y= 1 for any given sample grid
232 cell in which its centroid falls within a landslide source area, even if the grid cell is not fully

233 occupied by a landslide source.

234  The predictor variables used in this assessment were chosen based on variables previously found
235  to influence landslide occurrence (listed in Table 2 and shown in Figures 1b, 4, 5 and 6a to d). To
236  represent the landslide forcing variables, we adopted: 1) peak ground velocity models (PGV); 2)
237  peak ground acceleration models (PGA); 3) the proximity of a landslide to a coseismic fault

238  rupture; 4) permanent coseismic “fault” displacement derived from InSAR and GPS

239  measurements (Hamling et al., 2017) (Figure 5); and 5) local slope relief (LSR). We adopted
240  variables 1) and 2) as proxies for ground shaking, and variables 3) and 4) as less direct proxies
241  for ground shaking. The permanent coseismic displacement variable also serves as a proxy for
242 other susceptibility factors such as rock mass damage and steeper and higher relief. This is

243 because displacement can lead to rock mass deformation and displacement in a vertical sense
244 (uplift) is usually associated with reverse fault hanging walls, which in the Kaikoura region are
245  where the steeper slopes are located. The proximity to a fault is inherently included in the

246  estimation of PGV and PGA; however, we included it separately to examine the influence of
247  local ground deformation and other near-field effects that might not be fully taken into account
248  in the ground-motion models. To include this in the model, we determined the horizontal

249  distance of each sample grid cell to the surface projection of the nearest fault that ruptured to the

250  surface. Note that these faults are different than the locations of the simplified faults used in the

11
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Hamling et al. (2017) fault model, and its variations, which was used in the ground motion
modelling of PGA and PGV. It should also be noted that the proximity to fault variable does not
account for faults that did not rupture to the surface, but which also contribute to the shaking
intensity. The location of those faults that ruptured to the surface during the earthquake were
taken from the GNS Science Active Faults database (Langridge et al., 2016; Stirling et al., 2017;
Litchfield et al., this issue). Local slope relief (LSR) was defined as the maximum height
difference within a fixed 80 m radius of the centroid of a given grid cell. It represents a proxy for
slopes that could amplify ground shaking due to their “larger-scale relief” (larger than just a
sample grid cell-size), where larger values of LSR represent the steeper and higher slopes of the
region, which can amplify ground shaking more than lower-in-height and less steep slopes
(Ashford et al. 1997; Massey et al., 2016; Rai et al., 2016; see Table 2 for details). We also used
slope aspect to investigate directivity effects caused by the earthquake-rupture sequence on

landslide occurrence, refer to Table 2 for details.

To estimate the PGV and PGA variables, we have used three different ground motion models, as
follows: 1) PGVsrapLey from Bradley et al. (2017); 2) PGVLr, which is low-frequency (long
period) PGV calculated up to 0.33 Hz, and derived using the method described by Holden et al.
(2017); 3) PGAsm and PGVswm from ShakeMap NZ (listed in the Data and Resources section of
this paper), developed by the USGS (Wald et al., 1999; Worden et al., 2012), and calibrated for
New Zealand by Horspool et al. (2015) (Figure 4c and d). The first two models incorporate
directivity and basin amplification effects using 3D velocity models and account for along-strike
variations in fault slip, whereas the third does not directly account for any of those effects except
where they are captured by felt reports or seismic data. All three ground motions models are

based on the fault-source model of Hamling et al. (2017). All models use the strong motion data

12
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for the earthquake recorded by the GeoNet strong motion stations located within the area
affected (Figures 1 and 4). However, there were only four stations within the 3600 km? main area
that was affected by landslides, about one station for every 900 km?, and 13 in the wider area
affected (10000 km?), about one station for every 800 km?. The minimum, maximum and mean
distance between these stations was 6.5, 51.3 and 23.6 km, respectively, indicating a sparse

coverage of stations for the main area affected by landslides.

We used landslide susceptibility variables of: 1) elevation; 2) slope curvature; and 3) geology.
Curvature was used as a proxy to represent potential slope-scale patterns of topographic
amplification that tend to occur at breaks in slope (Ashford et al., 1997; Rai et al. 2016) and
localised slope morphology that could represent pre-earthquake landslide scarps and therefore
potentially unstable slopes, thus representing both a susceptibility and earthquake forcing
variable. Curvature is scale dependent and will vary as a result of both the size of the landslide
and the slope. For this paper, curvature was calculated using ArcGIS and taken from the
curvature of the surface on a cell-by-cell basis, as fitted through that cell and its eight
surrounding neighbours. This appeared to best capture the more significant breaks in slope
relative to the scale of the morphology of the slopes along the coast and inland, but not the
higher peaks of the Kaikoura Ranges. Further work is needed to investigate the scale dependency
of slope curvature and its effects on landslide occurrence. Slope gradient and elevation of each
32 m sample grid cell were measured by taking the mean values from the n=16, 8 x 8 m grid
cells that fell within it. Table 2 details how these variables were calculated. We used a
categorical variable to represent the main geological units present in the area (Table 1 and

summarised in Table 2), adopting four categories.
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Model fitting was done manually using the Statistica software (Statistica, 2017). For a predictor
variable to be included in the model, it must have a logical and statistically significant influence
on P;g. We used a significance level (p-value) of p < 0.05 (using the Wald statistic) as the
threshold for inclusion in the model. During model fitting, multiple variable combinations were
iteratively tested. To ensure that the predictor variables included in the model do not exhibit

multicollinearity, we used a variance inflation factor matrix (VIF), given as:

1

VIF = —

3)

where R? is the linear coefficient of determination of the relationship between any pair of
predictor variables. Pairs with VIF >10, indicating a high level of multicollinearity, are avoided
in our models (Kutner et al., 2004; Parker et al., 2015), (Table A2). The final models represent
those variables that produced the best fit whilst meeting the significance level and

multicollinearity criteria.

Results

We independently derived two models—one adopting PGAswm and one adopting PGVswm as the
ground motion parameter—to hindcast the probability of a landslide occurring in each grid cell.

Landslide probability (PLs) is given by the following equation for PGA:

1

Liex Cintercept tCPGAgp-PGAsM+CFauitpist-FAULDISt+Crlevy g 4 v El€VMEAN
P +Cslopepgan-StOPEMEAN*CLSR-LSR+CGeology

4)

Pg =

where the regression coefficients are denoted by c. The regression coefficients and goodness of
fit statistics are shown in Tables 3 and 4 for models adopting PGAsm and PGVswm as the ground

motion predictor variables. We found that the best combination of predictor variables used to
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estimate landslide probability were regional ground motion models (PGAswm or PGVsm), distance
to the surface expression of a fault that ruptured, slope gradient, elevation, local slope relief, and
geology. All the other variables tested during model fitting were found to be less effective
predictors than those included in the models, or they failed either the statistical significance test

(p < 0.05) or the variance inflation factor test.

Figures 6E and 6F show the spatial distribution of Prs calculated using the two regression
models (Tables 3 and 4). The only difference between the combinations of variables used in each
model is the ground motion parameter (PGAsm and PGVsym). The results show that there is little
statistical (Tables 3 and 4) or spatial (Figures 6e and f) difference between the model outputs of
Pis. There was also little difference in the modelled Prs, when substituting other ground motion
variables (PGVgrapLEy, PGVLr and PGVMEaN) independently in the model, whilst keeping the
other variables fixed. To further investigate the explanatory power of the other variables on Ps,
we have adopted a model that uses PGVswm (Table 4), because the model results have a
marginally higher coefficient of determination—pseudo R? adopting Nagelkerke's R?> method—
than those when the other PGV or PGA ground motion variables were adopted. Although the
pseudo R? of this model is relatively low, it is comparable to other similar studies on landslide

data sets from New Zealand (Parker et al., 2015).

Although the predictive power of the model on Pis is low, it has no apparent biases in any part of
its range. Figure 7 presents a comparison of observed versus predicted Prs. This relationship was
calculated by accumulating (adding) the predicted Pis values for each sample grid cell from
smallest to largest, along with the corresponding observed Y value for the same grid cell. For the
PGAswm and PGVsm models, the observed and predicted probabilities display a good fit to the line

of equality. This shows that the modelled probabilities are broadly consistent with the data. The
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low pseudo R? of the model indicates that there are many landslides in cells with low values of
Prs. For example, the model adopting PGVswm has about 43100 cells that are classified as being
landslides (Y = 1) where the modelled landslide probability is <10%. However, there are over
3.4M cells where the modelled probability of a landslide occurring is less than 10%, resulting in
a landslide pixel density of about 0.005 landslides per cell. Conversely, there are only 228 pixels
where the modelled landslide probability is >50%, of which 26 are classified as being landslides,

resulting in a landslide pixel density of 0.11.

Figure 8 shows the predictor variables in rank order of significance, which we determined by
sequentially removing each of the predictor variables that contribute least to the fit of the models.
In each model, and in order of importance, the slope angle, distance to fault, elevation and
geology variables contribute most to the fit of the models, followed by PGVsm (or PGAsm when
substituted for PGVsm in the model) and local slope relief. Notably, distance to the surface
expression of a fault that ruptured has more explanatory power in the regression model than
PGAsm or PGVsm ground motion models or any of the other modelled PGV variables when
tested independently within the regression model. This variable may be capturing: 1) additional
ground motion parameters such as high-frequency ground motions that are not captured by the
current PGA and PGV models, but which will sharply decay with distance from a fault; 2) the
complex nature of the multi-fault rupture, and the multi-frequency ground motion intensity—and
not just the higher frequency ground motions—better than the current PGA and PGV models
even though it doesn’t take into account the shaking contributed by those faults that did not
rupture to the surface; and 3) the influence of rock mass damage on the rock mass strength,
where rock masses closer to faults are likely to be more jointed or “damaged” and have lower

mass strengths than those less damaged rock masses, formed in similar materials, located farther
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away from faults. In addition, preexisting persistent discontinuities such as faults and permanent
tectonic surface deformation along some of them could have been important in triggering several

of the large landslides located directly on or close to faults that ruptured to the surface.

The relatively low pseudo R? value of the model might be taken to suggest that variables not
considered in the presented models might be important for predicting Prs. For example, only four
main geological units have been adopted even though there are significant differences in rock
type and their associated physical properties within these four broad groups. Such differences in
their properties have not yet been determined in sufficient detail to be included in the models.
Also, the northwestern part of the main area affected by landslides contains a cluster of many
small landslides (west-southwest of Ward, Figure 1), situated in areas of Neogene mudstone.
This area does not “stand out” in the models as having a high Prs, and ground shaking (Figure 4)
was relatively low in this area during the Kaikoura earthquake with no nearby faults rupturing,
which suggests that some other variable may be needed to explain this distribution. This area was
affected by the Mw 6.5 16 August 2013 Lake Grassmere earthquake, and to a lesser extent by the
Mw 6.6 21 July 2013 Cook Strait earthquake (Figure 1) (Van Dissen et al. 2013). The Lake
Grassmere earthquake generated landslides in this area, and it induced slope cracking. Thus, the
Lake Grassmere earthquake may have preconditioned the slopes in the area to fail in the
subsequent Kaikoura earthquake (as described by Parker et al., 2015). Alternatively, the
mismatch between modelled and observed landsliding could be due to the high amplitude of the
shaking in this area from the large amount of slip on the Kekerengu fault (Litchfield et al., this

issue), which may not be captured by the current ground motion models.
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Discussion

Kaikoura earthquake landslide numbers and their size

Our results suggest that the number of large landslides >10000 m? generated by this earthquake
is fewer than the number generated by the similar magnitude Mw 7.8 1929 Murchison earthquake
in New Zealand and similar to the number triggered by the smaller magnitude Mw 7.1 1968
Inangahua earthquake. One reason for this might be that the area affected by strong shaking and
landslides is topographically constrained. Specifically, several of the faults that ruptured to the
surface extended off shore, leading to the triggering of many submarine landslides (Mountjoy et
al., this issue), which are not taken into account in the terrestrial landslide distribution examined
in this paper. Another reason for this difference may be that the Kaikoura earthquake involved
the rupture of more than 20 faults that broke to the land surface over a fault-zone length of more
than 100 km, suggesting that the earthquake comprised numerous “sub-events” (Kaiser et al.,
2017, Stirling et al., 2017) of lower magnitude (Hamling et al., 2017). For each fault that
ruptured, an equivalent magnitude can be calculated based on fault dimensions and estimated
total slip (estimated either from geodetic and/or seismic data inversion). Hamling et al. (2017)
estimated that the cumulative moment from the faults that ruptured south of Kaikoura equates to
a Mw 7.5 earthquake. Even though the cumulative moment from the northern faults is larger than
from the southern faults, the moment from some of the individual smaller faults that ruptured to
the north of Kaikoura was equivalent to a Mw 7.1 earthquake (Hamling et al. 2017). This would
conceptually result in the shaking energy being distributed over a larger area but at a smaller
amplitude and, possibly, duration. Large landslides are possibly more sensitive to shaking in the
range of frequencies that often control the ground motion PGV. If the moment release was

distributed across many faults, the shaking duration and frequency content would reflect rupture
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from many smaller faults rather than a single large fault. Thus, the shaking would not have the
same intensity as would be produced by a single fault rupturing with Mw 7.8. With this in mind,
it will be important to update the landslide regression models as improved ground motion

modelling for the earthquake becomes available.

Possible controls on the size of the landslides triggered by the earthquake:

The strength of the dominant rock type in the area that was strongly shaken was mainly
greywacke, and it accounts for 60% of the rocks in the main area affected by landslides. The
coseismic landslide distribution in greywacke is dominated by many small landslides with few
very large ones. Non-earthquake induced landslides in such materials have in the past been
limited in size as greywacke tends to be highly jointed, favouring smaller failures (Hancox et al.,
2015). Previous work on fracture spacing in Torlesse Schist of the Southern Alps, suggests that
its properties are highly influential in geomorphic response (Hales and Roering, 2009).
Additional work is required to assess the landslide distribution source areas and volumes with
regards to the main geological materials in which they occurred, and the role of rock mass
conditioning of landslide source areas/volumes. Such an assessment is outside the scope of this

current paper.

Another contributing factor might be that high-frequency energy radiation during the Kaikoura
earthquake is inferred by some researchers as smaller than during other landslide-triggering
crustal earthquakes of a similar magnitude. While the energy magnitude (Me) of the Kaikoura
and Mw 7.8 2008 Wenchuan, China earthquakes derived from low-frequency (0.5 — 70 s)
waveforms (IRIS DMC, 2013a) are similar (Me = 7.93 and 8.06, respectively), there is a
significant difference in the energy magnitudes estimated from higher frequency (0.5 — 2 s)

waveforms (Me = 7.59 and 8.05, respectively) (IRIS DMC, 2013b).
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Therole of distance from the surface fault rupture

To explore the relationship between landslide occurrence and proximity to a surface fault
rupture, we have plotted the landslide point and area densities as a function of the distance from
the surface expression of the nearest fault that ruptured (Figure 9). We did this by creating
successive buffer zones around the mapped fault traces that ruptured to the surface (Litchfield et
al., this issue; Nicol et al., this issue). We then computed the number and total area of landslide
source areas within each successive 200 m buffer to a distance of 3000 m on either side of the
mapped fault trace as well as those landslide source areas through which faults pass. The density
of landsliding in areas outside the fault buffers was also calculated for comparison. The results
show that the landslide densities (both point and area) within 200 m of a fault are as much as
three times greater than densities outside the 3000 m buffers. The results also show a general
decrease in landslide density with increasing distance from a fault. At a distance of about 2500 to
3000 m, the background landslide density (termed “rest of area” in Figure 9) is reached. This
finding may be the result of: a) high-frequency shaking, which declines rapidly with distance
from a fault, being an important control on the density of landslides triggered by the Kaikoura
earthquake; b) the rock masses close to faults being weaker because of damage from previous
fault rupture events; and c) slopes nearer faults often exhibit greater relief and are steeper than
those farther away, which is the case for those slopes in the Kaikoura region. Others have
reported similar findings, for example, Scheingrosset al. (2013) hypothesized that earthflows
tend to cluster near the creeping San Andreas Fault because of a fault-induced zone of reduced
bulk-rock strength that increases hillslope susceptibility to failure. Meunier et al. (2007) also
suggested that near-field (near-fault), high-frequency shaking is likely to have been an important

control on the density of landslides triggered by earthquakes.

20



452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

Only 44 of the mapped landslide source areas are directly intersected by faults that ruptured to
the surface, but this number includes seven of the eight largest landslides triggered by the
Kaikoura earthquake. This would suggest that the initiation of these large landslides might have
been due to a combination of preexisting discontinuities such as faults and rock mass damage,
dynamic strong shaking and permanent tectonic displacement of the fault as it ruptured to the

surface within the source area.

Earthquake ground motion frequency, slope amplification and landsliding

As noted above, our logistic regression analysis indicates that PGA (or PGV when substituted for
PGA in the model) from the ShakeMap NZ models performs best, but overall the PGA (or PGV)
variable has low explanatory power on predicting landslide occurrence. Distance to fault, which

may capture additional ground motion parameters, has a much higher explanatory power.

Generally, the shaking nearer the source contains a lot more high-frequency energy than farther
away (e.g., Davies, 2015), suggesting that ground motion frequency may play a key role in
determining slope response. Therefore, slopes that are near faults that rupture are more likely to
experience such high-frequency ground motions. If the fundamental frequency of the slope is
similar to the dominant frequency of the ground motion, amplification of shaking may also occur

(Geli et al., 1988).

Ashford et al. (1997) showed that the fundamental frequency (f) of a slope behind the crest can

be estimated using the following equation:

_ 4xH

=% (5)
and a slope/topographic frequency:
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__ 5xH

f= (5b)

Vs

where H is the slope height (or relief) and Vs is the shear wave velocity of the material forming
the slope. More recently, Rai et al. (2016) have developed a model to predict the effects of
topography on earthquake ground motions, adopting the relative relief of a slope (like the LSR
used in this paper). For slopes in the main area affected by landslides, the mean and modal
values for slope relief are 135 m and 85 m for coastal slopes, and for inland slopes they are 588
m and 103 m, respectively. The mean Vs30 of the rock forming the coastal and inland slopes is
estimated by Perrin et al. (2015) as 1000 m/s. Equation (5a) yields fundamental frequencies of
the coastal slopes ranging from 1.9 to 2.9 Hz, and of the inland slopes from 0.4 to 2.4 Hz, for the
mean and modal slope relief, respectively. Such fundamental frequencies are relatively high,
suggesting that the combination of high-frequency shaking at close proximity to the faults, and
amplification of shaking caused by the slopes responding to such high-frequency shaking, may
explain why so many landslides occurred on slopes adjacent to faults. It should be noted that it is
not just the fundamental frequency of the hillslope that matters, which will scale with slope
morphology and relief, but also the fundamental frequency of the potential failure mass, which is
likely to be shallower, and therefore have a higher fundamental frequency than the overall slope.
However, such a difference may only be distinguishable from the rest of the slope if there is
some preexisting plane or damage resulting in a contrast of density/shear wave velocity between

the potential failure mass and the slope (e.g., Massey et al., 2016).

Landslide slope angle and elevation

We have explored the higher density of landslides on the coastal slopes by attributing the

centroid of each landslide source area with its mean slope angle and elevation. We split the
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landslide distribution into coastal and non-coastal slopes—where costal slopes are defined as
those that extend from the sea to the first main inland ridge line, an approximate strip about 1 km
wide—and calculated the area of coastal/non-coastal slope within each slope angle bin (Figure
10). The results show that coastal slopes consistently have more landslides for a given slope
angle than corresponding inland slopes, but that the mean size of the landslide sources on the
inland slopes is larger than those on coastal slopes. Variations in slope angle and geology cannot
explain this difference because the proportion of inland slopes in the steeper slope angle bins
(Figure 10b, inset) is larger than the proportion of slopes on the coast within the same
corresponding slope angle bins. The coastal slopes are primarily formed from greywacke, which
is also the dominant rock type forming the slopes inland. A possible explanation for these
smaller landslides on the coastal slopes is that their size has been limited by the topography, as
the coastal slopes have a lower relief (i.e., elevations less than 500 m AMSL) compared to the

higher relief slopes inland.

The results of the logistic regression model show that landslide probability increases with
decreasing elevation and coastal slopes are at lower elevations. This finding could be due to the
coastal-slope geometry and materials (and contrasting materials caused by coastal weathering
processes and products), and their effects on amplifying the ground shaking. Studies of similar
coastal slopes (Massey et al., 2016), albeit in different materials, have shown that
amplification—between the peak acceleration of the free field earthquake motion and the
average peak acceleration of the slope—of shaking between the base and crest of a slope could
be up to 2.5 times, with a mean of 1.6 times, higher at the crest than the base of the slope. Such
values are comparable to the amplification factors reported by Ashford et al. (1997). It is also

possible that the predominantly greywacke coastal slopes are more weathered than their inland
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counterparts. Such hypotheses are likely to form the basis of future research on the landslides

generated by the Kaikoura earthquake.

Conclusions

Our main findings are: (1) the number of large landslides (with source areas >10000 m?)
triggered by the Kaikoura earthquake is fewer than the number of similar sized landslides
triggered by other similar magnitude earthquakes in New Zealand; (2) the largest landslides
(with source volumes from 5 to 20 M m?) occurred either on or within 2500 m of the more than
20 mapped faults that ruptured to the surface; (3) the landslide density within 200 m of a mapped
surface fault rupture is as much as three times higher than those densities farther than 2500 m
from a ruptured fault; (4) for the same slope angles, coastal slopes have landslide point densities
that are an order of magnitude greater than those in similar materials on the inland slopes, but
their source areas are significantly smaller, possibly indicating that these slopes locally amplified
ground shaking, and (5) the “distance to fault” predictor variable, when used as a proxy for
ground motion intensity, has more explanatory power in predicting landslide probability than the
modelled PGA or PGV variables adopted in the logistic regression modelling, even though this
variable does not account for faults that did not rupture to the surface, but which also contribute
to the shaking intensity. This relationship might be because the distance to fault variable
captures: (a) the high-frequency ground motions and their attenuation with distance from a fault
better than the current PGA and PGV models; (b) the complexity of the multi-fault rupture, and
therefore the multi-frequency ground motion intensity, better that the current PGA and PGV
models; and (c) the more damaged nature of the rock masses close to the faults, where they tend

to be more sheared and weakened. The strong explanatory power of the “distance to fault”
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predictor variable could also reflect the apparent structural control of some of the largest

landslides that occur on or near faults.

Data and Resour ces

A recent update on information relating to submarine landslides triggered by the Kaikoura

earthquake was given in the AGU Landslide Blog. 2017. Last accessed October 2017.

http://blogs.agu.org/landslideblog/2017/02/27/niwa-1/

The ShakeMap NZ map of peak ground accelerations for the Kaikoura earthquake was published

online on the GeoNet website. 2016. Last accessed October 2017.

http://www.geonet.org.nz/news/fiBIHE2uNg2gGmmiOg42m

The software package used to carry out the logistic regression is called Statistica. 2017. Last

accessed October 2017. |http://www.statsoft.com/Products/STATISTICA-Features

The version 1.0 landslide dataset used in this paper can be downloaded from the GNS Science

landslide databasel|https://data.gns.cri.nz/landslides/|or the|https://www.designsafe-ci.org/

website.
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Table 1. Lithology and landslide types adopted in this paper

Torlesse (Pahau
terrane) “basement”
rocks predominantly
sandstones and
argillite (greywacke).
These are relatively
strong rocks with UCS
10-20 MPa, but they
are closely jointed.

Lithology Proportion | Landslide Dominant landslide types
of main point / area
area density*
affected (N/km?/
(%) %)
Quaternary sands, silts | 19 1.8/0.3 Debris avalanches and flows that tend to be relatively
and gravels. These small, and their source areas are mainly located in the
typically form river terrace sands and gravels on top of the steeper coastal
terrace deposits in the slopes. Many other landslides occurred within the
region. shallow regolith, which covers many slopes in the area
that were affected by strong ground shaking. These
include shallow, translational slides in soil with
displacements of a few centimetres to several metres.
Neogene limestones, 9 55709 Relatively shallow debris avalanches and flows that
sandstones and source from the more weathered rocks, or relatively
siltstones. These are deep-seated slides and slumps, where movement is
typically massive, but thought to occur either along bedding or other
weak rocks with persistent structural discontinuities, e.g., fault planes,
unconfined thin clay seams, or through the rock mass. Substantial
compressive strengths numbers of pre-Kaikoura earthquake, large landslides
(UCS) of typically were mapped in these materials of which many
<2MPa (Read and reactivated (a few centimetres to metres) during the
Miller, 1990). earthquake, forming translational and rotational
slides/slumps.
Upper Cretaceous to 12 4.6/0.5 Rockfalls and debris avalanches in areas of steeper
Paleogene rocks terrain, with some slides and slumps (termed coherent
including limestones, after Keefer 2013) in areas of less steep topography,
sandstones, siltstones and their location might be controlled by the presence
and minor volcanic of thin clay seams or small-scale changes in lithology.
rocks. These are Several relict landslides are present in these materials,
typically massive, but and there were numerous small rockfalls and debris
weak rocks with UCS avalanches from their over-steep head scarps.
of typically <2MPa.
Lower Cretaceous 60 2.5/0.6 Rockfalls (of individual boulders) to debris and rock

avalanches. Given the highly discontinuous nature of
the rock mass, most landslides are controlled by
multiple intersecting joint blocks, hence a potential
limitation on the volume of such failures. However,
the Kaikoura earthquake triggered several very large
and structurally controlled rock avalanches, the
Hapuku landslide being the largest mapped landslide.

* Landslide point densities were calculated by dividing the number of landslide sources within a given geological
unit by the area of ground within that given unit, within the main area affected by landslides (Figure 1b). Landslide
area densities were calculated by dividing the total area of all landslide sources within a given geological unit by the
area of ground within that unit, within the main area affected by landslides.
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Table 2. Predictor variables evaluated in the logistic regression model, their ID codes,

descriptions and units.

Variable type

Variable ID

Description

Units

Susceptibility

Geology 1

Quaternary sands, silts and gravels. These materials
typically form terrace deposits on the top of the steep
coastal cliffs as well as inland slopes adjacent to the
main rivers of the area. Many of these terraces have
been incised by rivers.

N/A

Geology 2

Neogene limestones, sandstones and siltstones, which
are typically weak. They occur along sections of the
coast north of Kaikoura.

N/A

Geology 3

Upper Cretaceous to Paleogene rocks including
limestones, sandstones, siltstones and minor volcanic
rocks. These are typically weak (like the Neogene
limestones and sandstones), and easily erodible and
they can contain thin clay seams, which are volcanic
in origin. They are typically exposed in narrow strips
overlying the greywacke basement rocks.

N/A

Geology 4

Lower Cretaceous Torlesse (Pahau terrane)
“basement” rocks are predominantly sandstones and
argillite, also known as greywacke. The greywacke
rocks are typically moderately to well bedded and
tend to be closely jointed. They form many of the
coastal slopes as well as the steeper inland Kaikoura
mountain ranges.

N/A

SlopeMEAN

Local hillslope gradient taken from the 8 m resolution
digital elevation model generated by GNS Science,
adopting the mean value of all of the 8 m by 8 m cells
that fall within each cell of the sample 32 m by 32 m
grid. This variable is a proxy for the static shear
stresses in the slope.

Deg (°)

Elevmean

Local hillslope elevation taken from the 8 m
resolution digital elevation model generated by GNS
Science, adopting the mean value of all of the 8§ m by
8 m cells that fall within the each cell of the sample
32 m by 32 m grid. This variable represents the
observation that topography can limit the size of the
landslides. For example, slopes that are higher in
elevation tend to have larger surface areas, and can
therefore generate larger landslides than slopes at
lower elevations, which tend to have smaller surface
areas.

mAMSL

CurvproriLE

Profile curvature generated using ArcGIS, taken from
the curvature of the surface on a cell-by-cell basis, as
fitted through that cell and its eight surrounding

One
hundredth

38



neighbours. using the 8 m resolution digital elevation
model generated by GNS Science. A negative value
indicates the surface is upwardly convex at that cell.
A positive profile indicates the surface is upwardly
concave at that cell. A value of 0 indicates the surface
is flat. This variable is a proxy for slope “sharpness”
that represents topographic amplification effects, as
amplification of shaking has been recorded at sharp
breaks in slope (e.g., Massey et al., 2016; Janku,
2017).

(1/100) of
a z-unit

ASpMEAN

The aspect for each sample grid-cell was calculated
using ArcGIS using the 8 m resolution digital
elevation model generated by GNS Science, adopting
the mean of all of the 8 m by 8 m cells that fall within
each cell of the 32 m by 32 m sample grid.

Deg (°)

Earthquake
forcing

FaultDist

The distance from the centroid of each of the 32 m by
32 m sample grid cells to the nearest fault that
ruptured using the mapped surface expression, taken
from the GNS Science Active Faults database
(Langridge et al., 2016), which includes those faults
that ruptured during the Kaikoura earthquake.

Meters

PGAsm

Grid of the mean peak ground acceleration (PGA)
derived from ShakeMap NZ (GeoNet, 2016),
developed by the U.S. Geological Survey (Wald,
1999; Worden, 2012), and calibrated for New
Zealand by Horspool et al. (2015). Grid resolution is
1000 m by 1000 m. The PGA values were attributed
to the sample grid cell, by taking the PGV value at its
centroid.

PGVsm

Grid of the mean peak ground velocity (PGV) derived
from ShakeMap NZ. Grid resolution is 1000 m by
1000 m. The PGV values were attributed to the
sample grid cell, by taking the PGV value at its
centroid.

PGVLF

Low-frequency (long period) PGV calculated from
waveforms up to 0.33 Hz, using the method described
by Holden et al. (2017). Grid resolution is 500 m by
500 m. The PGV values were attributed to the sample
grid cell, by taking the PGV value at its centroid.

P GVBRADLEY

Grid of PGV derived from modelling carried out by
Bradley et al. (2017). Grid resolution is 990 m by 990
m. The PGV values were attributed to the sample grid
cell, by taking the PGV value at its centroid.

PGVmEan

Mean PGV calculated for each of the sample grid
cells by sampling the PGV value from each of the
three PGV models model at the centroid of each
sample grid, and taking the mean of the three values.
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Dispy

The vertical permanent tectonic displacement caused
by the earthquake was taken from the 100 m by 100
m resolution three-dimensional displacement field
derived from satellite radar and GPS data (Hamling et
al., 2017). This variable is a proxy for ground
shaking intensity because areas of increasing
permanent tectonic displacement should correlate
with increased dynamic ground shaking and inertial
loading on the soil and rock masses forming the
slopes, leading to an increase in landsliding.

Meters

Dispn

The horizontal permanent tectonic displacement was
calculated for each sample grid cell as the vector of
the maximum x and y displacement fields taken from
Hamling et al. (2017), 100 m by 100 m resolution
three-dimensional displacement field. As Dispv, this
variable is a proxy for ground-shaking intensity.

Meters

LSR

Local slope relief calculated using focal statistics in
ArcGIS. It represents the local height (and angle) of
the sample grid cell. It is calculated as the difference
in elevation between the lowest in elevation 8 m by 8
m grid cell, within an 80 m (ten (10) 8 m cells) radius
from the centroid of the given sample grid cell, and
the mean elevation of that grid cell (Elevmean). This
variable represents a proxy for slopes that could
amplify ground shaking due to their “larger-scale
steepness” (larger than just a sample grid-cell size),
where larger values of LSR represent the steeper and
higher slopes of the region, which can amplify ground
shaking more than lower in height and less steep
slopes (Ashford et al. 1997; Massey et al., 2016).

Meters
(m)
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Table 3. Logistic regression output coefficients and model fit statistics. Input ground-motion
variable PGAsm. Binomial logistic regression — modelled probability that Landslide = 1.

Variable Coefficient | Standard 95% confidence interval
©) error Lower bound Upper bound

Intercept -8.2531 0.0471 -8.3454 -8.1608
PGAsm 0.0278 0.0005 0.0268 0.0288
FaultDist -0.0002 0.000003 -0.0002 -0.0002
Elevmean -0.0014 0.00002 -0.0014 -0.0013
Slopemean | 0.0816 0.0012 0.0793 0.0840
LSR 0.0158 0.0006 0.0146 0.0169
Geology 1 | 0.5813 0.0196 0.5429 0.6197
Geology 2 | 0.1963 0.0186 0.1599 0.2327
Geology 3 | -0.1466 0.0104 -0.3117 -0.2434
Geology 4 | -0.6866 0.0084 -0.7031 -0.6700

Number of observations: 3,481,858. Likelihood ratio X?: 3.41 x 10*. All variables have p values of less than

1 x 10°8. Pseudo R% 0.141

41



776
777

778
779

780

Table 4. Logistic regression output coefficients and model fit statistics. input ground-motion
variable PGVsm. Binomial logistic regression — modelled probability that Landslide = 1.

Variable Coefficient | Standard 95% confidence interval
©) error Lower bound Upper bound

Intercept -8.5968 0.0494 -8.6937 -8.4999
PGVMEAN 0.0294 0.0005 0.0284 0.0303
FaultDist -0.0002 0.000003 -0.0002 -0.0002
Elevmean -0.0013 0.00002 -0.0013 -0.0012
Slopemean 0.0835 0.0012 0.0812 0.0858
LSR 0.0158 0.0006 0.0147 0.0170
Geology 1 0.1537 0.0214 0.1117 0.1957
Geology 2 0.3005 0.0188 0.2637 0.3372
Geology 3 -0.0978 0.0174 -0.1320 -0.0636
Geology 4 -0.3563 0.0137 -0.3831 -0.3295

Number of observations: 3,481,858. Likelihood ratio X?: 3.49 x 10*. All variables have p values of less than

1 x 10°8. Pseudo R% 0.144
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List of Figure Captions

Figure 1. Inset map shows the area of New Zealand affected by coseismic landslides
triggered by the Mw 7.8 2016 Kaikoura earthquake. a) Shows the mapped 10195 coseismic
landslide source areas and their size (area) triggered by the earthquake, superimposed on the 8 m
by 8 m digital elevation model for New Zealand, classified by elevation in meters above sea
level. b) The landslide source area distribution overlain on the main geological units. c)
Landslide source area distribution shown on the 8 m ground resolution digital elevation model

for New Zealand.

Figure 2. a) The number of landslides (frequency) with source areas within each source area
bin. Landslide source-area bin widths are equal in logarithmic space for all data sets. b)
Landslide probability density plotted against landslide area (for the landslide source areas only),
for landslides generated by the Kaikoura earthquake, the Mw 7.1 1968 Inangahua, New Zealand
earthquake (Hancox et al., 2014) and the Mw 7.8 1929 Murchison, New Zealand earthquake
(Hancox et al., 2016). For Figure 2b the power-law fitting statistics are: 1) Mw 7.8 2016
Kaikoura earthquake, where Nrt = 10195, Xmin = 500 m? and o = 1.88; 2) Mw 7.8 1929
Murchison earthquake (Hancox et al., 2016), where Nrt = 6104, Xmin = 10000 m? and a = 2.62;
and 3) the Mw 7.1 1968 Inangahua earthquake (Hancox et al., 2014), where NLt = 1199, Xuin =

10000 m? and o = 2.71.

Figure 3. a) Hapuku rock avalanche in Lower Cretaceous basement rocks — this is the
largest of the mapped landslides with an estimated volume of about 20 (+2) M m®. In this case,
the slide surface appears to correspond to multiple persistent discontinuities such as old and
recent fault planes. Several faults that ruptured to the surface pass through the source area of the

landslide. The debris left the source and blocked the Hapuku River creating a dam about 100 m
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high. Multiple lobes of debris of different clast size can be mapped in the deposit, indicating
multiple pulses of debris deposition. The dam subsequently overtopped and the downstream face
was partially eroded (due to headward erosion initiated by seepage through the dam) following
Cyclone Cook in April 2017. The debris left in the source is still unstable and several debris
flows have occurred, which have eroded the debris down to bedrock in places. The debris
forming the dam continues to erode as water from the impounded lake flows over the crest and
down the outflow channel. b) Seafront rock slide/slump in Paleogene limestone — This is the
largest mapped landslide in these materials with an approximate volume of 18 (+2) M m>. This
slide surface is assumed to be deep seated (>100 m below the surface), with the field
observations and cross sections suggesting a semi-rotational failure through the rock mass. Much
of the debris has remained intact, and so the slide/slump would be classified as coherent (Keefer,
2013). The displaced mass is still creeping and several debris flows have occurred off the toe of
the intact displaced debris and also the head scarp. The Papatea fault (Hamling et al., 2017)
ruptured through the source area suggesting that surface rupture of this fault caused the landslide
to initiate. The vertical displacement of this fault measured approximately 0.5 km away from the
landslide is about 6 m. We are not sure whether the landslide initiated either from permanent
coseismic displacement of the ground or dynamic displacement caused by shaking, or some
combination of both. c¢) Leader River rock slide/slump in Neogene mudstone — The largest
mapped landslide in these materials is the Leader River landslide with an approximate volume of
8 (1) M m?®. This rock slide/slump is predominantly within Neogene mudstone (including
sandstone and siltstone), and the slide surface is assumed to be deep seated (about 80 m below
the surface) with the displacement vectors suggesting a translational failure (with some rotation

at the head scarp), possibly along bedding, which is inclined at about 20° to 25° out of the slope
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(measured near the toe of the debris) and has the same dip direction as the vectors of landslide
displacement. A faulted contact between the Lower Cretaceous greywacke and Neogene
mudstone is also present in the landslide head scarp. Although there is no field-evidence to
suggest this contact ruptured, it is possible that a fault also ruptured through the source area of
this landslide (Nicol et al., this issue), but more investigation is needed to determine whether this

is the case or not. All photos D. Townsend.

Figure 4. Peak ground velocities (PGV) and peak ground accelerations (PGA) from: a) Bradley
et al. (2017) (PGVBrabLEY), calculated up to frequencies of >10 Hz, grid resolution 1000 m; b)
PGVLF calculated using the method by Holden et al. (2017) up to a frequency of 0.33Hz, grid
resolution 500 m; and ¢) PGVswm from Shake Map NZ (median estimates), calculated up to
frequencies of 50 Hz, grid resolution 1000 m. d) PGAswm from Shake Map NZ (median
estimates), calculated up to frequencies of 50 Hz, grid resolution 1000 m. The Kaikoura
earthquake landslide distribution (shown as grey polygons, N=10195 landslides) are overlain on

all the maps.

Figure 5. Permanent ground displacement: a) horizontal; and b) Vertical, and the inferred fault
model taken from InSAR and GPS measurements relating to the Kaikoura earthquake presented
by Hamling et al. (2017), grid resolution of 100 m by 100 m, overlain by the Kaikoura

earthquake landslide distribution (shown as grey polygons, N=10195 landslides).

Figure 6. Maps a) to d) showing the distributions of the main susceptibility predictor variables
used in the logistic regression model. a) Elevation (Elevmean); b) Slope (Slopemean); ¢) Distance
to fault (FaultDist); d) Local slope relief (LSR). Maps e) and f) show the estimated landslide

probabilities (Prs) from the logistic regression model: e) adopting the PGAswm variable as the
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input ground motion; f) adopting the PGVswm variable as the input ground motion. The faults that

ruptured to the surface during the earthquake are shown as red lines.

Figure 7. Consistency of the logistic regression model probabilities with the data, adopting the
variables listed in Table 3 and ground motion parameter PGVswm. The graph shows a comparison
of observed and predicted landslide probabilities, calculated by accumulating (adding) the
predicted landslide probability (PLs) values for each sample grid cell from smallest to largest,

along with the corresponding observed Y value for the same grid cell.

Figure 8. Logistic regression model performance adopting the variables listed in Table 4 and
ground motion parameter PGVswm. The graph shows the relative contributions of predictor
variable to the fit of the overall model. The sequence of model variables and the resulting pseudo
R? values are shown in rank order of their significance, which we determined by sequentially

removing each of the predictor variables contributing least to the fit of the model.

Figure 9. Landslide point and area density (N=10195 landslides) within each 200 m distance
from fault buffer. Landslide density is calculated by taking the centroid of each landslide source
area that falls within each 200 m distance buffer from the mapped surface expression of the
faults that ruptured during the earthquake. The number (N) of landslide points within each
distance from fault bin range is then divided by the area of slope (km?) within each bin. The
landslide area density is also shown, which is calculated in the same way as the landslide point
density; however, the area of each landslide source (km?) within each distance from fault bin is

summed and divided by the total area of ground within each 200 m bin.

Figure 10. Landslide source areas (N=10195 landslides) normalised relative to the largest

mapped landslide (area in km?) and their associated elevation and slope angle taken from the 8 m
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by 8 m New Zealand digital elevation model. The slope angle and elevation values attributed to
each landslide source area were sampled from the digital elevation grid by calculating the mean
values within each source area polygon. a) Landslides on coastal slopes only; and b) landslides
on non-coastal slopes. c) Area of slope within a given slope angle bin as a proportion of the total
area of coastal and non-coastal slopes. d) Landslide point density for each slope angle bin
adopting 10-degree bins. Landslide density is calculated by taking the number of landslide
sources that have mean slope angles that are within each 10-degree slope-angle bin range. The
number (N) of landslides within each slope-angle bin range is then divided by the area of slope
(km?) within each bin. The point densities are calculated for coastal and non-coastal slopes and

landslides.
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Appendices

The information contained in the appendices comprise the following: 1) A summary of the imagery and topographic data used to map Version

1.0 of the landslide distribution presented in the paper; and 2) The variance inflation factor matrix (VIF), which was used as a method to ensure

that the predictor variables included in the logistic regression model did not exhibit multicollinearity.

Table Al. Summary of data used to compile the landslide inventory.

Item Data Type Date (NZST) Source Ground Public Notes
resolution (m) availability
Pre Kaikoura | 1 Kaikoura District Orthorectified mosaics 2014-2015 Environment 0.3 Yes
earthquake aerial photographs Individual tiled tiffs (provided Canterbury
data by Council) converted to one (ECAN),
mosaic by GNS Science. (captured by
Aerial Surveys)
2 Marlborough Orthorectified mosaic 2011-2012 Marlborough 0.4 Yes
District aerial Individual tiled tiffs (provided District Council
photographs by Council) converted to one MDO),
mosaic by GNS Science. (captured by
Aerial Surveys)
Marlborough Orthorectified mosaic 2015-2016 MDC, captured 0.2 Early 2018
District aerial Individual tiled tiff format by AAM Group
photographs files Ltd.
3 Kaikoura Digital ESRI Grid file 2014-2015 ECAN, captured | 1.0 Early 2018
Surface Model by Aerial
(DSM), generated Surveys Ltd.
from the e
4 hotoeraphs taken ESRI Grid file already 2014-2015 ECAN, captured | 10.0 Early 2018
If) stap provided by Aerial
or 1 and 2.
Surveys Ltd.
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5 Airborne lidar Point clouds converted to 2012 Captured by 1.0 Yes Only the coastal strip from
Digital Elevation Models AAM Group Ward through to Cheviot
(DEMs) and Hillshades by Ltd.
GNS Science
Post 5 WorldView-2 Multispectral bands supplied 22 November | Captured by 24 Yes EAGLE technology
Kaikoura satellite imagery raw. Orthorectified as an 2016 Digital Globe processed the same raw
earthquake Imagine file and converted to images and provided to all of
data mosaics by GNS Science government.
6 WorldView-3 15 November | Captured by 1.4 Yes
satellite imagery 2016 Digital Globe
7 GeoEye satellite 15 November | Captured by 2.0 Yes
imagery 2016 Digital Globe
8 Aerial photographs RGB stereo-tiff files with December Captured by 0.3 Early 2018 | Area covered is the main
image coordinates, processed | 2016 Aerial surveys area affected by landslides
to individual orthorectified Ltd. and the total area affected by
images and DSMs by GNS commissioned landslides.
Science. by LINZ at the
Aerial Surveys to provide request of GNS
complete processed data set Science and
other New
Zealand agencies
9 Airborne LIDAR Point clouds converted to November to Captured by 1.0 On request | Only the coastal strip, main
DEM and Hillshades by GNS | December AAM Group faults and Goose Bay
2016 Ltd. provided to date. Additional
commissioned areas (dam sites) to be
by LINZ at the provided later.
request of GNS
Science and
other New
Zealand agencies
10 Terrestrial LIDAR Point clouds, orthorectified November and | Captured by Variable Yes Multiple surveys of each

of landslides and
landslide dams on
the rivers called —
Hapuku, Ote

images,

December
2016

GNS Science

dam. Several of the dams
failed following Cyclone
Debbie and Cook, and
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Makura, Linton,
Conway, Towy,
Stanton and Leader

March, April,
May and
September
2017

surveys of these dams were
carried out post failure.
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Table A2. Variance inflation factor matrix (VIF) for the variables included in the logistic regression models. VIF values greater than 10 indicate

a high level of multicollinearity (Kutner et al., 2004) and are avoided in our models.

Variables LSR Slopemean Elevmean FaultDist PGVmEean PGVgrabpLEY PGVir PGVsum PGAsm
LSR - 4.54 1.60 1.00 1.01 1.03 1.03 1.13 1.00
Slopemean - 1.48 1.00 1.00 1.03 1.03 1.16 1.00
Elevmean - 1.04 1.00 1.00 1.02 1.11 1.02
FaultDist - 1.10 1.04 1.02 1.30 1.60
PGVuMEan - 8.89 3.04 1.09 1.16
PGVErapLEY - 1.96 1.00 1.05
PGV - 1.00 1.03
PGVsm - 1.62
PGAsm -
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